УДК 517.982 **DOI** 10.46698/o1968-1156-5382-е

ВЛОЖЕНИЯ В В-ЦИКЛИЧЕСКИЕ БАНАХОВЫ ПРОСТРАНСТВА#

Б. Б. Тасоев^{1,2}

 1 Северо-Кавказский центр математических исследований ВНЦ РАН, Россия, 363110, с. Михайловское, ул. Вильямса, 1; 2 Южный математический институт — филиал ВНЦ РАН, Россия, 362025, Владикавказ, ул. Ватутина, 53

 $E\text{-}mail: \verb|tasoevbatradz@yandex.ru||$

Аннотация. Для полной булевой алгебры \mathbb{B} и ненулевого $\pi \in \mathbb{B}$ введено понятие изоморфного \mathbb{B}_{π} -вложения банаховых пространств в \mathbb{B} -циклические банаховы пространства. Также введено понятие решеточного изоморфного \mathbb{B}_{π} -вложения банаховых решеток в \mathbb{B} -циклические банаховы решетки. Установлен критерий изоморфного \mathbb{B}_{π} -вложения пространства непрерывных вектор-функций со значениями в произвольном банаховом пространстве в \mathbb{B} -циклическое банахово пространство, а также критерий решеточного изоморфного \mathbb{B}_{π} -вложения пространства непрерывных вектор-функций со значениями в произвольной банаховой решетке в \mathbb{B} -циклическую банахову решетку. Полученные результаты позволяют наметить подход для изометрической и изоморфной классификации \mathbb{B} -циклических банаховых пространств. В ходе установления результатов широко использовался аппарат решеточно-нормированных пространств.

Ключевые слова: банахова решетка, \mathbb{B} -циклическое банахово пространство, изоморфная классификация.

AMS Subject Classification: 46B42, 46B04.

Образец цитирования: *Тасоев Б. Б.* Вложения в \mathbb{B} -циклические банаховы пространства // Владикавк. мат. журн.—2022.—Т. 24, вып. 4.—С. 127—132. DOI: 10.46698/o1968-1156-5382-е.

Вложение классических банаховых пространств играет важную роль в изометрический и изоморфной классификации общих банаховых пространств. В настоящей заметке предпринимается попытка наметить аналогичный подход для В-циклических банаховых пространств. Напомним необходимые для дальнейшего изложения определения. Более подробное изложение можно найти в монографиях [1, 2, 3].

Определение 1. Пусть X и Y — банаховы пространства. Говорят, что Y вложешмо в X, если существует линейный оператор $T:Y\to X$ и константы K,M>0, удовлетворяющие условию $K\|y\|\leqslant \|Ty\|\leqslant M\|y\|$ для всех $y\in Y$. При этом оператор T называется вложением.

Определение 2. Пусть X и Y — банаховы решетки и $T:Y\to X$ — вложение. Говорят, что Y решеточно вложение G вложение G является решеточным гомоморфизмом. При этом G называют решеточным вложением.

Пусть X — нормированное пространство, $U_X := \{x \in X : ||x|| \leq 1\}$. Под булевой алгеброй проекторов в векторном пространстве X понимается множество $\mathbb B$ коммутирующих линейных идемпотентных операторов, действующих в X, в котором роль нуля и

[#] Работа выполнена при поддержке Минобрнауки России, соглашение № 075-02-2022-896.

^{© 2022} Тасоев Б. Б.

Тасоев Б. Б.

единицы играют соответственно нулевое и тождественное отображения, а булевы оперании имеют вил:

$$\pi \wedge \rho := \pi \circ \rho = \rho \circ \pi, \quad \pi \vee \rho := \pi + \rho - \pi \circ \rho, \quad \pi^{\perp} := I_X - \pi \quad (\pi, \rho \in \mathbb{B}).$$

Предположим, что в L(X) имеется полная булева алгебра проекторов единичной нормы \mathbb{B} . Нормированное пространство X называется \mathbb{B} - $uu\kappa$ лическим, если для произвольного разбиения единицы $(\pi_{\xi}) \subset \mathbb{B}$ и любого семейства $(x_{\xi}) \subset U_X$ существует и при том единственный $x \in U_X$, для которого выполняется $\pi_{\xi}x_{\xi} = \pi_{\xi}x$ при всех ξ , см. [2, § 7.3.3].

Пусть Q — экстремальный компакт, Y — банахово пространство. Обозначим символом $C_{\infty}(Q,Y)$ множество классов эквивалентности непрерывных вектор-функций, действующих из котощих множеств $\mathrm{dom}(u) \subset Q$ в Y. Напомним, что множество в топологическом пространстве называют котощим, если его дополнение является тощим. Множество $C_{\infty}(Q,Y)$ можно естественным образом снабдить структурой модуля над кольцом $C_{\infty}(Q)$. Более того, непрерывное продолжение поточечной нормы $t\mapsto \|f(t)\|$ ($t\in\mathrm{dom}(f)$, $f\in C_{\infty}(Q,Y)$) определяет разложимую норму $\|\cdot\|$ на $C_{\infty}(Q,Y)$ со значениями в $C_{\infty}(Q)$ (подробности см. $[2,\S 2.3.3]$). Введем пространство $C_{\#}(Q,Y):=\{f\in C_{\infty}(Q,Y):|f|\in C(Q)\}$ и ному в нем $\|f\|:=\|\|f\|\|_{\infty}$. Обозначим через $\mathbb B$ булеву алгебру всех характеристических функций открыто-замкнутых подмножеств множества Q. Тогда $C_{\#}(Q,Y)$ будет $\mathbb B$ -циклическим банаховым пространством.

Введем определение вложимости банахова пространства в \mathbb{B} -циклическое банахово пространство.

Определение 3. Пусть Y — банахово пространство, X — \mathbb{B} -циклическое банахово пространство, \mathbb{B}_{π} — главный идеал в \mathbb{B} , порожденный некоторым ненулевым элементом $\pi \in \mathbb{B}$. Будем говорить, что Y \mathbb{B}_{π} -вложсимо в X, если:

- 1) $T: Y \to X$ вложение;
- 2) существует $\varepsilon > 0$ такое, что $\|\rho Ty\|_X \geqslant \varepsilon \|Ty\|_X$ для всех $y \in Y$ и $0 \neq \rho \in \mathbb{B}_{\pi}$.
- В данном случае будем говорить, что $T \mathbb{B}_{\pi}$ -вложение.

Пусть G — стоуновский компакт некоторой булевой алгебры \mathbb{B}_0 . Как известно, булеву алгебру \mathbb{B}_0 можно отождествить с пространством характеристических функций открытозамкнутых подмножеств множества G. При таком отождествлении для произвольных $\pi_1,\ldots,\pi_n\in\mathbb{B}_0$ и $y_1,\ldots,y_n\in Y$ символом $\sum_{i=1}^n\pi_i\otimes y_i$ будем обозначать непрерывную функцию из G в Y, действующую по правилу $\sum_{i=1}^n\pi_i\otimes y_i(q):=\sum_{i=1}^n\pi_i(q)y_i$ для всех $q\in G$.

Теорема 1. Пусть $X - \mathbb{B}$ -циклическое банахово пространство, Q -стоуновский компакт \mathbb{B} , $\mathbb{B}_{\pi} -$ главный идеал в \mathbb{B} , порожденный ненулевым элементом $\pi \in \mathbb{B}$ и Y -банахово пространство. Следующие утверждения эквивалентны:

- (1) $Y \mathbb{B}_{\pi}$ -вложимо в X;
- (2) для стоуновского компакта $G \in \operatorname{Clop}(Q)$ булевой алгебры \mathbb{B}_{π} существует вложение $\widetilde{T}: C_{\sharp}(G,Y) \to X$ такое, что $\widetilde{T}(\rho \otimes y) = \rho \widetilde{T}(\pi \otimes y)$ для всех $y \in Y$, $\rho \in \mathbb{B}_{\pi}$.
- $\lhd (1) \Rightarrow (2)$. По условию существуют вложение $T: Y \to X$, ненулевой элемент $\pi \in \mathbb{B}$ и $\varepsilon > 0$ такие, что $\|\rho Ty\| \geqslant \varepsilon \|Ty\|$ для всех $y \in Y$ и $0 \neq \rho \in \mathbb{B}_{\pi}$. Так как T вложение, найдутся константы K, M > 0 такие, что $K\|y\| \leqslant \|Ty\| \leqslant M\|y\|$ для всех $y \in Y$.

Пусть $\mathrm{St}(G,Y)$ обозначает множество классов эквивалентности функций из $C_\#(G,Y)$ вида $\sum_{i=1}^n \pi_i \otimes y_i$, действующих по правилу

$$\sum_{i=1}^{n} \pi_{i} \otimes y_{i}(q) := \sum_{i=1}^{n} \pi_{i}(q) y_{i} \quad (q \in G),$$

где $y_1, \ldots, y_n \in Y, \pi_1, \ldots, \pi_n$ — разбиение единицы в $\mathbb{B}_{\pi}, n \in \mathbb{N}$. Определим оператор $\widetilde{T} : \mathrm{St}(G,Y) \to X$ по формуле

$$\widetilde{T}\left(\sum_{i=1}^{n} \pi_i \otimes y_i\right) := \sum_{i=1}^{n} \pi_i T(y_i) \tag{1}$$

для всех $\sum_{i=1}^{n} \pi_{i} \otimes y_{i} \in \operatorname{St}(G,Y)$. Покажем корректность определения \widetilde{T} . Отметим, что если $\rho \otimes y = 0$ для некоторых $\rho \in \mathbb{B}_{\pi}$ и $y \in Y$, то либо $\rho = 0$, либо y = 0. Поэтому $\rho Ty = 0$ для всех $\rho \in \mathbb{B}_{\pi}$ и $y \in Y$ таких, что $\rho \otimes y = 0$. Пусть $0 = \sum_{i=1}^{n} \rho_{i} \otimes y_{i} \in \operatorname{St}(G,Y)$. Тогда $\rho_{i} \otimes y_{i} = 0$ для всех $i = 1, \ldots n$ и в силу выше сказанного $\widetilde{T}\left(\sum_{i=1}^{n} \rho_{i} \otimes y_{i}\right) = \sum_{i=1}^{n} \rho_{i} T(y_{i}) = 0$. Следовательно,

$$\widetilde{T}\left(\sum_{i=1}^{n} \rho_i \otimes y_i\right) = 0 \tag{2}$$

для всех $0 = \sum_{i=1}^n \rho_i \otimes y_i \in \operatorname{St}(G,Y)$. Пусть $z \in \operatorname{St}(G,Y)$ имеет два представления $z = \sum_{i=1}^n \pi_i \otimes x_i = \sum_{j=1}^m \rho_j \otimes y_j$. Тогда выполняется равенство $0 = \sum_{i=1}^n \sum_{j=1}^m (\pi_i \wedge \rho_j) \otimes (x_i - y_j)$. Следовательно, в силу (2) справедливы равенства

$$0 = \widetilde{T}\left(\sum_{i=1}^{n} \sum_{j=1}^{m} (\pi_i \wedge \rho_j) \otimes (x_i - y_j)\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} (\pi_i \wedge \rho_j) T(x_i - y_j)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (\pi_i \wedge \rho_j) T(x_i) - \sum_{i=1}^{n} \sum_{j=1}^{m} (\pi_i \wedge \rho_j) T(y_j) = \widetilde{T}\left(\sum_{i=1}^{n} \pi_i \otimes x_i\right) - \widetilde{T}\left(\sum_{j=1}^{m} \rho_j \otimes y_j\right).$$

Тем самым показана корректность определения \widetilde{T} . Ясно, что оператор \widetilde{T} линеен и $\widetilde{T}(\rho \otimes y) = \rho \widetilde{T}(\pi \otimes y)$ для всех $y \in Y, \ \rho \in \mathbb{B}_{\pi}$.

Так как $G \in \text{Clop}(Q)$, то будем отождествлять C(G) с идеалом в C(Q), состоящим из всех функций из C(Q), обращающихся в нуль на дополнении множества G. Для произвольного $\sum_{i=1}^{n} \pi_i \otimes y_i \in \text{St}(G,Y)$ выполняются соотношения

$$\left| \widetilde{T} \left(\sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right) \right|_{X} = \sum_{i=1}^{n} \pi_{i} |T(y_{i})|_{X}$$

$$\leq \sum_{i=1}^{n} \pi_{i} ||T(y_{i})||_{X} \leq M \sum_{i=1}^{n} \pi_{i} ||y_{i}||_{Y} = M \left| \sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right|_{C_{\#}(G,Y)}.$$

где $\|\cdot\|_X: X \to C(Q)$ — векторная норма такая, что $\|x\|_X = \|\|x\|_X\|_{C(Q)}$ для всех $x \in X$ (см. $[2,\S7.3.3]$). Следовательно,

$$\left| \widetilde{T} \left(\sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right) \right|_{X} \leqslant M \left| \sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right|_{C_{\#}(G,Y)}$$

$$(3)$$

для всех $\sum_{i=1}^n \pi_i \otimes y_i \in \operatorname{St}(G,Y)$. Для установления обратного неравенства отметим, что $\|Ty\|_X \geqslant \varepsilon \pi \|Ty\|$ для всех $y \in Y$, где неравенство понимается в C(Q). Действительно, если $\|Ty\|_X(q) < \varepsilon \pi(q) \|Ty\|$ для некоторого $q \in Q$ и $y \in Y$, то найдется $\rho \leqslant \pi$ такой, что $\rho \|Ty\|_X < \varepsilon \pi \|Ty\|$. Тогда $\|\rho Ty\| < \varepsilon \|Ty\|$, что противоречит условию (1) данной теоремы.

 130

 Тасоев Б. Б.

В силу выше сказанного выполняются соотношения

$$\left| \widetilde{T} \left(\sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right) \right|_{X} = \sum_{i=1}^{n} \pi_{i} |T(y_{i})|_{X}$$

$$\geqslant \varepsilon \sum_{i=1}^{n} \pi_{i} ||T(y_{i})||_{X} \geqslant \varepsilon K \sum_{i=1}^{n} \pi_{i} ||y_{i}||_{Y} = \varepsilon K \left| \sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right|_{C_{\mathcal{H}}(G,Y)}$$

для всех $\sum_{i=1}^{n} \pi_i \otimes y_i \in \text{St}(G,Y)$. Таким образом, в виду (3) справедливы оценки

$$\varepsilon K \left| \sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right|_{C_{\#}(G,Y)} \leqslant \left| \widetilde{T} \left(\sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right) \right|_{X} \leqslant M \left| \sum_{i=1}^{n} \pi_{i} \otimes y_{i} \right|_{C_{\#}(G,Y)}$$

для всех $\sum_{i=1}^n \pi_i \otimes y_i \in \mathrm{St}(G,Y)$. Так как X и $C_\#(G,Y)$ являются пространствами Банаха — Канторовича, а пространство $\mathrm{St}(G,Y)$ *bo*-плотно в $C_\#(G,Y)$ (см. [2, 2.3.4(3)]), то в виду полученных оценок распространим \widetilde{T} на все пространство $C_\#(G,Y)$. Получим

$$\varepsilon K |f|_{C_\#(G,Y)} \leqslant |\widetilde{T}(f)|_X \leqslant M |f|_{C_\#(G,Y)}$$

для всех $f \in C_{\#}(G,Y)$. Следовательно, $\varepsilon K \|f\|_{C_{\#}(G,Y)} \leqslant \|\widetilde{T}(f)\|_{X} \leqslant M \|f\|_{C_{\#}(G,Y)}$ для всех $f \in C_{\#}(G,Y)$. Таким образом, \widetilde{T} — искомое вложение.

 $(2)\Rightarrow (1)$. Пусть имеем вложение $\widetilde{T}:C_\#(G,Y)\to X$ такое, что $\widetilde{T}(\rho\otimes y)=\rho\widetilde{T}(\pi\otimes y)$ для всех $y\in Y,\ \rho\in\mathbb{B}_\pi$. Напомним, что π мы отождествляем с функцией $\mathbf{1}_G$ равной единице на G. Так как \widetilde{T} — вложение, то существуют константы K,M>0 такие, что $K\|f\|_{C_\#(G,Y)}\leqslant \|\widetilde{T}(f)\|_X\leqslant M\|f\|_{C_\#(G,Y)}$ для всех $f\in C_\#(G,Y)$. Положим по определению

$$T(y) := \widetilde{T}(\pi \otimes y) \tag{4}$$

для всех $y\in Y$. Тогда, так как $\|\rho\otimes y\|_{C_\#(G,Y)}=\|y\|_Y$ для всех $y\in Y$ и $0\neq\rho\in\mathbb{B}_\pi$, то выполняются соотношения $K\|y\|_Y\leqslant\|Ty\|_X\leqslant M\|y\|_Y$. Более того, $\|\rho T(y)\|_X=\|\rho \widetilde{T}(\pi\otimes y)\|_X=\|\widetilde{T}(\rho\otimes y)\|_X\geqslant K\|\rho\otimes y\|_{C_\#(G,Y)}=K\|y\|_Y\geqslant (K/M)\|Ty\|_X$, т. е. $\|\rho T(y)\|_X\geqslant (K/M)\|Ty\|_X$ для всех $y\in Y$ и $0\neq\rho\in\mathbb{B}_\pi$. Таким образом, $T:Y\to X$ — искомое \mathbb{B}_π -вложение. \rhd

Введем определение решеточной вложимости банаховых решеток в \mathbb{B} -циклические банаховы решетки.

Определение 4. Пусть Y — банахова решетка, X — \mathbb{B} -циклическая банахова решетка, где \mathbb{B} — полная булева подалгебра алгебры порядковых проекторов в X, \mathbb{B}_{π} — главный идеал в \mathbb{B} , порожденный некоторым ненулевым элементом $\pi \in \mathbb{B}$. Будем говорить, что Y решеточно \mathbb{B}_{π} -вложимо в X, если:

- 1) $T: Y \to X$ решеточное вложение;
- 2) существует $\varepsilon > 0$ такое, что $\|\rho Ty\|_X \geqslant \varepsilon \|Ty\|_X$ для всех $y \in Y$ и $0 \neq \rho \in \mathbb{B}_{\pi}$.
- В данном определении будем говорить, что T pememornoe \mathbb{B}_{π} -вложение.

Теорема 2. Пусть $X - \mathbb{B}$ -циклическая банахова решетка, Q -стоуновский компакт \mathbb{B} , $\mathbb{B}_{\pi} -$ главный идеал в \mathbb{B} , порожденный ненулевым элементом $\pi \in \mathbb{B}$, и Y -банахова решетка. Следующие утверждения эквивалентны:

(1) Y решеточно \mathbb{B}_{π} -вложимо в X;

- (2) для стоуновского компакта $G \in \text{Clop}(Q)$ булевой алгебры \mathbb{B}_{π} существует решеточное вложение $\widetilde{T}: C_{\#}(G,Y) \to X$ такое, что $\widetilde{T}(\rho \otimes y) = \rho \widetilde{T}(\pi \otimes y)$ для всех $y \in Y$, $\rho \in \mathbb{B}_{\pi}$.
- \lhd (1) \Rightarrow (2). Пусть $T:Y\to X$ решеточное \mathbb{B}_{π} -вложение. Из определения $\widetilde{T}: \mathrm{St}(G,Y) \to X$ по формуле (1) следует, что \widetilde{T} будет сохранять модуль при условии, что $T: Y \to X$ — решеточный гомоморфизм. Далее, повторяя рассуждения доказательства $(1) \Rightarrow (2)$ теоремы 1, получим решеточное вложение $T: C_{\#}(G,Y) \to X$ с требуемым свойством.
- $(2)\Rightarrow (1)$ Пусть имеем решеточное вложение $\widetilde{T}:C_\#(G,Y)\to X$ такое, что $\widetilde{T}(\rho\otimes y)=$ $\rho \widetilde{T}(\pi \otimes y)$ для всех $y \in Y$, $\rho \in \mathbb{B}_{\pi}$. Учитывая равенство $|\pi \otimes y| = \pi \otimes |y|$ для всех $y \in Y$, получим, что оператор $T: Y \to X$, определяемый по формуле (4), является решеточным гомоморфизмом. Далее, повторяя рассуждения доказательства $(2) \Rightarrow (1)$ теоремы 1, получим требуемое решеточное \mathbb{B}_{π} -вложение. \triangleright

Пользуясь теоремами 1 и 2, можно получить следующий результат.

Теорема 3. Для \mathbb{B} -циклической банаховой решетки X равносильны утверждения:

- (1) X порядково \mathbb{B} -непрерывна, т. е. если $x_{\alpha} \downarrow 0$ в X, то для любого $\varepsilon > 0$ существует разбиение единицы (π_{α}) в \mathbb{B} такое, что $\|\pi_{\alpha}x_{\alpha}\| < \varepsilon$ для всех α ;
- (2) не существует ненулевого проектора $\pi \in \mathbb{B}$ такого, чтобы банахова решетка l_{∞} была решеточно \mathbb{B}_{π} -вложима в X.

Литература

- 1. Aliprantis C. D., Burkinshaw O. Positive Operators.—N. Y.: Acad. Press, 1985.—367 p.
- 2. $\mathit{Кусраев}\ A.\ \Gamma.\ \mathit{Мажорируемые}\ операторы.-М.:\ \mathit{Наука},\ 2003.-619\ c.$
- 3. Meyer-Nieberg P. Banach Lattices.—Berlin etc.: Springer, 1991.—395 p.

Статья поступила 27 июня 2022 г.

Тасоев Батрадз Ботазович

Северо-Кавказский центр математических исследований ВНЦ РАН,

ведущий научный сотрудник

РОССИЯ, 363110, с. Михайловское, ул. Вильямса, 1;

Южный математический институт — филиал ВНЦ РАН,

старший научный сотрудник

РОССИЯ, 362025, Владикавказ, ул. Ватутина, 53

E-mail: tasoevbatradz@yandex.ru

https://orcid.org/0000-0001-8573-4721

Vladikavkaz Mathematical Journal 2022, Volume 24, Issue 4, P. 127-132

EMBEDDINGS INTO B-CYCLIC BANACH SPACES

Tasoev, B. B.^{1,2}

¹ North Caucasus Center for Mathematical Research VSC RAS, 1 Williams St., village of Mikhailovskoye 363110, Russia; ² Southern Mathematical Institute VSC RAS, 53 Vatutina St., Vladikavkaz 362025, Russia E-mail: tasoevbatradz@yandex.ru

Abstract. For a complete Boolean algebra \mathbb{B} and nonzero $\pi \in \mathbb{B}$, the notion of an isomorphic \mathbb{B}_{π^-} embedding of Banach spaces into B-cyclic Banach spaces is introduced. The notion of a lattice isomorphic \mathbb{B}_{π} -embedding of Banach lattices into \mathbb{B} -cyclic Banach lattices is also introduced. A criterion for the isomorphic Тасоев Б. Б.

 \mathbb{B}_{π} -embedding of a space of continuous vector-valued functions with values in an arbitrary Banach space into a \mathbb{B} -cyclic Banach space is established, as well as a criterion for the lattice isomorphic \mathbb{B}_{π} -embedding of a space of continuous vector-valued functions with values in an arbitrary Banach lattice into a \mathbb{B} -cyclic Banach lattice. The obtained results allow us to outline an approach for isometric and isomorphic classification of \mathbb{B} -cyclic Banach spaces. In the course of establishing the results, the tool of lattice-valued spaces was widely used.

Key words: Banach lattice, \mathbb{B} -cyclic Banach space, isomorphic classification.

AMS Subject Classification: 46B42, 46B04.

For citation: Tasoev, B. B. Embeddings into \mathbb{B} -Cyclic Banach Spaces // Vladikavkaz Math. J., 2022, vol. 24, no. 4, pp. 127–132 (in Russian). DOI: 10.46698/o1968-1156-5382-e.

References

- 1. Aliprantis, C. D. and Burkinshaw, O. Positive Operators, Springer, 1985, 376 p.
- 2. Kusraev, A. G. Dominated Operators, Springer, 2000, 446 p.
- 3. Meyer-Nieberg, P. Banach Lattices, Berlin etc., Springer, 1991, 395 p.

Received June 27, 2022

BATRADZ B. TASOEV

North Caucasus Center for Mathematical Research VSC RAS, 1 Williams Str., village of Mikhailovskoye 363110, Russia,

Leading Researcher;

Southern Mathematical Institute VSC RAS, $\,$

53 Vatutina St., Vladikavkaz 362025, Russia,

Senior Researcher

E-mail: tasoevbatradz@yandex.ru https://orcid.org/0000-0001-8573-4721