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Abstract. It is well-known that the theory of mappings with bounded distortion was laid by
Yu.G. Reshetnyak in 60-th of the last century [1]. In papers [2, 3], there was introduced the two-index
scale of mappings with weighted bounded (q, p)-distortion. This scale of mappings includes, in particular,
mappings with bounded distortion mentioned above (under q = p = n and the trivial weight function).
In paper [4], for the two-index scale of mappings with weighted bounded (q, p)-distortion, the Poletsky-
type modulus inequality was proved under minimal regularity; many examples of mappings were given
to which the results of [4] can be applied. In this paper we show how to apply results of [4] to one such
class. Another goal of this paper is to exhibit a new class of mappings in which Poletsky-type modulus
inequalities is valid. To this end, for n = 2, we extend the validity of the assertions in [4] to the limiting
exponents of summability: 1 < q 6 p 6 ∞. This generalization contains, as a special case, the results
of recently published papers. As a consequence of our results, we also obtain estimates for the change in
capacitу of condensers.
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1. Introduction

The goal of this work is to show the application of results of [4] for output of Poletsky-type
modulus inequalities for some classes of mappings. For doing this we formulate first the main
result of [4], and then we provide how it can be applied for some concrete classes of mappings.

The main classes of mappings studied in [4] were defined in [2, 3].

Definition 1. Let ω : Rn → [0,∞] be a measurable function, called a weight, with
0 < ω < ∞ holding H n-almost everywhere, and Ω ⊂ R

n is a domain in R
n. A mapping

f : Ω → R
n with n > 2 is called a mapping with (inner) bounded ω-weighted (q, p)-codistortion,

or briefly, f ∈ I D(Ω; q, p;ω, 1), where n− 1 6 q 6 p < ∞, whenever
(1) f is continuous, open and discrete;
(2) f belongs to the Sobolev class W 1

n−1,loc(Ω);
(3) the Jacobian determinant satisfies detDf(x) > 0 for almost all x ∈ Ω;

# The study was carried out within the framework of the State contract of the Sobolev Institute of
Mathematics, project № FWNF-2022-0006.
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(4) the mapping f has bounded codistortion: adjDf(x) = 0 a. e. on the set Z = {x ∈ Ω :
detDf(x) = 0};

(5) the local ω-weighted (q, p)-codistortion function

Ω ∋ x 7→ K
ω,1
q,p (x, f) =











ω
n−1
q (x)|adjDf(x)|

detDf(x)
n−1
p

if detDf(x) 6= 0,

0 otherwise,
(1)

belongs to L̺(Ω), where ̺ satisfies 1
̺ = n−1

q − n−1
p , while ̺ = ∞ for q = p.

Put K
ω,1
q,p (f ; Ω) =

∥

∥K
ω,1
q,p (·, f) | L̺(Ω)

∥

∥.

Definition 2. Let ω : Rn → [0,∞] be a measurable function, called a weight, with
0 < ω < ∞ holding H n-almost everywhere, and Ω ⊂ R

n is a domain in R
n. A mapping

f : Ω → R
n with n > 2 is called a mapping with (outer) bounded ω-weighted (q, p)-distortion,

or briefly f ∈ OD(Ω; q, p;ω, 1), with n− 1 6 q 6 p < ∞, whenever:
(1)f is continuous, open and discrete;
(2) f belongs to the Sobolev class W 1

n−1,loc(Ω);
(3) the Jacobian determinant satisfies detDf(x) > 0 for a. e. x ∈ Ω;
(4) the mapping f has bounded distortion: Df(x) = 0 a. e. on the set Z = {x ∈ Ω :

detDf(x) = 0};
(5) the local ω-weighted (q, p)-distortion function

Ω ∋ x 7→ Kω,1
q,p (x, f) =











ω
1
q (x)|Df(x)|

detDf(x)
1
p

if detDf(x) 6= 0,

0 otherwise,

(2)

belongs to Lκ(Ω), where κ satisfies 1
κ
= 1

q −
1
p , while κ = ∞ for q = p.

Put Kω,1
q,p (f ; Ω) =

∥

∥Kω,1
q,p (·, f) | Lκ(Ω)

∥

∥.

Remark 1. It is established in [3] that

OD(Ω; q, p;ω, 1) ⊂ I D(Ω; q, p;ω, 1) (3)

in case of n− 1 < q 6 p < ∞.

For justifying (3) we refer to [3, Theorem 8] where it is proved that every mapping
f : Ω → Ω′ of OD(Ω; q, p;ω, 1), n−1 < q 6 p < ∞, belongs also to the class I D(Ω; q, p;ω, 1),
and the estimate

∥

∥K
ω,1
q,p (·, f) | L̺(Ω)

∥

∥ 6
∥

∥Kω,1
q,p (·, f) | Lκ(Ω)

∥

∥

n−1
(4)

holds. (Here ̺ and κ are defined after formulas (1) and (2) respectively).
In [4] it was proved the following result.

Theorem 1 [4, Theorem 4.1]. Let n − 1 < q 6 p < ∞. Suppose that f : Ω → R
n is

a mapping with with inner bounded ω-weighted (q, p)-codistortion (f ∈ I D(Ω; q, p;ω, 1)),

while the weight function θ(x) = ω
− n−1

q−(n−1) (x) is locally summable. If Γ is a family of curves

in the domain Ω then we have the inequality

(

mods f(Γ)
)1/s

6 K
ω,1
q,p (f ; Ω)

(

modθr Γ
)1/r

, (5)

with s = p
p−(n−1) and r = q

q−(n−1) .
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Below we recall the concept of the modulus of a family of curves (see [4] for more details).
A curve in R

n is a continuous mapping α : I → R
n, where I is an interval in R, that is,

a set of the form 〈a, b〉, where each angular parenthesis can be either round or square, a, b ∈ R

with a 6 b. We also allow infinite intervals. A curve α is called closed (open) if the interval I
is compact (open). Put |α| = α(I). The expression γ′ ⊂ γ will mean that the curve γ′ is
a restriction of the curve γ to a subinterval or a point.

If α : I = [a, b] → R
n is a closed curve then its length is

ℓ(α) = sup

l
∑

i=1

∣

∣α(ti)− α(ti+1)
∣

∣,

where the supremum is taken over all finite partitions a = t1 6 t2 6 . . . 6 tl 6 tl+1 = b.
If a curve α is not closed then put its length equal to ℓ(α) = sup ℓ(α|J ), where the supremum
is taken over all closed subintervals J of I.

A curve α : I → R
n is called rectifiable whenever ℓ(α) < ∞. A curve is called locally

rectifiable if each closed subcurve of it is rectifiable.
Consider a closed curve α : [a, b] → R

n and suppose that it is rectifiable. Define a function
sα : [a, b] → R by the equality sα(t) = ℓ

(

α|[a,t]
)

. For the rectifiable curve α there exists
a unique curve α0 : [0, ℓ(α)] → R

n obtained from α by a monotonely increasing change of
parameter such that sα0(t) = t and α = α0 ◦ sα [5, Section 2.4]. The curve α0 is called the
positive natural parametrization of α.

Take a Borel set A ⊂ R
n and a Borel function ρ : A → [0,∞]. The integral of ρ along

a rectifiable curve α : [a, b] → R
n is defined as

∫

α

ρ ds =

ℓ(α)
∫

0

ρ
(

α0(τ)
)

dH 1(τ)

with an usual Lebesgue integral in the right-hand side. If α is absolutely continuous then so is
the function sα(t) = [a, b] → [0, ℓ(α)]. Putting τ = sα(t) in the last integral, using the change-
of-variables theorem for Lebesgue integrals, and accounting for α̇(t) = d

dτ α
0(sα(t))ṡα(t) and

d
dτ α

0(τ) = 1, we infer that

∫

α

ρ ds =

b
∫

a

ρ(α(t))|α̇(t)| dH 1(t). (6)

Observe that by the change of variable formula we can express this as

∫

α

ρ ds =

b
∫

a

ρ(α(t))|α̇(t)| dH 1(t) =

∫

|α|

ρ(y)N
(

y, α, [a, b]
)

dH 1(y), (7)

where N (y, α, [a, b]) = #{[a, b] ∩ α−1(y)} is the Banach indicatrix.
For a locally rectifiable curve α : I → R

n, put
∫

α

ρ ds = sup
β

∫

β

ρ ds, (8)

where the supremum is taken over all closed subcurves β of α.
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Consider a family Γ of curves in R
n, where n > 2. A Borel function ρ : Rn → [0,∞] is

called admissible for Γ whenever
∫

γ

ρ ds > 1 (9)

for each locally rectifiable curve γ ∈ Γ. Denote the collection of all admissible functions by
admΓ. Given a weight function θ : Rn → (0,∞) and a number p ∈ [1,∞), define the θ-weighted

p-modulus of Γ as

modθp Γ = inf
ρ∈admΓ

∫

Rn

ρpθ dH n.

Properties of the weight function will be prescribed separately; at least, we assume that it
is locally summable and 0 < θ < ∞ holds H n-almost everywhere. For θ ≡ 1 we obtain the
usual definition of p-modulus, and instead of mod1p Γ we write modp Γ. If admΓ = ∅ then
we put modθp Γ = ∞; this case is realized only if Γ contains at least one curve determining
a constant mapping.

Remark 2. The definition of modulus implies that every family of curves which are not
locally rectifiable has zero modulus. Moreover, if Γ is a family of curves and Γ1 = {γ ∈ Γ :
γ is locally rectifiable} then modθp(Γ) = modθp(Γ1).

Suppose that α is a rectifiable closed curve in R
n. A mapping g : |α| → R

n is called
absolutely continuous on α if the composition g ◦ α0 is absolutely continuous on [0, ℓ(α)].

Theorem 2 [5, Fuglede’s Theorem; 6]. Suppose that f : Ω → R
n is a mapping of class

W 1
p (Ω) with 1 6 p < ∞, and Γ is a family of locally rectifiable curves in Ω such that each

curve has a closed subcurve on which f is not absolutely continuous. Then modp Γ = 0.

2. Modification of Theorem 1 in the case of n = 2 and p = ∞

In this case parameters q, p may be taken within (1,∞]: 1 < q 6 p 6 ∞. The case
1 < q 6 p < ∞ is taken into consideration in Theorem 1.

Theorem 3. Let 1 < q < p = ∞. Suppose that Ω ⊂ R
2 is a domain, and f : Ω → R

2

is a mapping with inner bounded ω-weighted (q,∞)-codistortion (f ∈ I D(Ω; q,∞;ω, 1)1 ),

while the weight function θ(x) = ω− 1
q−1 (x) is locally summable. If Γ is a family of curves in

the domain Ω then we have the inequality

(mod1 f(Γ)) 6 K
ω,1
q,∞(f ; Ω)(modθr Γ)

1/r (10)

with r = q
q−1 .

In this theorem K
ω,1
q,∞(f ; Ω) =

∥

∥K
ω,1
q,∞(·, f) | Lr(Ω)

∥

∥.

Theorem 4. Suppose that Ω ⊂ R
2 is a domain, and f : Ω → R

2 is a mapping belonging

to the Sobolev class W 1
1,loc(Ω) with the nonnegative Jacobian determinant: detDf(x) > 0 for

almost all x ∈ Ω. Assume that

1) f is continuous, open and discrete;

(2) the mapping f has bounded codistortion: adjDf(x) = 0 a. e. on the set Z = {x ∈ Ω :
detDf(x) = 0}.

1 In the case p = ∞ we have to replace detDf(x)
1
p in (1) by 1.
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Let, for a weight ω : Rn → [0,∞], (∞,∞)-codistortion function

Ω ∋ x 7→ K
ω,1
∞,∞(x, f) =

{

ω(x)|adjDf(x)| if detDf(x) > 0,

0 otherwise,
(11)

belongs to L∞(Ω) (in another words f ∈ I D(Ω;∞,∞;ω, 1)). If the weight function θ(x) =
ω−1(x) is locally summable then, for any family of curves Γ in the domain Ω, we have the

inequality

mod1 f(Γ) 6 K
ω,1
∞,∞(f ; Ω)modθ1 Γ. (12)

In this theorem K
ω,1
∞,∞(f ; Ω) =

∥

∥K
ω,1
∞,∞(·, f) | L∞(Ω)

∥

∥.
Theorems 3 and 4 will be proved in Section 6.

3. Application

In paper [7, Example 32] the following class of mappings is considered. Suppose that
n − 1 < p < ∞, and consider a continuous, open and discrete mapping f : D′ → R

n of an
open connected domain D′ ⊂ R

n, where n > 2, such that
(1) f ∈ W 1

n−1,loc (D
′);

(2) detDf(y) > 0 and f has finite codistortion; i. e., adjDf(y) = 0 H n-almost everywhere
on Z = {y ∈ D′ : detDf(y) = 0};

(3) the inner operator distortion function

D′ ∋ y 7→ K
1,1
n−1,s(y, f) =







|adjDf(y)|

detDf(y)
n−1
s

if detDf(y) 6= 0,

0 otherwise,
(13)

belongs to Lp,loc(D
′), where 1

p = n−1
n−1 −

n−1
s holds with s = (n−1)p

p−1 > n− 1;
(4) the weight function σ defined as

σ(y) =

{

| adjDf(y)|p

detDf(y)p−1 if y ∈ D′\Z ′,

1 otherwise,
(14)

is in ∈ L1,loc (D
′), here Z ′ = {y ∈ D′ : Df(y) = 0}.

Taking into acount saying above we see that f : D′ → D meets the assumptions
of Theorem 1 with D′ instead of Ω:

(2a) f ∈ W 1
n−1,loc (D

′);
(2b) detDf(y) > 0 and f has finite codistortion;
(2c) f : D′ → D is a mapping of bounded ω-weighted (s, s)-codistortion with ω(y) =

σ− 1
p−1 (y), that is, the ω-weighted (s, s)-codistortion function

D′ ∋ y 7→ K
ω,1
s,s (y, f) =











ω
n−1
s (y)| adjDf(y)|

detDf(y)
n−1
s

if J(y, f) 6= 0,

0 otherwise,

belongs to L∞(D′) and
∥

∥K
ω,1
s,s (·, f) | L∞(D′)

∥

∥ = 1 (15)

(the last equality is proved in [7, Theorem 3] under more general assumption).
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Taking into account saying above, by Theorem 1, we come to the following statement.

Proposition 1. Suppose that a continuous, open and discrete mapping f : D′ → R
n of

an open connected domain D′ ⊂ R
n, where n > 2, has the following properties:

(1) f ∈ W 1
n−1,loc (D

′) ;

(2) detDf(y) > 0 and f has finite codistortion (adjDf(y) = 0 H n-almost everywhere

on Z = {y ∈ D′ : detDf(y) = 0});

(3) the inner operator distortion function

D′ ∋ y 7→ K
1,1
n−1,s(y, f) =







|adjDf(y)|

detDf(y)
n−1
s

if detDf(y) 6= 0,

0 otherwise,
(16)

belongs to Lp,loc(D
′) with some p > n−1, where 1

p = n−1
n−1−

n−1
s holds with s = (n−1)p

p−1 > n−1.

If Γ is a family of curves in the domain D′ then we have the inequality

modp f(Γ) 6 modσp Γ (17)

where the weight function σ is defined in (7).

⊳ When deriving inequality (17) the properties (2a)–(2c) formulated above, should be
taken into account. Really, we see that f ∈ I D(Ω; q, p;ω, 1) with q = p = s and ω(y) =

σ
− 1

p−1 (y). Therefore, by Theorem 1, we get the inequality

(

mods′ f(Γ)
)1/s′

6 K
ω,1
s,s

(

f ;D′
)(

modθs′ Γ
)1/s′

with s′ = s
s−(n−1) (here K

ω,1
s,s (f ;D′) = ‖K ω,1

s,s (·, f) | L∞(D′)‖). Because of (15), s′ = p and

θ(y) = ω
− n−1

s−(n−1) (y) = σ(y) inequality (17) holds. ⊲

Taking into account [2, Theorem 34] or [4, Theorem 5.2] and its proof we come to

Proposition 2. Suppose that for a continuous, open and discrete mapping f : D′ → R
n

of an open connected domain D′ ⊂ R
n, where n > 2, conditions of Proposition 1 hold.

If E = (A,C) is a condenser in Ω, then the estimate holds: capp f(E) 6 capσp E.

4. The special case of the mappings under consideration: n = 2

In the case n = 2 we have the following modification of the results of the previous section.
We have 1 < p < ∞ and a continuous, open and discrete mapping f : D′ → R

2 of on open
connected domains D′ ⊂ R

2 such that
(1) f ∈ W 1

1,loc (D
′);

(2) detDf(y) > 0 and f has finite codistortion; i. e., adjDf(y) = 0 H 2-almost everywhere
on Z = {y ∈ D′ : detDf(y) = 0};

(3) the inner operator distortion function

D′ ∋ y 7→ K
1,1
1, p

p−1
(y, f) =







| adjDf(y)|

detDf(y)
p−1
p

if detDf(y) 6= 0,

0 if detDf(y) = 0,

belongs to Lp,loc(D
′).
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(4) the weight function σ defined as

σ(y) =

{

| adjDf(y)|p

detDf(y)p−1 if y ∈ D′\Z ′,

1 otherwise,
(18)

is in ∈ L1,loc (D
′), here Z ′ = {y ∈ D′ : Df(y) = 0}.

It is not hard to see that the continuous, open and discrete mapping f : D′ → R
2 meets

the assumptions of Proposition 1 under n = 2:
(3a) f ∈ W 1

1,loc (D
′);

(3b) f has finite distortion;
(3c) f : D′ → D is a mapping with bounded ω-weighted (p′, p′)-distortion where p′ = p

p−1

and ω(y) = σ− 1
p−1 (y), that is the ω-weighted (p′, p′)-distortion function

D′ ∋ y 7→ Kω,1
p′,p′(y, f) =















ω
1
p′ (y)|Df(y)|

detDf(y)
1
p′

if detDf(y) 6= 0,

0 otherwise,

belongs to L∞(D′), and
∥

∥Kω,1
p′,p′(·, f) | L∞(D′)

∥

∥ = 1. (19)

Taking into account saying above, by Proposition 1, we come to the following statement.

Corollary 1. Suppose that a continuous, open and discrete mapping f : D′ → R
2

of an open connected domain D′ ⊂ R
2 has the following properties:

(1) f ∈ W 1
1,loc (D

′) ;

(2) f has finite codistortion (adjDf(y) = 0 H 2-almost everywhere on Z =
{y ∈ D′ : detDf(y) = 0});

(3) the inner operator distortion function

D′ ∋ y 7→ K
1,1
1,p′ (y, f) =







|adjDf(y)|

detDf(y)
1
p′

if detDf(y) 6= 0,

0 otherwise,
(20)

belongs to Lp,loc(D
′) with some p > 1, where 1

p +
1
p′ = 1.

If Γ is a family of curves in the domain D′ then we have the inequality

modp f(Γ) 6 modσp Γ (21)

holds where the weight function σ is defined in (18).

5. One more special case of the mappings under consideration: n = 2 and p = 1

In this section we prove that Corollary 1 is valid also in the case p = 1. To show this
we have to modify some arguments of the previous section. A counterpart of Corollary 1 is
formulated in the following statement.

Proposition 3. Suppose that a continuous, open and discrete mapping f : D′ → R
2 of

an open connected domain D′ ⊂ R
2 has the following properties:

(1) f ∈ W 1
1,loc (D

′) ;



On Poletsky-type modulus inequalities 65

(2) detDf(y) > 0 and f has finite codistortion (adjDf(y) = 0 H 2-almost everywhere on

Z = {y ∈ D′ | detDf(y) = 0});
(3) the inner operator codistortion function

D′ ∋ y 7→ K
1,1
1,∞(y, f) =

{

|adjDf(y)| if detDf(y) 6= 0,

0 otherwise,
(22)

belongs to L1,loc(D
′).

If Γ is a family of curves in D′ then we have

mod1 f(Γ) 6 modσ1 Γ (23)

with σ defined in (25).

⊳ We show that the proof of Proposition 3 can be reduced to Theorem 3. For doing this
formulate first additional properties of f and ϕ = f−1.

Properties of ϕ = f−1
. If f : D′ → D is a homeomorphism then the inverse

homeomorphism ϕ = f−1 : D → D′ enjoys the following properties:
(4) by [9, Theorem 4] or [7, Theorem 27] we have ϕ ∈ W 1

1,loc(D) (see also [10,
Theorem 3.2]);

(5) ϕ has finite distortion by [7, Theorem 27] (see also [10, Theorem 3.3]);
(6) ϕ is differentiable a. e. in D by [7, Theorem 27];

while f : D′ → D
(6) ϕ belongs to Q1,1 (D,D′;σ) (see [4]), that is the distortion function

D ∋ x 7→ K1,σ
1,1 (x, ϕ) =

{

|Dϕ(x)|
σ(ϕ(x)) detDϕ(x) if detDϕ(x) 6= 0,

0 if detDϕ(x) = 0,
(24)

of the inverse mapping ϕ = f−1 with the weight function σ ∈ L1,loc (D
′) defined as

σ(y) =

{

| adjDf(y)| if y ∈ D′\Z ′,

1 otherwise,
where Z ′ =

{

y ∈ D′ : Df(y) = 0
}

, (25)

is in L∞(D) and K1,σ
1,1 (ϕ;D) =

∥

∥K1,σ
1,1 (·, ϕ) | L∞(D)

∥

∥ = 1 (see [4, Theorem 25, formulas (30)
and (37); 8]).

Properties of f . Taking into account saying above, we see thatf : D′ → D meets some
additional properties:

(7) f ∈ W 1
1,loc (D

′) and f is differentiable a. e. in D′ by [7, Theorem 27];
(8) detDf(y) > 0 and f has finite distortion by [7, Theorem 27] (see also [10,

Theorem 3.3]);
(9) f : D′ → D is a mapping with bounded ω-weighted (∞,∞)-codistortion with the

weight function ω = σ−1, that is the ω-weighted (∞,∞)-codistortion function

D′ ∋ y 7→ K
ω,1
∞,∞(y, f) =

{

ω(y)| adjDf(y)| if detDf(y) 6= 0,

0 otherwise,

belongs to L∞(D′), and

‖K ω,1
∞,∞(·, f) | L∞(D′)‖ =

∥

∥K1,σ
1,1 (·, ϕ) | L∞(D)

∥

∥ = 1. (26)

Now it is evident that f enjoys the conditions of Theorem 3, and therefore (23) holds
for f . ⊲
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6. Proof of Theorems 3 and 4

⊳ We verify that the proof of Theorem 1 given in [4, Theorem 4.1] for mappings with
bounded θ-weighted (q, p)-codistortion, where n − 1 < q 6 p < ∞, works also in the case
1 < q 6 p = ∞ at n = 2. To do this we need properties of Poletsky function and Poletsky’s
Lemma in this case. We formulate and prove them below. ⊲

1. Properties of Poletsky function. Take a continuous mapping f : Ω → R
2 and

a domain D compactly embedded into Ω, meaning that D is bounded and D̄ ⊂ Ω, written
briefly as D ⋐ Ω, and take y /∈ f(∂D). Denote by µ(y, f,D) the degree of f at y with
respect to D. Say that f is sense-preserving whenever µ(y, f,D) > 0 for all domains D ⋐ Ω
and all points y ∈ f(D)\f(∂D). For A ⊂ Ω refer as the multiplicity function to R

2 ∋ y 7→
N(y, f,A) = #

{

f−1(y) ∩A
}

. Moreover, put N(f,A) = supy∈R2 N(y, f,A).
Suppose that f : Ω → R

2 is a continuous, open, and discrete mapping. A domain D ⋐ Ω is
called normal whenever f(∂D) = ∂f(D). A normal neighborhood of x ∈ Ω is a normal domain
U ⊂ Ω such that U ∩ f−1(f(x)) = {x}. The quantity i(x, f) = µ(f(x), f, U) is independent
of the choice of a normal neighborhood U of x (see [11, Chapter II, § 2] for instance) and is
called the local index of f at x. A point x ∈ Ω is called a branch point of f whenever f is not
a homeomorphism of any neighborhood of x. Denote the collection of all branch points of f
by Bf . If D is a normal domain for a mapping f then µ(y, f,D) is independent of y ∈ f(D).
We will call this constant by µ(f,D).

In the following two lemmas we state propositions of interest in their own right. Both
of them are applied in the proof of the main result of this section.

Lemma 1 [3, Lemma 10]. Assume that f : Ω → R
2 is a continuous, open and discrete

mapping in W 1
1,loc(Ω) with finite distortion. Then for every open connected set U ⊂ Ω the set

{x ∈ U\Bf : J(x, f) 6= 0} has positive measure.

⊳ If, on the contrary, J(x, f) = 0 a. e. on a connected set U ⊂ Ω\Bf on which f
is a homeomorphism then Df(x) = 0 a. e. on U because f has finite distortion. Then f
is constant on U , and consequently, f cannot be open. ⊲

Proposition 4. If f : Ω → R
2 is a continuous, open and discrete mapping in W 1

1,loc(Ω)
with finite distortion, then f is differentiable a. e. on Ω\Bf and sense-preserving.

⊳ For a connected open set U ⊂ Ω\Bf on which f is a homeomorphism, it is enough
to apply the statement [9, Theorem 4] or [7, Theorem 27] twice. For the restriction
f |U : U → f(U) it provides that the inverse homeomorphism (f |U )

−1 : f(U) → U is in
W 1

1 (f(U)), is of finite distortion, and is differentiable a. e. on f(U). Then applying [7,
Theorem 27] to (f |U )

−1 : f(U) → U we get similar properties to the given mapping
f |U : U → f(U). By Lemma 1, detDf(x) > 0 and properties of degree we conclude that f
is sense-preserving. ⊲

Definition 3. For a sense-preserving, continuous, open and discrete mapping f : Ω → R
2

and a normal domain D ⋐ Ω, define the Poletsky function gD : V → R
2 on V = f(D) [12]

by putting
V ∋ y 7→ gD(y) = Λ

∑

x∈f−1(y)∩D

i(x, f)x, (27)

where Λ = µ(f,D).

The function of the form (27) was introduced by Poletsky in [12] for mappings with
bounded distortion (p = q = n, ω ≡ 1). The next statement presents the properties of the
Poletsky function for the classes of mappings under consideration.



On Poletsky-type modulus inequalities 67

Proposition 5 [2, 3]. Suppose that f : Ω → R
2 belongs to OD(Ω;∞,∞;ω, 1)

(properties (4a)–(4c) hold). Then

(1) the function gD defined in (27) is continuous and belongs to ACL(V );
(2) DgD(y) = 0 a. e. on Z ′ ∪ Σ′;
(3) Poletsky function gD defined in (27) is in W 1

1 (V ); furthermore,

∥

∥DgD | L1(V )
∥

∥ 6 Λ
∥

∥Kω,1
∞,∞(·; f) | L∞(D)

∥

∥

∫

D

σ(x) dx.

We emphasize that the formulated statement is proved in [2, Theorem 18] for mappings
f ∈ I D(Ω; p, p;ω, 1), p ∈ (1,∞). The same proof works also in the case p = ∞ at n = 2.

2. Poletsky’s Lemma. Consider a continuous, open and discrete mapping f : Ω → R
2.

Take a closed rectifiable curve β : I0 → R
n and a curve α : I → Ω with f ◦α ⊂ β. In particular,

we have I ⊂ I0. If the function sβ : I0 → [0, ℓ(β)] is constant on some interval J ⊂ I, then the
mapping β is constant on J . In turn, since f is discrete, α is also constant on J . Consequently,
there exists a unique mapping α∗ : sβ(I) → Ω satisfying α = α∗ ◦ sβ|I . We can prove that α∗

is continuous and f ◦ α∗ ⊂ β0. The curve α∗ is called an f -representative of α (with respect
to β ) whenever β = f ◦ α. Suppose now that β = f ◦ α. The above arguments show that

f ◦ α∗ = (f ◦ α)0.

Therefore, the curve f ◦α∗ admits a positive natural parametrization, and hence it is Lipschitz.
Thus we can integrate along this curve using (6) where

∣

∣

d
dt (f ◦ α∗) (t)

∣

∣ = 1 for H 1-almost all
t ∈ I.

The mapping f is called absolutely precontinuous on α provided that α∗ is absolutely
continuous.

Lemma 2. Suppose that f : Ω → R
2 is a mapping of class I D(Ω;∞,∞;ω, 1). Consider

a family Γ of curves in Ω such that for every γ ∈ Γ the following holds: the curve f ◦ γ is

locally rectifiable and γ has a closed subcurve α on which f is not absolutely precontinuous.

Then mod1f(Γ) = 0.

The formulated Lemma is proved in [4, Lemma 3.3] for mappings f ∈ I D(Ω; p, p;ω, 1),
p ∈ (1,∞). The same proof works also in the case p = ∞ at n = 2.

In the proof of Lemma 2 we also need the following statement.

Lemma 3. Consider a homeomorphism ϕ : Ω → Ω′ of class I D(Ω; q,∞; θ, 1), where

Ω,Ω′ ⊂ R
2 and 1 < q 6 ∞.

Then

(1) the inverse homeomorphism is ϕ−1 ∈ W 1
1,loc(Ω

′);

(2) ϕ−1 has finite distortion: Dϕ−1(y) = 0 almost everywhere on Z ′;
(3) K1,ω

1,r (·, ϕ
−1) ∈ L̺(Ω

′), where

r =

{

q
q−n+1 if q < ∞,

1 if q = ∞,
ω =

{

θ−
1

q−1 if q < ∞,

θ−1 if q = ∞;

(4) if the weight function ω is locally summable then the inverse homeomorphism induces,

by the change-of-variable rule, the bounded operator

ϕ−1∗ : L1
r(Ω;ω) ∩W 1

∞,loc → L1
1(Ω

′).

We have the relations
∥

∥K1,ω
1,r (·, ϕ

−1) | L̺(Ω
′)
∥

∥ =
∥

∥K
θ,1
q,∞(·, ϕ) | L̺(Ω)

∥

∥
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and

βq,∞
∥

∥K1,ω
1,r (·, ϕ

−1) | L̺(Ω
′)
∥

∥ 6 ‖ϕ−1∗‖ 6
∥

∥K1,ω
1,r (·, ϕ

−1) | L̺(Ω
′)
∥

∥,

where βq,∞ is some constant.

⊳ Properties (1) and (2) of ϕ = f−1 were proved just after Proposition 3. Taking into
account (1) and (2) Properties (3) and (4) can be proved by analogy with Theorem 9 of [2]. ⊲

Remark 3. By means of Theorems 3 and 4 for homeomorphisms ϕ : Ω → Ω′ of class
I D(Ω; q,∞; θ, 1), where Ω,Ω′ ⊂ R

2 and 1 < q 6 ∞, we can prove some more inequalities
such that Väisälä inequality and the capacity inequality (see proofs in [4, Theorem 22] and
[4, Theorem 28] respectively).

Remark 4. It is not hard to see that assumptions of Theorem 4 are weaker comparing
with those in paper [13]. For instance, Theorem 1.3 of [13] is formulated under addition
condition that the given mapping is closed. Therefore Theorem 4 with weaker assumptions
contains the main result of paper [13].

Acknowledgements. I greatly appreciate the anonymous reviewers for critically reading and
comments, which helped improve the initial manuscript.

References

1. Reshetnyak Yu. G. Space Mappings with Bounded Distortion, Providence, Amer. Math. Soc., 1989.
2. Vodopyanov, S. K. Basics of the Quasiconformal Analysis of a Two-Index Scale of Space Mappings,

Siberian Mathematical Journal, 2018, vol. 59, no. 5, pp. 805–834. DOI: 10.1134/S0037446618050075.
3. Vodopyanov, S. K. Differentiability of Mappings of the Sobolev Space W 1

n−1 with Conditions on
the Distortion Function, Siberian Mathematical Journal, 2018, vol. 59, no. 6, pp. 983–1005. DOI:
10.1134/S0037446618060034.

4. Vodopyanov, S. K. Moduli Inequalities for W 1
n−1,loc-Mappings with Weighted Bounded (q, p)-Dis-

tortion, Complex Variables and Elliptic Equations, 2021, vol. 66, no. 6–7, pp. 1037–1072. DOI:
10.1080/17476933.2020.1825396.
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О МОДУЛЬНЫХ НЕРАВЕНСТВАХ ТИПА ПОЛЕЦКОГО
ДЛЯ НЕКОТОРЫХ КЛАССОВ ОТОБРАЖЕНИЙ
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Аннотация. Хорошо известно, что теория отображений с ограниченным искажение была заложе-
на Ю. Г. Решетняком в 60-е годы прошлого века [1]. В работах [2, 3] была введена двухиндексная
шкала отображений с весовым ограниченным (q, p)-искажением. Эта шкала отображений включает
в себя, в частности, отображения с ограниченным искажением, упомянутые выше (при q = p = n

и тривиальной весовой функции). В работе [4] для двухиндексной шкалы отображений с весовым
ограниченным (q, p)-искажения доказано модульное неравенство типа Полецкого при минимальной
регулярности; приведено много примеров отображений, к которым можно применить результаты [4].
В этой статье мы приведем одно такое применение. Другая цель этой статьи — показать новый класс
отображений, в которых выполняются модульные неравенства типа Полецкого. Для этого мы расши-
ряем при n = 2 справедливость утверждений работы [4] на предельные показатели: 1 < q 6 p 6 ∞.
Это обобщение содержит в качестве частного случая результаты недавно опубликованных работ. Как
следствие результатов этой статьи мы получаем также оценки изменения емкости конденсаторов.

Ключевые слова: квазиконформный анализ, пространство Соболева, модуль семейства кривых,
оценка модуля.
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