УДК 517.518.23+517.548.2 DOI 10.46698/w5793-5981-8894-о

ON POLETSKY-TYPE MODULUS INEQUALITIES FOR SOME CLASSES OF MAPPINGS[#]

S. K. Vodopyanov¹

¹ Sobolev Institute of Mathematics, 4 Akademika Koptyuga Ave., Novosibirsk 630090, Russia E-mail: vodopis@math.nsc.ru

Abstract. It is well-known that the theory of mappings with bounded distortion was laid by Yu.G. Reshetnyak in 60-th of the last century [1]. In papers [2, 3], there was introduced the two-index scale of mappings with weighted bounded (q, p)-distortion. This scale of mappings includes, in particular, mappings with bounded distortion mentioned above (under q = p = n and the trivial weight function). In paper [4], for the two-index scale of mappings with weighted bounded (q, p)-distortion, the Poletsky-type modulus inequality was proved under minimal regularity; many examples of mappings were given to which the results of [4] can be applied. In this paper we show how to apply results of [4] to one such class. Another goal of this paper is to exhibit a new class of mappings in which Poletsky-type modulus inequalities is valid. To this end, for n = 2, we extend the validity of the assertions in [4] to the limiting exponents of summability: $1 < q \leq p \leq \infty$. This generalization contains, as a special case, the results of recently published papers. As a consequence of our results, we also obtain estimates for the change in capacity of condensers.

Key words: quasiconformal analysis, Sobolev space, modulus of a family of curves, modulus estimate. AMS Subject Classification: 30C65 (26B35, 31B15, 46E35).

For citation: Vodopyanov, S. K. On Poletsky-type Modulus Inequalities for Some Classes of Mappings, Vladikavkaz Math. J., 2022, vol. 24, no. 4, pp. 58–69. DOI: 10.46698/w5793-5981-8894-o.

1. Introduction

The goal of this work is to show the application of results of [4] for output of Poletsky-type modulus inequalities for some classes of mappings. For doing this we formulate first the main result of [4], and then we provide how it can be applied for some concrete classes of mappings.

The main classes of mappings studied in [4] were defined in [2, 3].

DEFINITION 1. Let $\omega \colon \mathbb{R}^n \to [0,\infty]$ be a measurable function, called a *weight*, with $0 < \omega < \infty$ holding \mathscr{H}^n -almost everywhere, and $\Omega \subset \mathbb{R}^n$ is a domain in \mathbb{R}^n . A mapping $f : \Omega \to \mathbb{R}^n$ with $n \ge 2$ is called a *mapping with (inner) bounded \omega-weighted (q, p)-codistortion*, or briefly, $f \in \mathscr{ID}(\Omega; q, p; \omega, 1)$, where $n - 1 \le q \le p < \infty$, whenever

(1) f is continuous, open and discrete;

(2) f belongs to the Sobolev class $W_{n-1,\text{loc}}^1(\Omega)$;

(3) the Jacobian determinant satisfies det $Df(x) \ge 0$ for almost all $x \in \Omega$;

 $^{^{\#}}$ The study was carried out within the framework of the State contract of the Sobolev Institute of Mathematics, project \aleph FWNF-2022-0006.

^{© 2022} Vodopyanov, S. K.

(4) the mapping f has bounded codistortion: $\operatorname{adj} Df(x) = 0$ a.e. on the set $Z = \{x \in \Omega : \det Df(x) = 0\};$

(5) the local ω -weighted (q, p)-codistortion function

$$\Omega \ni x \mapsto \mathscr{K}_{q,p}^{\omega,1}(x,f) = \begin{cases} \frac{\omega^{\frac{n-1}{q}}(x)|\operatorname{adj} Df(x)|}{\det Df(x)^{\frac{n-1}{p}}} & \text{if } \det Df(x) \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
(1)

belongs to $L_{\varrho}(\Omega)$, where ϱ satisfies $\frac{1}{\varrho} = \frac{n-1}{q} - \frac{n-1}{p}$, while $\varrho = \infty$ for q = p. Put $\mathscr{K}_{q,p}^{\omega,1}(f;\Omega) = \left\| \mathscr{K}_{q,p}^{\omega,1}(\cdot,f) \mid L_{\varrho}(\Omega) \right\|$.

DEFINITION 2. Let $\omega \colon \mathbb{R}^n \to [0,\infty]$ be a measurable function, called a *weight*, with $0 < \omega < \infty$ holding \mathscr{H}^n -almost everywhere, and $\Omega \subset \mathbb{R}^n$ is a domain in \mathbb{R}^n . A mapping $f : \Omega \to \mathbb{R}^n$ with $n \ge 2$ is called a *mapping with (outer) bounded \omega-weighted (q, p)-distortion*, or briefly $f \in \mathscr{OD}(\Omega; q, p; \omega, 1)$, with $n - 1 \le q \le p < \infty$, whenever:

(1)f is continuous, open and discrete;

(2) f belongs to the Sobolev class $W_{n-1,\text{loc}}^1(\Omega)$;

(3) the Jacobian determinant satisfies det $Df(x) \ge 0$ for a.e. $x \in \Omega$;

(4) the mapping f has bounded distortion: Df(x) = 0 a.e. on the set $Z = \{x \in \Omega : \det Df(x) = 0\};$

(5) the local ω -weighted (q, p)-distortion function

$$\Omega \ni x \mapsto K_{q,p}^{\omega,1}(x,f) = \begin{cases} \frac{\omega^{\frac{1}{q}}(x)|Df(x)|}{\det Df(x)^{\frac{1}{p}}} & \text{if } \det Df(x) \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
(2)

belongs to $L_{\varkappa}(\Omega)$, where \varkappa satisfies $\frac{1}{\varkappa} = \frac{1}{q} - \frac{1}{p}$, while $\varkappa = \infty$ for q = p. Put $K_{q,p}^{\omega,1}(f;\Omega) = \|K_{q,p}^{\omega,1}(\cdot,f) \mid L_{\varkappa}(\Omega)\|$.

 $\prod_{q,p} (J, \Sigma_{\ell}) = \prod_{q,p} (J, J) \mid L_{\varkappa}(\Sigma_{\ell}) \parallel.$

REMARK 1. It is established in [3] that

$$\mathscr{OD}(\Omega; q, p; \omega, 1) \subset \mathscr{ID}(\Omega; q, p; \omega, 1)$$
(3)

in case of $n-1 < q \leq p < \infty$.

For justifying (3) we refer to [3, Theorem 8] where it is proved that every mapping $f: \Omega \to \Omega'$ of $\mathscr{OD}(\Omega; q, p; \omega, 1), n-1 < q \leq p < \infty$, belongs also to the class $\mathscr{ID}(\Omega; q, p; \omega, 1)$, and the estimate

$$\left\|\mathscr{K}_{q,p}^{\omega,1}(\cdot,f) \mid L_{\varrho}(\Omega)\right\| \leqslant \left\|K_{q,p}^{\omega,1}(\cdot,f) \mid L_{\varkappa}(\Omega)\right\|^{n-1} \tag{4}$$

holds. (Here ρ and \varkappa are defined after formulas (1) and (2) respectively).

In [4] it was proved the following result.

Theorem 1 [4, Theorem 4.1]. Let $n-1 < q \leq p < \infty$. Suppose that $f : \Omega \to \mathbb{R}^n$ is a mapping with with inner bounded ω -weighted (q,p)-codistortion $(f \in \mathscr{ID}(\Omega;q,p;\omega,1))$, while the weight function $\theta(x) = \omega^{-\frac{n-1}{q-(n-1)}}(x)$ is locally summable. If Γ is a family of curves in the domain Ω then we have the inequality

$$\left(\operatorname{mod}_{s} f(\Gamma)\right)^{1/s} \leqslant \mathscr{K}_{q,p}^{\omega,1}(f;\Omega) \left(\operatorname{mod}_{r}^{\theta} \Gamma\right)^{1/r},$$
(5)

with $s = \frac{p}{p - (n-1)}$ and $r = \frac{q}{q - (n-1)}$.

Below we recall the concept of the modulus of a family of curves (see [4] for more details).

A curve in \mathbb{R}^n is a continuous mapping $\alpha \colon I \to \mathbb{R}^n$, where I is an interval in \mathbb{R} , that is, a set of the form $\langle a, b \rangle$, where each angular parenthesis can be either round or square, $a, b \in \mathbb{R}$ with $a \leq b$. We also allow infinite intervals. A curve α is called closed (open) if the interval Iis compact (open). Put $|\alpha| = \alpha(I)$. The expression $\gamma' \subset \gamma$ will mean that the curve γ' is a restriction of the curve γ to a subinterval or a point.

If $\alpha: I = [a, b] \to \mathbb{R}^n$ is a closed curve then its *length* is

$$\ell(\alpha) = \sup \sum_{i=1}^{l} |\alpha(t_i) - \alpha(t_{i+1})|,$$

where the supremum is taken over all finite partitions $a = t_1 \leq t_2 \leq \ldots \leq t_l \leq t_{l+1} = b$. If a curve α is not closed then put its length equal to $\ell(\alpha) = \sup \ell(\alpha|_J)$, where the supremum is taken over all closed subintervals J of I.

A curve $\alpha: I \to \mathbb{R}^n$ is called *rectifiable* whenever $\ell(\alpha) < \infty$. A curve is called *locally rectifiable* if each closed subcurve of it is rectifiable.

Consider a closed curve $\alpha: [a, b] \to \mathbb{R}^n$ and suppose that it is rectifiable. Define a function $s_{\alpha}: [a, b] \to \mathbb{R}$ by the equality $s_{\alpha}(t) = \ell(\alpha|_{[a,t]})$. For the rectifiable curve α there exists a unique curve $\alpha^0: [0, \ell(\alpha)] \to \mathbb{R}^n$ obtained from α by a monotonely increasing change of parameter such that $s_{\alpha^0}(t) = t$ and $\alpha = \alpha^0 \circ s_{\alpha}$ [5, Section 2.4]. The curve α^0 is called the *positive natural parametrization* of α .

Take a Borel set $A \subset \mathbb{R}^n$ and a Borel function $\rho: A \to [0, \infty]$. The integral of ρ along a rectifiable curve $\alpha: [a, b] \to \mathbb{R}^n$ is defined as

$$\int_{\alpha} \rho \, ds = \int_{0}^{\ell(\alpha)} \rho(\alpha^{0}(\tau)) \, d\mathscr{H}^{1}(\tau)$$

with an usual Lebesgue integral in the right-hand side. If α is absolutely continuous then so is the function $s_{\alpha}(t) = [a, b] \rightarrow [0, \ell(\alpha)]$. Putting $\tau = s_{\alpha}(t)$ in the last integral, using the changeof-variables theorem for Lebesgue integrals, and accounting for $\dot{\alpha}(t) = \frac{d}{d\tau} \alpha^0(s_{\alpha}(t))\dot{s}_{\alpha}(t)$ and $\frac{d}{d\tau} \alpha^0(\tau) = 1$, we infer that

$$\int_{\alpha} \rho \, ds = \int_{a}^{b} \rho(\alpha(t)) |\dot{\alpha}(t)| \, d\mathscr{H}^{1}(t).$$
(6)

Observe that by the change of variable formula we can express this as

$$\int_{\alpha} \rho \, ds = \int_{a}^{b} \rho(\alpha(t)) |\dot{\alpha}(t)| \, d\mathscr{H}^{1}(t) = \int_{|\alpha|} \rho(y) \mathscr{N}(y, \alpha, [a, b]) \, d\mathscr{H}^{1}(y), \tag{7}$$

where $\mathcal{N}(y, \alpha, [a, b]) = \#\{[a, b] \cap \alpha^{-1}(y)\}\$ is the Banach indicatrix.

For a locally rectifiable curve $\alpha \colon I \to \mathbb{R}^n$, put

$$\int_{\alpha} \rho \, ds = \sup_{\beta} \int_{\beta} \rho \, ds, \tag{8}$$

where the supremum is taken over all closed subcurves β of α .

Consider a family Γ of curves in \mathbb{R}^n , where $n \ge 2$. A Borel function $\rho \colon \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ whenever

$$\int_{\gamma} \rho \, ds \ge 1 \tag{9}$$

for each locally rectifiable curve $\gamma \in \Gamma$. Denote the collection of all admissible functions by adm Γ . Given a weight function $\theta \colon \mathbb{R}^n \to (0, \infty)$ and a number $p \in [1, \infty)$, define the θ -weighted *p*-modulus of Γ as

$$\operatorname{mod}_{p}^{\theta} \Gamma = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^{n}} \rho^{p} \theta \, d\mathscr{H}^{n}$$

Properties of the weight function will be prescribed separately; at least, we assume that it is locally summable and $0 < \theta < \infty$ holds \mathscr{H}^n -almost everywhere. For $\theta \equiv 1$ we obtain the usual definition of *p*-modulus, and instead of $\operatorname{mod}_p^1 \Gamma$ we write $\operatorname{mod}_p \Gamma$. If $\operatorname{adm} \Gamma = \emptyset$ then we put $\operatorname{mod}_p^{\theta} \Gamma = \infty$; this case is realized only if Γ contains at least one curve determining a constant mapping.

REMARK 2. The definition of modulus implies that every family of curves which are not locally rectifiable has zero modulus. Moreover, if Γ is a family of curves and $\Gamma_1 = \{\gamma \in \Gamma : \gamma \text{ is locally rectifiable}\}$ then $\operatorname{mod}_p^{\theta}(\Gamma) = \operatorname{mod}_p^{\theta}(\Gamma_1)$.

Suppose that α is a rectifiable closed curve in \mathbb{R}^n . A mapping $g: |\alpha| \to \mathbb{R}^n$ is called *absolutely continuous on* α if the composition $g \circ \alpha^0$ is absolutely continuous on $[0, \ell(\alpha)]$.

Theorem 2 [5, Fuglede's Theorem; 6]. Suppose that $f: \Omega \to \mathbb{R}^n$ is a mapping of class $W_p^1(\Omega)$ with $1 \leq p < \infty$, and Γ is a family of locally rectifiable curves in Ω such that each curve has a closed subcurve on which f is not absolutely continuous. Then $\operatorname{mod}_p \Gamma = 0$.

2. Modification of Theorem 1 in the case of n = 2 and $p = \infty$

In this case parameters q, p may be taken within $(1, \infty]$: $1 < q \leq p \leq \infty$. The case $1 < q \leq p < \infty$ is taken into consideration in Theorem 1.

Theorem 3. Let $1 < q < p = \infty$. Suppose that $\Omega \subset \mathbb{R}^2$ is a domain, and $f: \Omega \to \mathbb{R}^2$ is a mapping with inner bounded ω -weighted (q, ∞) -codistortion $(f \in \mathscr{ID}(\Omega; q, \infty; \omega, 1)^1)$, while the weight function $\theta(x) = \omega^{-\frac{1}{q-1}}(x)$ is locally summable. If Γ is a family of curves in the domain Ω then we have the inequality

$$(\operatorname{mod}_1 f(\Gamma)) \leqslant \mathscr{K}^{\omega,1}_{q,\infty}(f;\Omega)(\operatorname{mod}^{\theta}_r \Gamma)^{1/r}$$
(10)

with $r = \frac{q}{q-1}$.

In this theorem $\mathscr{K}_{q,\infty}^{\omega,1}(f;\Omega) = \|\mathscr{K}_{q,\infty}^{\omega,1}(\cdot,f) \mid L_r(\Omega)\|.$

Theorem 4. Suppose that $\Omega \subset \mathbb{R}^2$ is a domain, and $f: \Omega \to \mathbb{R}^2$ is a mapping belonging to the Sobolev class $W^1_{1,\text{loc}}(\Omega)$ with the nonnegative Jacobian determinant: det $Df(x) \ge 0$ for almost all $x \in \Omega$. Assume that

1) f is continuous, open and discrete;

(2) the mapping f has bounded codistortion: $\operatorname{adj} Df(x) = 0$ a. e. on the set $Z = \{x \in \Omega : \det Df(x) = 0\}$.

¹ In the case $p = \infty$ we have to replace det $Df(x)^{\frac{1}{p}}$ in (1) by 1.

Let, for a weight $\omega \colon \mathbb{R}^n \to [0,\infty], (\infty,\infty)$ -codistortion function

$$\Omega \ni x \mapsto \mathscr{K}^{\omega,1}_{\infty,\infty}(x,f) = \begin{cases} \omega(x) |\operatorname{adj} Df(x)| & \text{if } \det Df(x) > 0, \\ 0 & \text{otherwise,} \end{cases}$$
(11)

belongs to $L_{\infty}(\Omega)$ (in another words $f \in \mathscr{ID}(\Omega; \infty, \infty; \omega, 1)$). If the weight function $\theta(x) = \omega^{-1}(x)$ is locally summable then, for any family of curves Γ in the domain Ω , we have the inequality

$$\operatorname{mod}_{1} f(\Gamma) \leqslant \mathscr{K}^{\omega,1}_{\infty,\infty}(f;\Omega) \operatorname{mod}_{1}^{\theta} \Gamma.$$
 (12)

In this theorem $\mathscr{K}_{\infty,\infty}^{\omega,1}(f;\Omega) = \|\mathscr{K}_{\infty,\infty}^{\omega,1}(\cdot,f) \mid L_{\infty}(\Omega)\|.$ Theorems 3 and 4 will be proved in Section 6.

3. Application

In paper [7, Example 32] the following class of mappings is considered. Suppose that $n-1 , and consider a continuous, open and discrete mapping <math>f : D' \to \mathbb{R}^n$ of an open connected domain $D' \subset \mathbb{R}^n$, where $n \ge 2$, such that

(1) $f \in W^1_{n-1,\text{loc}}(D');$

(2) det $Df(y) \ge 0$ and f has finite codistortion; i. e., $\operatorname{adj} Df(y) = 0 \mathscr{H}^n$ -almost everywhere on $Z = \{y \in D' : \operatorname{det} Df(y) = 0\};$

(3) the inner operator distortion function

$$D' \ni y \mapsto \mathscr{K}_{n-1,s}^{1,1}(y,f) = \begin{cases} \frac{|\operatorname{adj} Df(y)|}{\det Df(y)^{\frac{n-1}{s}}} & \text{if } \det Df(y) \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
(13)

belongs to $L_{p,\text{loc}}(D')$, where $\frac{1}{p} = \frac{n-1}{n-1} - \frac{n-1}{s}$ holds with $s = \frac{(n-1)p}{p-1} > n-1$; (4) the weight function σ defined as

$$\sigma(y) = \begin{cases} \frac{|\operatorname{adj} Df(y)|^p}{\det Df(y)^{p-1}} & \text{if } y \in D' \backslash Z', \\ 1 & \text{otherwise,} \end{cases}$$
(14)

is in $\in L_{1,\text{loc}}(D')$, here $Z' = \{y \in D' : Df(y) = 0\}.$

Taking into a count saying above we see that $f: D' \to D$ meets the assumptions of Theorem 1 with D' instead of Ω :

(2a) $f \in W^1_{n-1,\text{loc}}(D');$

(2b) det $Df(y) \ge 0$ and f has finite codistortion;

(2c) $f: D' \to D$ is a mapping of bounded ω -weighted (s, s)-codistortion with $\omega(y) = \sigma^{-\frac{1}{p-1}}(y)$, that is, the ω -weighted (s, s)-codistortion function

$$D' \ni y \mapsto \mathscr{K}^{\omega,1}_{s,s}(y,f) = \begin{cases} \frac{\omega^{\frac{n-1}{s}}(y)|\operatorname{adj} Df(y)|}{\det Df(y)^{\frac{n-1}{s}}} & \text{if } J(y,f) \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$

belongs to $L_{\infty}(D')$ and

$$\left\|\mathscr{K}^{\omega,1}_{s,s}(\cdot,f) \mid L_{\infty}(D')\right\| = 1 \tag{15}$$

(the last equality is proved in [7, Theorem 3] under more general assumption).

Taking into account saying above, by Theorem 1, we come to the following statement.

Proposition 1. Suppose that a continuous, open and discrete mapping $f : D' \to \mathbb{R}^n$ of an open connected domain $D' \subset \mathbb{R}^n$, where $n \ge 2$, has the following properties:

(1) $f \in W^1_{n-1,\text{loc}}(D');$

(2) det $Df(y) \ge 0$ and f has finite codistortion (adj $Df(y) = 0 \ \mathscr{H}^n$ -almost everywhere on $Z = \{y \in D' : \det Df(y) = 0\}$);

(3) the inner operator distortion function

$$D' \ni y \mapsto \mathscr{K}_{n-1,s}^{1,1}(y,f) = \begin{cases} \frac{|\operatorname{adj} Df(y)|}{\det Df(y)^{\frac{n-1}{s}}} & \text{if } \det Df(y) \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
(16)

belongs to $L_{p,\text{loc}}(D')$ with some p > n-1, where $\frac{1}{p} = \frac{n-1}{n-1} - \frac{n-1}{s}$ holds with $s = \frac{(n-1)p}{p-1} > n-1$. If Γ is a family of curves in the domain D' then we have the inequality

$$\operatorname{mod}_p f(\Gamma) \leqslant \operatorname{mod}_p^{\sigma} \Gamma$$
 (17)

where the weight function σ is defined in (7).

 \triangleleft When deriving inequality (17) the properties (2a)–(2c) formulated above, should be taken into account. Really, we see that $f \in \mathscr{ID}(\Omega; q, p; \omega, 1)$ with q = p = s and $\omega(y) = \sigma^{-\frac{1}{p-1}}(y)$. Therefore, by Theorem 1, we get the inequality

$$\left(\operatorname{mod}_{s'} f(\Gamma)\right)^{1/s'} \leqslant \mathscr{K}_{s,s}^{\omega,1}(f;D') \left(\operatorname{mod}_{s'}^{\theta} \Gamma\right)^{1/s'}$$

with $s' = \frac{s}{s - (n-1)}$ (here $\mathscr{K}_{s,s}^{\omega,1}(f;D') = \|\mathscr{K}_{s,s}^{\omega,1}(\cdot,f) \mid L_{\infty}(D')\|$). Because of (15), s' = p and $\theta(y) = \omega^{-\frac{n-1}{s - (n-1)}}(y) = \sigma(y)$ inequality (17) holds. \triangleright

Taking into account [2, Theorem 34] or [4, Theorem 5.2] and its proof we come to

Proposition 2. Suppose that for a continuous, open and discrete mapping $f: D' \to \mathbb{R}^n$ of an open connected domain $D' \subset \mathbb{R}^n$, where $n \ge 2$, conditions of Proposition 1 hold. If E = (A, C) is a condenser in Ω , then the estimate holds: $\operatorname{cap}_p f(E) \le \operatorname{cap}_p^{\sigma} E$.

4. The special case of the mappings under consideration: n = 2

In the case n = 2 we have the following modification of the results of the previous section. We have $1 and a continuous, open and discrete mapping <math>f : D' \to \mathbb{R}^2$ of on open connected domains $D' \subset \mathbb{R}^2$ such that

(1) $f \in W^1_{1,\text{loc}}(D');$

(2) det $Df(y) \ge 0$ and f has finite codistortion; i. e., adj $Df(y) = 0 \mathscr{H}^2$ -almost everywhere on $Z = \{y \in D' : \det Df(y) = 0\};$

(3) the inner operator distortion function

$$D' \ni y \mapsto \mathscr{K}^{1,1}_{1,\frac{p}{p-1}}(y,f) = \begin{cases} \frac{|\operatorname{adj} Df(y)|}{\det Df(y)^{\frac{p-1}{p}}} & \text{if } \det Df(y) \neq 0, \\ 0 & \text{if } \det Df(y) = 0, \end{cases}$$

belongs to $L_{p,\text{loc}}(D')$.

(4) the weight function σ defined as

$$\sigma(y) = \begin{cases} \frac{|\operatorname{adj} Df(y)|^p}{\det Df(y)^{p-1}} & \text{if } y \in D' \backslash Z', \\ 1 & \text{otherwise,} \end{cases}$$
(18)

is in $\in L_{1,\text{loc}}(D')$, here $Z' = \{y \in D' : Df(y) = 0\}.$

It is not hard to see that the continuous, open and discrete mapping $f: D' \to \mathbb{R}^2$ meets the assumptions of Proposition 1 under n = 2:

- (3a) $f \in W^1_{1,\text{loc}}(D');$
- (3b) f has finite distortion;

(3c) $f: D' \to D$ is a mapping with bounded ω -weighted (p', p')-distortion where $p' = \frac{p}{p-1}$ and $\omega(y) = \sigma^{-\frac{1}{p-1}}(y)$, that is the ω -weighted (p', p')-distortion function

$$D' \ni y \mapsto K^{\omega,1}_{p',p'}(y,f) = \begin{cases} \frac{\omega^{\frac{1}{p'}}(y)|Df(y)|}{\det Df(y)^{\frac{1}{p'}}} & \text{if } \det Df(y) \neq 0\\ 0 & \text{otherwise,} \end{cases}$$

belongs to $L_{\infty}(D')$, and

$$\left\| K_{p',p'}^{\omega,1}(\cdot,f) \mid L_{\infty}(D') \right\| = 1.$$
(19)

Taking into account saying above, by Proposition 1, we come to the following statement.

Corollary 1. Suppose that a continuous, open and discrete mapping $f : D' \to \mathbb{R}^2$ of an open connected domain $D' \subset \mathbb{R}^2$ has the following properties:

(1) $f \in W^1_{1,\text{loc}}(D');$

(2) f has finite codistortion $(\operatorname{adj} Df(y) = 0 \ \mathscr{H}^2$ -almost everywhere on $Z = \{y \in D' : \det Df(y) = 0\}$;

(3) the inner operator distortion function

$$D' \ni y \mapsto \mathscr{K}_{1,p'}^{1,1}(y,f) = \begin{cases} \frac{|\operatorname{adj} Df(y)|}{\det Df(y)^{\frac{1}{p'}}} & \text{if } \det Df(y) \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
(20)

belongs to $L_{p,\text{loc}}(D')$ with some p > 1, where $\frac{1}{p} + \frac{1}{p'} = 1$.

If Γ is a family of curves in the domain D' then we have the inequality

$$\operatorname{mod}_p f(\Gamma) \leqslant \operatorname{mod}_p^{\sigma} \Gamma$$
 (21)

holds where the weight function σ is defined in (18).

5. One more special case of the mappings under consideration: n = 2 and p = 1

In this section we prove that Corollary 1 is valid also in the case p = 1. To show this we have to modify some arguments of the previous section. A counterpart of Corollary 1 is formulated in the following statement.

Proposition 3. Suppose that a continuous, open and discrete mapping $f : D' \to \mathbb{R}^2$ of an open connected domain $D' \subset \mathbb{R}^2$ has the following properties:

(1) $f \in W_{1,\text{loc}}^1(D');$

(2) det $Df(y) \ge 0$ and f has finite codistortion (adj $Df(y) = 0 \mathscr{H}^2$ -almost everywhere on $Z = \{y \in D' \mid \det Df(y) = 0\}$);

(3) the inner operator codistortion function

$$D' \ni y \mapsto \mathscr{K}_{1,\infty}^{1,1}(y,f) = \begin{cases} |\operatorname{adj} Df(y)| & \text{if } \det Df(y) \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$
(22)

belongs to $L_{1,\text{loc}}(D')$.

If Γ is a family of curves in D' then we have

$$\operatorname{mod}_1 f(\Gamma) \leqslant \operatorname{mod}_1^{\sigma} \Gamma \tag{23}$$

with σ defined in (25).

 \triangleleft We show that the proof of Proposition 3 can be reduced to Theorem 3. For doing this formulate first additional properties of f and $\varphi = f^{-1}$.

PROPERTIES OF $\varphi = f^{-1}$. If $f : D' \to D$ is a homeomorphism then the inverse homeomorphism $\varphi = f^{-1} : D \to D'$ enjoys the following properties:

(4) by [9, Theorem 4] or [7, Theorem 27] we have $\varphi \in W^1_{1,\text{loc}}(D)$ (see also [10, Theorem 3.2]);

(5) φ has finite distortion by [7, Theorem 27] (see also [10, Theorem 3.3]);

(6) φ is differentiable a. e. in D by [7, Theorem 27];

while $f: D' \to D$

(6) φ belongs to $\mathcal{Q}_{1,1}(D, D'; \sigma)$ (see [4]), that is the distortion function

$$D \ni x \mapsto K_{1,1}^{1,\sigma}(x,\varphi) = \begin{cases} \frac{|D\varphi(x)|}{\sigma(\varphi(x))\det D\varphi(x)} & \text{if } \det D\varphi(x) \neq 0, \\ 0 & \text{if } \det D\varphi(x) = 0, \end{cases}$$
(24)

of the inverse mapping $\varphi = f^{-1}$ with the weight function $\sigma \in L_{1,\text{loc}}(D')$ defined as

$$\sigma(y) = \begin{cases} |\operatorname{adj} Df(y)| & \text{if } y \in D' \setminus Z', \\ 1 & \text{otherwise,} \end{cases} \quad \text{where } Z' = \{ y \in D' : Df(y) = 0 \}, \qquad (25)$$

is in $L_{\infty}(D)$ and $K_{1,1}^{1,\sigma}(\varphi; D) = \|K_{1,1}^{1,\sigma}(\cdot, \varphi) | L_{\infty}(D)\| = 1$ (see [4, Theorem 25, formulas (30) and (37); 8]).

PROPERTIES OF f. Taking into account saying above, we see that $f: D' \to D$ meets some additional properties:

(7) $f \in W_{1,\text{loc}}^1(D')$ and f is differentiable a.e. in D' by [7, Theorem 27];

(8) det $Df(y) \ge 0$ and f has finite distortion by [7, Theorem 27] (see also [10, Theorem 3.3]);

(9) $f: D' \to D$ is a mapping with bounded ω -weighted (∞, ∞) -codistortion with the weight function $\omega = \sigma^{-1}$, that is the ω -weighted (∞, ∞) -codistortion function

$$D' \ni y \mapsto \mathscr{K}^{\omega,1}_{\infty,\infty}(y,f) = \begin{cases} \omega(y) |\operatorname{adj} Df(y)| & \text{if } \det Df(y) \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$

belongs to $L_{\infty}(D')$, and

$$\|\mathscr{K}^{\omega,1}_{\infty,\infty}(\cdot,f) \mid L_{\infty}(D')\| = \|K^{1,\sigma}_{1,1}(\cdot,\varphi) \mid L_{\infty}(D)\| = 1.$$
(26)

Now it is evident that f enjoys the conditions of Theorem 3, and therefore (23) holds for f. \triangleright

6. Proof of Theorems 3 and 4

⊲ We verify that the proof of Theorem 1 given in [4, Theorem 4.1] for mappings with bounded θ -weighted (q, p)-codistortion, where $n - 1 < q \leq p < \infty$, works also in the case $1 < q \leq p = \infty$ at n = 2. To do this we need properties of Poletsky function and Poletsky's Lemma in this case. We formulate and prove them below. ⊳

1. Properties of Poletsky function. Take a continuous mapping $f : \Omega \to \mathbb{R}^2$ and a domain D compactly embedded into Ω , meaning that D is bounded and $\overline{D} \subset \Omega$, written briefly as $D \Subset \Omega$, and take $y \notin f(\partial D)$. Denote by $\mu(y, f, D)$ the degree of f at y with respect to D. Say that f is sense-preserving whenever $\mu(y, f, D) > 0$ for all domains $D \Subset \Omega$ and all points $y \in f(D) \setminus f(\partial D)$. For $A \subset \Omega$ refer as the multiplicity function to $\mathbb{R}^2 \ni y \mapsto$ $N(y, f, A) = \# \{f^{-1}(y) \cap A\}$. Moreover, put $N(f, A) = \sup_{y \in \mathbb{R}^2} N(y, f, A)$.

Suppose that $f: \Omega \to \mathbb{R}^2$ is a continuous, open, and discrete mapping. A domain $D \Subset \Omega$ is called normal whenever $f(\partial D) = \partial f(D)$. A normal neighborhood of $x \in \Omega$ is a normal domain $U \subset \Omega$ such that $\overline{U} \cap f^{-1}(f(x)) = \{x\}$. The quantity $i(x, f) = \mu(f(x), f, U)$ is independent of the choice of a normal neighborhood U of x (see [11, Chapter II, §2] for instance) and is called the local index of f at x. A point $x \in \Omega$ is called a branch point of f whenever f is not a homeomorphism of any neighborhood of x. Denote the collection of all branch points of fby B_f . If D is a normal domain for a mapping f then $\mu(y, f, D)$ is independent of $y \in f(D)$. We will call this constant by $\mu(f, D)$.

In the following two lemmas we state propositions of interest in their own right. Both of them are applied in the proof of the main result of this section.

Lemma 1 [3, Lemma 10]. Assume that $f : \Omega \to \mathbb{R}^2$ is a continuous, open and discrete mapping in $W^1_{1,\text{loc}}(\Omega)$ with finite distortion. Then for every open connected set $U \subset \Omega$ the set $\{x \in U \setminus B_f : J(x, f) \neq 0\}$ has positive measure.

 \triangleleft If, on the contrary, J(x, f) = 0 a.e. on a connected set $U \subset \Omega \setminus B_f$ on which f is a homeomorphism then Df(x) = 0 a.e. on U because f has finite distortion. Then f is constant on U, and consequently, f cannot be open. \triangleright

Proposition 4. If $f: \Omega \to \mathbb{R}^2$ is a continuous, open and discrete mapping in $W^1_{1,\text{loc}}(\Omega)$ with finite distortion, then f is differentiable a.e. on $\Omega \setminus B_f$ and sense-preserving.

 \triangleleft For a connected open set $U \subset \Omega \setminus B_f$ on which f is a homeomorphism, it is enough to apply the statement [9, Theorem 4] or [7, Theorem 27] twice. For the restriction $f|_U: U \to f(U)$ it provides that the inverse homeomorphism $(f|_U)^{-1}: f(U) \to U$ is in $W_1^1(f(U))$, is of finite distortion, and is differentiable a.e. on f(U). Then applying [7, Theorem 27] to $(f|_U)^{-1}: f(U) \to U$ we get similar properties to the given mapping $f|_U: U \to f(U)$. By Lemma 1, det $Df(x) \ge 0$ and properties of degree we conclude that fis sense-preserving. \triangleright

DEFINITION 3. For a sense-preserving, continuous, open and discrete mapping $f : \Omega \to \mathbb{R}^2$ and a normal domain $D \subseteq \Omega$, define the Poletsky function $g_D : V \to \mathbb{R}^2$ on V = f(D) [12] by putting

$$V \ni y \mapsto g_D(y) = \Lambda \sum_{x \in f^{-1}(y) \cap D} i(x, f)x, \qquad (27)$$

where $\Lambda = \mu(f, D)$.

The function of the form (27) was introduced by Poletsky in [12] for mappings with bounded distortion ($p = q = n, \omega \equiv 1$). The next statement presents the properties of the Poletsky function for the classes of mappings under consideration.

Proposition 5 [2, 3]. Suppose that $f : \Omega \to \mathbb{R}^2$ belongs to $\mathscr{O}\mathscr{D}(\Omega; \infty, \infty; \omega, 1)$ (properties (4*a*)–(4*c*) hold). Then

- (1) the function g_D defined in (27) is continuous and belongs to ACL(V);
- (2) $Dg_D(y) = 0$ a.e. on $Z' \cup \Sigma'$;
- (3) Poletsky function g_D defined in (27) is in $W_1^1(V)$; furthermore,

$$\left\| Dg_D \mid L_1(V) \right\| \leq \Lambda \left\| K_{\infty,\infty}^{\omega,1}(\cdot;f) \mid L_\infty(D) \right\| \int_D \sigma(x) \, dx.$$

We emphasize that the formulated statement is proved in [2, Theorem 18] for mappings $f \in \mathscr{ID}(\Omega; p, p; \omega, 1), p \in (1, \infty)$. The same proof works also in the case $p = \infty$ at n = 2.

2. Poletsky's Lemma. Consider a continuous, open and discrete mapping $f : \Omega \to \mathbb{R}^2$. Take a closed rectifiable curve $\beta : I_0 \to \mathbb{R}^n$ and a curve $\alpha : I \to \Omega$ with $f \circ \alpha \subset \beta$. In particular, we have $I \subset I_0$. If the function $s_\beta : I_0 \to [0, \ell(\beta)]$ is constant on some interval $J \subset I$, then the mapping β is constant on J. In turn, since f is discrete, α is also constant on J. Consequently, there exists a unique mapping $\alpha^* : s_\beta(I) \to \Omega$ satisfying $\alpha = \alpha^* \circ s_\beta|_I$. We can prove that α^* is continuous and $f \circ \alpha^* \subset \beta^0$. The curve α^* is called an f-representative of α (with respect to β) whenever $\beta = f \circ \alpha$. Suppose now that $\beta = f \circ \alpha$. The above arguments show that

$$f \circ \alpha^* = (f \circ \alpha)^0.$$

Therefore, the curve $f \circ \alpha^*$ admits a positive natural parametrization, and hence it is Lipschitz. Thus we can integrate along this curve using (6) where $\left|\frac{\mathrm{d}}{\mathrm{d}t}(f \circ \alpha^*)(t)\right| = 1$ for \mathscr{H}^1 -almost all $t \in I$.

The mapping f is called *absolutely precontinuous* on α provided that α^* is absolutely continuous.

Lemma 2. Suppose that $f : \Omega \to \mathbb{R}^2$ is a mapping of class $\mathscr{ID}(\Omega; \infty, \infty; \omega, 1)$. Consider a family Γ of curves in Ω such that for every $\gamma \in \Gamma$ the following holds: the curve $f \circ \gamma$ is locally rectifiable and γ has a closed subcurve α on which f is not absolutely precontinuous. Then $\operatorname{mod}_1 f(\Gamma) = 0$.

The formulated Lemma is proved in [4, Lemma 3.3] for mappings $f \in \mathscr{ID}(\Omega; p, p; \omega, 1)$, $p \in (1, \infty)$. The same proof works also in the case $p = \infty$ at n = 2.

In the proof of Lemma 2 we also need the following statement.

Lemma 3. Consider a homeomorphism $\varphi : \Omega \to \Omega'$ of class $\mathscr{ID}(\Omega; q, \infty; \theta, 1)$, where $\Omega, \Omega' \subset \mathbb{R}^2$ and $1 < q \leq \infty$.

Then

(1) the inverse homeomorphism is $\varphi^{-1} \in W^1_{1,\text{loc}}(\Omega')$;

(2) φ^{-1} has finite distortion: $D\varphi^{-1}(y) = 0$ almost everywhere on Z';

(3) $K_{1,r}^{1,\omega}(\cdot,\varphi^{-1}) \in L_{\varrho}(\Omega')$, where

$$r = \begin{cases} \frac{q}{q-n+1} & \text{if } q < \infty, \\ 1 & \text{if } q = \infty, \end{cases} \qquad \qquad \omega = \begin{cases} \theta^{-\frac{1}{q-1}} & \text{if } q < \infty, \\ \theta^{-1} & \text{if } q = \infty; \end{cases}$$

(4) if the weight function ω is locally summable then the inverse homeomorphism induces, by the change-of-variable rule, the bounded operator

$$\varphi^{-1*}: L^1_r(\Omega; \omega) \cap W^1_{\infty, \text{loc}} \to L^1_1(\Omega').$$

We have the relations

$$\left\|K_{1,r}^{1,\omega}(\cdot,\varphi^{-1}) \mid L_{\varrho}(\Omega')\right\| = \left\|\mathscr{K}_{q,\infty}^{\theta,1}(\cdot,\varphi) \mid L_{\varrho}(\Omega)\right\|$$

and

$$\beta_{q,\infty} \left\| K_{1,r}^{1,\omega}(\cdot,\varphi^{-1}) \mid L_{\varrho}(\Omega') \right\| \leq \|\varphi^{-1*}\| \leq \left\| K_{1,r}^{1,\omega}(\cdot,\varphi^{-1}) \mid L_{\varrho}(\Omega') \right\|,$$

where $\beta_{q,\infty}$ is some constant.

 \triangleleft Properties (1) and (2) of $\varphi = f^{-1}$ were proved just after Proposition 3. Taking into account (1) and (2) Properties (3) and (4) can be proved by analogy with Theorem 9 of [2]. \triangleright

REMARK 3. By means of Theorems 3 and 4 for homeomorphisms $\varphi : \Omega \to \Omega'$ of class $\mathscr{I}\mathscr{D}(\Omega; q, \infty; \theta, 1)$, where $\Omega, \Omega' \subset \mathbb{R}^2$ and $1 < q \leq \infty$, we can prove some more inequalities such that Väisälä inequality and the capacity inequality (see proofs in [4, Theorem 22] and [4, Theorem 28] respectively).

REMARK 4. It is not hard to see that assumptions of Theorem 4 are weaker comparing with those in paper [13]. For instance, Theorem 1.3 of [13] is formulated under addition condition that the given mapping is closed. Therefore Theorem 4 with weaker assumptions contains the main result of paper [13].

Acknowledgements. I greatly appreciate the anonymous reviewers for critically reading and comments, which helped improve the initial manuscript.

References

- 1. Reshetnyak Yu. G. Space Mappings with Bounded Distortion, Providence, Amer. Math. Soc., 1989.
- Vodopyanov, S. K. Basics of the Quasiconformal Analysis of a Two-Index Scale of Space Mappings, Siberian Mathematical Journal, 2018, vol. 59, no. 5, pp. 805–834. DOI: 10.1134/S0037446618050075.
- Vodopyanov, S. K. Differentiability of Mappings of the Sobolev Space W¹_{n-1} with Conditions on the Distortion Function, Siberian Mathematical Journal, 2018, vol. 59, no. 6, pp. 983–1005. DOI: 10.1134/S0037446618060034.
- 4. Vodopyanov, S. K. Moduli Inequalities for $W_{n-1,loc}^1$ -Mappings with Weighted Bounded (q, p)-Distortion, Complex Variables and Elliptic Equations, 2021, vol. 66, no. 6–7, pp. 1037–1072. DOI: 10.1080/17476933.2020.1825396.
- 5. Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229, Berlin-Heidelberg-New York, Springer, 1971.
- Fuglede, B. Extremal Length and Functional Completion, Acta Mathematica, 1957, vol. 98, pp. 171–219. DOI: 10.1007/BF02404474.
- 7. Vodopyanov, S. K. The Regularity of Inverses to Sobolev Mappings and the Theory of $Q_{q,p}$ -Homeomorphisms, Siberian Mathematical Journal, 2020, vol. 61, no. 6, pp. 1002–1038. DOI: 10.1134/S0037446620060051.
- Vodopyanov, S. K. and Tomilov, A. O. Functional and Analytic Properties of a Class of Mappings in Quasi-Conformal Analysis, *Izvestiya: Mathematics*, 2021, vol. 85, no. 5, pp. 883–931. DOI: 10.1070/IM9082.
- Vodopyanov, S. K. Regularity of Mappings Inverse to Sobolev Mappings, Sbornik: Mathematics, 2012, vol. 203, no. 10, pp. 1383–1410. DOI: 10.1070/SM2012v203n10ABEH004269.
- Hencl, S. and Koskela, P. Regularity of the Inverse of a Planar Sobolev Homeomorphism, Archive for Rational Mechanics and Analysis, 2006, vol. 180, pp. 75–95. DOI: 10.1007/s00205-005-0394-1.
- 11. Rickman S. Quasiregular mappings, Berlin, Springer-Verlag, 1993, 213 p.
- Poletsky, E. A. The Modulus Method for Nonhomeomorphic Quasiconformal Mappings, *Mathematics of the USSR-Sbornik*, 1970, vol. 12, no. 2, pp. 260–270. DOI: 10.1070/SM1970v012n02ABEH000921.
- 13. Salimov, R. R., Sevost'yanov, E. A. and Targonskii, V. A. On Modulus Inequality of the Order p for the Inner Dilatation. arXiv MATH Complex Variables. 2022. DOI:arxiv-2204.07870.

Received September 2, 2022

SERGEY K. VODOPYANOV Sobolev Institute of Mathematics, 4 Akademika Koptyuga Ave., Novosibirsk 630090, Russia, *Principal Researcher* E-mail: vodopis@math.nsc.ru https://orcid.org/0000-0003-1238-4956

Владикавказский математический журнал 2022, Том 24, Выпуск 4, С. 58–69

О МОДУЛЬНЫХ НЕРАВЕНСТВАХ ТИПА ПОЛЕЦКОГО ДЛЯ НЕКОТОРЫХ КЛАССОВ ОТОБРАЖЕНИЙ

Водопьянов С. К.¹

¹ Институт математики им. С. Л. Соболева, Россия, 630090, Новосибирск, пр-т Академика Коптюга, 4 E-mail: vodopis@math.nsc.ru

Аннотация. Хорошо известно, что теория отображений с ограниченным искажение была заложена Ю. Г. Решетняком в 60-е годы прошлого века [1]. В работах [2, 3] была введена двухиндексная шкала отображений с весовым ограниченным (q, p)-искажением. Эта шкала отображений включает в себя, в частности, отображения с ограниченным искажением, упомянутые выше (при q = p = nи тривиальной весовой функции). В работе [4] для двухиндексной шкалы отображений с весовым ограниченным (q, p)-искажения доказано модульное неравенство типа Полецкого при минимальной регулярности; приведено много примеров отображений, к которым можно применить результаты [4]. В этой статье мы приведем одно такое применение. Другая цель этой статьи — показать новый класс отображений, в которых выполняются модульные неравенства типа Полецкого. Для этого мы расширяем при n = 2 справедливость утверждений работы [4] на предельные показатели: $1 < q \leq p \leq \infty$. Это обобщение содержит в качестве частного случая результаты недавно опубликованных работ. Как следствие результатов этой статьи мы получаем также оценки изменения емкости конденсаторов.

Ключевые слова: квазиконформный анализ, пространство Соболева, модуль семейства кривых, оценка модуля.

AMS Subject Classification: 30C65 (26B35, 31B15, 46E35).

Образец цитирования: Vodopyanov S. K. On Poletsky-Type Modulus Inequalities for Some Classes of Mappings // Владикавк. мат. журн.—2022.—Т. 24, № 4.—С. 58–69 (in English). DOI: 10.46698/w5793-5981-8894-0.