1.1 Graphs ....................................... 2 1.2 The degree of a vertex ....................... 4 1.3 Paths and cycles ............................. 6 1.4 Connectivity ................................. 9 1.5 Trees and forests ............................ 12 1.6 Bipartite graphs ............................. 14 1.7 Contraction and minors ....................... 16 1.8 Euler tours .................................. 18 1.9 Some linear algebra .......................... 20 1.10 Other notions of graphs ...................... 25 Exercises .................................... 26 Notes ........................................ 28
2.1 Matching in bipartite graphs ................. 29 2.2 Matching in general graphs ................... 34 2.3 Path covers .................................. 39 Exercises .................................... 40 Notes ........................................ 42
3.1 2-Connected graphs and subgraphs ............. 43 3.2 The structure of 3-connected graphs........... 45 3.3 Menger's theorem ............................. 50 3.4 Mader's theorem .............................. 56 3.5 Edge-disjoint spanning trees ................. 58 3.6 Paths between given pairs of vertices ........ 61 Exercises .................................... 63 Notes ........................................ 65
4.1 Topological prerequisites .................... 68 4.2 Plane graphs ................................. 70 4.3 Drawings ..................................... 76 4.4 Planar graphs: Kuratowski's theorem .......... 80 4.5 Algebraic planarity criteria ................. 85 4.6 Plane duality ................................ 87 Exercises .................................... 89 Notes ........................................ 92
5.1 Colouring maps and planar graphs ............. 96 5.2 Colouring vertices ........................... 98 5.3 Colouring edges .............................. 103 5.4 List colouring ............................... 105 5.5 Perfect graphs ............................... 110 Exercises .................................... 117 Notes ........................................ 120
6.1 Circulations ................................. 124 6.2 Flows in networks ............................ 125 6.3 Group-valued flows ........................... 128 6.4 k-Flows for small k .......................... 133 6.5 Flow-colouring duality ....................... 136 6.6 Tutte's flow conjectures ..................... 140 Exercises .................................... 144 Notes ........................................ 145
7.1 Subgraphs .................................... 148 7.2 Szemerédi's regularity lemma ................. 153 7.3 Applying the regularity lemma ................ 160 Exercises .................................... 165 Notes ........................................ 166
8.1 Topological minors ........................... 170 8.2 Minors ....................................... 179 8.3 Hadwiger's conjecture ........................ 181 Exercises .................................... 184 Notes ........................................ 186
9.1 Ramsey's original theorems ................... 190 9.2 Ramsey numbers ............................... 193 9.3 Induced Ramsey theorems ...................... 197 9.4 Ramsey properties and connectivity ........... 207 Exercises .................................... 208 Notes ........................................ 210
10.1 Simple sufficient conditions ................. 213 10.2 Hamilton cycles and degree sequence .......... 216 10.3 Hamilton cycles in the square of a graph ..... 218 Exercises .................................... 226 Notes ........................................ 227
11.1 The notion of a random graph ................. 230 11.2 The probabilistic method ..................... 235 11.3 Properties of almost all graphs .............. 238 11.4 Threshold functions and second moments ....... 242 Exercises .................................... 247 Notes ........................................ 249
12.1 Well-quasi-ordering .......................... 251 12.2 The minor theorem for trees .................. 253 12.3 Tree-decompositions .......................... 255 12.4 Tree-width and forbidden minors .............. 263 12.5 The graph minor theorem ...................... 274 Exercises .................................... 277 Notes ........................................ 280 Hints for all the exercises ............................ 283 Index .................................................. 299 Symbol index ........................................... 311