Reinhard Diestel

Graph Theory

Second Edition

Contents




1. The Basics

       1.1  Graphs .......................................   2
       1.2  The degree of a vertex .......................   4
       1.3  Paths and cycles .............................   6
       1.4  Connectivity .................................   9
       1.5  Trees and forests ............................  12 
       1.6  Bipartite graphs .............................  14 
       1.7  Contraction and minors .......................  16
       1.8  Euler tours ..................................  18
       1.9  Some linear algebra ..........................  20
       1.10 Other notions of graphs ......................  25
            Exercises ....................................  26
            Notes ........................................  28

2. Matching

       2.1  Matching in bipartite graphs .................  29
       2.2  Matching in general graphs ...................  34 
       2.3  Path covers ..................................  39 
            Exercises ....................................  40 
            Notes ........................................  42

3. Connectivity

       3.1  2-Connected graphs and subgraphs .............  43
       3.2  The structure of 3-connected graphs...........  45
       3.3  Menger's theorem .............................  50 
       3.4  Mader's theorem ..............................  56 
       3.5  Edge-disjoint spanning trees .................  58 
       3.6  Paths between given pairs of vertices ........  61 
            Exercises ....................................  63 
            Notes ........................................  65

4. Planar Graphs

       4.1  Topological prerequisites ....................  68
       4.2  Plane graphs .................................  70 
       4.3  Drawings .....................................  76 
       4.4  Planar graphs: Kuratowski's theorem ..........  80 
       4.5  Algebraic planarity criteria .................  85 
       4.6  Plane duality ................................  87 
            Exercises ....................................  89 
            Notes ........................................  92

5. Colouring

       5.1  Colouring maps and planar graphs .............  96
       5.2  Colouring vertices ...........................  98 
       5.3  Colouring edges .............................. 103 
       5.4  List colouring ............................... 105 
       5.5  Perfect graphs ............................... 110 
            Exercises .................................... 117 
            Notes ........................................ 120

6. Flows

       6.1  Circulations ................................. 124
       6.2  Flows in networks ............................ 125
       6.3  Group-valued flows ........................... 128 
       6.4  k-Flows for small k .......................... 133
       6.5  Flow-colouring duality ....................... 136
       6.6  Tutte's flow conjectures ..................... 140
            Exercises .................................... 144 
            Notes ........................................ 145

7. Substructures in Dense Graphs

       7.1  Subgraphs .................................... 148
       7.2  Szemerédi's regularity lemma ................. 153
       7.3  Applying the regularity lemma ................ 160
            Exercises .................................... 165
            Notes ........................................ 166

8. Substructures in Sparse Graphs

       8.1  Topological minors ........................... 170
       8.2  Minors ....................................... 179
       8.3  Hadwiger's conjecture ........................ 181
            Exercises .................................... 184
            Notes ........................................ 186

9. Ramsey Theory for Graphs

       9.1  Ramsey's original theorems ................... 190
       9.2  Ramsey numbers ............................... 193
       9.3  Induced Ramsey theorems ...................... 197
       9.4  Ramsey properties and connectivity ........... 207
            Exercises .................................... 208
            Notes ........................................ 210

10. Hamilton Cycles

      10.1  Simple sufficient conditions ................. 213
      10.2  Hamilton cycles and degree sequence .......... 216
      10.3  Hamilton cycles in the square of a graph ..... 218
            Exercises .................................... 226
            Notes ........................................ 227

11. Random Graphs

      11.1  The notion of a random graph ................. 230
      11.2  The probabilistic method ..................... 235
      11.3  Properties of almost all graphs .............. 238
      11.4  Threshold functions and second moments ....... 242
            Exercises .................................... 247
            Notes ........................................ 249

12. Minors, Trees, and WQO

      12.1  Well-quasi-ordering .......................... 251
      12.2  The minor theorem for trees .................. 253
      12.3  Tree-decompositions .......................... 255
      12.4  Tree-width and forbidden minors .............. 263
      12.5  The graph minor theorem ...................... 274
            Exercises .................................... 277
            Notes ........................................ 280 

  Hints for all the exercises ............................ 283
  Index .................................................. 299 
  Symbol index ........................................... 311




Return to main page