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CHAPTER 3

WHICH ISOMETRIES DO IT?

3.0  Congruent sets

3.0.1 Congruence. We call two sets congruent  to each other if 
and only if there exists an isometry that maps one to the other; in 
simpler terms, if and only if one is a copy  of the other. For example, 
this is the case with the quadrilaterals ABCD and A′B ′C ′D ′  in either 
of figures 1.18 & 1.30. It is correct to say that this definition 
extends the familiar definition of congruent triangles and, more  
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generally, congruent polygons. In more practical terms, two sets 
are congruent if and only if one of them can be brought to perfectly 
‘match’  the other point by point. Let us for example have a look at 
the triangles ABC, A′B ′C ′ , and A″B″C″  of figure 3.1: both triangles 
A′B′C′ and A″B″C″ are congruent to ABC as |A″B″| = |A′B′| = |AB|, |A″C″| = 
|A′C′| = |AC|, and |B″C″ | = |B′C′| = |BC|. The relation of each triangle to 
ABC is somewhat different  though: while A′B ′C ′  may be slid  (i.e., 
glided and turned as needed) until it matches ABC point by point, 
A″B″C″  may not  be brought back to ABC by mere sliding. How do we 
demonstrate the congruence of ABC and A″B″C″  in a hands-on way 
then? One needs to be clever enough to observe that A″B″C″  may in 
fact be slid back to ABC after it gets f l ipped : if that is not obvious 
to you, simply trace A″B″C ″  on tracing paper, then flip the tracing 
paper and slide the flipped A″B″C″  back to ABC -- it works!

Revisiting the pairs of quadrilaterals in figures 1.18 & 1.30, we 
make similar observations: in figure 1.18 A′B ′C ′D ′ (image of ABCD 
under reflection) must be flipped in order to be slid back to the 
original ABCD, while in figure 1.30 A′B ′C ′D ′ (image of ABCD under 
rotation) can be slid back to ABCD without any flipping. You have 
probably suspected this one by now: flipping is required in the case 
of reflection but not in the case of rotation. But let us now take a 
look at the two triangles of figure 1.14, mirror images of each other:

                   

Fig. 3.2



Despite the reflection, you can easily check, using tracing paper 
if necessary, that the two triangles may easily be slid back to each 
other (without any flipping, that is). What makes the difference?

3.0.2 Homostrophy and heterostrophy. Before addressing the 
issues raised by figure 3.2, we need some terminology. We call two 
congruent sets homostrophic  (‘of same turning’) if and only if they 
can match each other via mere sliding; and we call two congruent 
sets heterostrophic  (‘of opposite turning’) if and only if they can 
only match each other via a combination of flipping and sliding. For 
example, ABCD and A′B ′C ′D ′ are homostrophic in figure 1.30, but 
heterostrophic in figure 1.18. And, in figure 3.1 above, A′B ′C ′  and 
A″B″C″  are homostrophic and heterostrophic to ABC, respectively.

3.0.3 Labeling. Let us now return to the ‘puzzle’ of figure 3.2 and 
reinstate the vertex labels from figure 1.14 as below:

                   

Fig. 3.3

Can you now slide A′B ′C ′ ‘back’ to ABC in a way that A′, B′, C′ 
‘return’ to A, B, C, respectively ? After a shorter or longer 
effort -- that depends on your personality -- you are bound to give 
up: it is simply impossible! That is, the labeling  of the vertices has 
made the two congruent triangles heterostrophic: A′B ′C ′  needs to be 



flipped before it can slide to ABC. And, once again, heterostrophy 
seems to be associated with reflection .

Back in 3.0.1, and figure 3.2, you were able to slide the triangle 
now  labeled A′B ′C ′ to match ABC. What would happen if you repeat 
that same sliding? The two triangles would still match each other, 
except that now A′  ‘returns’ to B and B′  ‘returns’ to A. This is not 
quite a perfect match, but it would obviously be one if we swap  A′  
and B′ . Indeed such an action leads to the following situation:

                    

Fig. 3.4

Clearly, it is now possible to simply slide A′B ′C ′  to ABC: the two 
triangles are now homostrophic! A rushed conclusion is that 
homostrophy  and  heterostrophy  are  concepts  ‘defined’  by  
label ing ; this is a rule with its fair share of except ions , as we 
will see in 3.2.6 and 3.5.4. And, in view of our entire discussion so 
far, an obvious question would be: is there a rotation  that maps 
ABC to A′B ′C ′  in figure 3.4? We knew  ahead of time, thanks to figure 
1.14, of a reflection that mapped ABC to A′B ′C ′  in figure 3.3; it is not 
unreasonable now to suspect  that there is a rotation that maps ABC 
to A′B ′C ′  in figure 3.4: but how  do we determine such a rotation, how 
do we come up with a center and an angle that would work? 

3.0.4 The ‘reverse’ problem. Let us now consider a situation 



similar to the one discussed in 3.0.3, departing from rotation and 
figure 1.24 this time; we leave the familiar triangle ABC untouched 
but we swap  A′  and B′  as shown in figure 3.5 below:     

                         
Fig. 3.5

It is clear that the homostrophy (created by rotation) in figure 
1.24 has now been eliminated. Does that mean that there exists a 
reflection that maps ABC to A′B ′C ′? The answer is “no”: in every 
reflection the segments PP′  that join every point P of the original 
figure to its image point P′  are perpendicular to the reflection axis, 
hence they must all be parallel  to each other; and that is clearly 
not  the case in figure 3.5! For exactly the same reason there is no 
translation mapping ABC to A′B ′C ′ . Nor is a rotation plausible, as we 
do suspect, without proof so far, that rotation is always  associated 
with homostrophy. There only remains one possibility: glide  
re f lec t ion !

That glide reflection can be associated with heterostrophy is 
suggested by the effect of the two opposite glide reflections on ABC 
in figure 1.34: both A′B ′C ′ and A″B″C″  are easily seen to be 



heterostrophic  to ABC! So yes, there is hope, if not certainty, that 
there exists a glide reflection that maps ABC to A′B ′C ′  in figure 3.5; 
but how  do we determine such a glide reflection, how do we come up 
with an axis and a vector that would work? 

This last question sounds very similar to the one posed at the 
end of 3.0.3, doesn’t it? The two questions are indeed the two faces 
of a broader question that reverses  the tasks you learned in chapter 
1: back then you were given a set and an isometry and you had to 
determine the image; here you are given the ‘original’ set and an 
‘image’ set congruent to it, and you are asked to determine all the 
isometries that send the original to the image. That there may be 
more  than  one  isometries  ‘between’ two congruent sets should 
be clear in view of the examples discussed in this section, and has 
in fact been explicitly demonstrated in figure 2.22. Chapter 3 is 
devoted to this ‘reverse’ question. 

3.1   Po in t s

3.1.1  Infinite flexibility. Points do not take much room at all, 
hence they ought to be rather easy to deal with! In our context, given 
any two points A and A′ , we can at once find not one but two 
isometries that map A to A′ . These are a translation  defined by the 
vector  AA ′′′′  and a reflection  whose axis is the perpendicular  
bisector  of  AA ′′′′ :
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We are much ‘luckier’ than that though! There exist in fact 
inf in i tely  m a n y  ro tat ions  and inf in i tely  m a n y  gl ide  
reflections  that map A to A′ . Getting them all turns out to be 
mostly a matter of remembering the ways of rotation and glide 
reflection from chapter 1: we will also need to learn to play the 
game backwards, and employ a bit of high school geometry as well.

3.1.2 Rotations. Let us revisit figure 1.21, where we defined 
rotation, and make a fundamental observation: since |KP| = |KP′ |, K 
must lie on the perpendicular  bisector  of PP′ ! Indeed if M is the 
midpoint  of PP′ then the two triangles MKP and MKP′  have three 
pairs of equal sides, hence they are congruent; but then ∠ KMP ′ = 
∠ KMP = 1800/2 = 900, hence KM is perpendicular  to PP′: 

         

Fig. 3.7

Returning to A and A′  of 3.1.1, we may now obtain infinitely 
many rotations that map A to A′ ; simply apply the previous argument 
backwards , pick an arbitrary  point K on the perpendicular  
bisector  of AA′  to be the rotation center, and then observe that the 
rotation angle is none other than the oriented  angle  ∠∠∠∠ AKA ′′′′ , 
opening  from  A  toward  A ′′′′  by  way  of  K : 



Fig. 3.8

Notice that the rotation angle could be either clockwise or 
counterclockwise, depending on the relative position of A, K, and A′ : 
this information should always  be part of your answer! Notice also 
that the rotation angle is 1800 when K is the midpoint  of AA′ , and 
approaches 00 as K moves far away from (and on either side of) AA′  
(with the rotation itself ‘approaching’ -- near AA′  at least -- the 
t ranslat ion  of figure 3.6).

3.1.3  Glide reflections. It’s time now to revisit figure 1.31, 
where we defined glide reflection, and make a crucial observation: 
the glide reflection axis L does intersect PP′  at its midpoint ! 
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While this is made ‘obvious’ by figure 3.9, it is not difficult to 
offer a rigorous proof. Indeed, since PLP ′  is parallel  to PMB (by the 

very definition of glide reflection), 
|PB|

|PP′|
 = 

|PPM|

|PPL|
 = 

1

2
. 

  
How do we take advantage of this crucial observation and, in the 

context of 3.1.1 in particular, how could we use it to obtain glide 
reflections that map A to A′? All we have to do is to play the game 
backwards ! Simply draw an arbitrary  line L through the midpoint  
M of AA′  and then find the image AL of A under reflection about L; it 

is easy then to check that the line L and the vector ALA ′  (pointing  

f rom  the  ‘ in termediate ’  mirror  image  t oward  the  actua l  
glide  reflection  image ) are the axis and vector of a glide 
reflection that maps A to A′ :

Fig. 3.10

Figure 3.10 offers two out of infinitely many possibilities for a 
glide reflection that maps A to A′ . Notice that the glide reflection 
vector can be of every possible direction, but its length cannot 
exceed |AA′ |; in the special  case  where L is the perpendicular 
bisector of AA′ , the length of the glide reflection vector is equal to 
zero  and the glide reflection is ‘reduced’ to the reflection  of 
figure 3.6.



3.2  Segments

3.2.1 Two possibilities. Consider two straight line segments of 
equal  length , one of them already labeled as AB:

   
Fig. 3.11

You are probably certain that there exist isometries that map AB 
to the segment on the right, but you probably cannot guess how many 
and you are not sure how to find them, right? Well, one departing 
point is to realize that there exist only  two  possibi l i t ies  for A 
and B: either A gets mapped to the ‘top endpoint’ and B gets mapped 
to the ‘bottom endpoint’ of the segment on the right, or vice versa. 
We will begin with the first possibility.

3.2.2 Two perpendicular bisectors, one center. Now that we have 
for the time being decided where A and B are mapped by the isometry 
we are trying to determine (‘first possibility’ in 3.2.1), we may 
recall (3.1.2) that there exist infinitely many rotat ions  that map A 
to A′  and infinitely many rotations that map B to B′ . The obvious 
question is: could some of those rotations perform both  tasks, 
mapping A to A′  and  B to B′? This question is answered if we also 
recall how  all those rotations were determined! That is, let us 
recall (3.1.2) that the set of centers  of all the rotations that map A 



to A′  is the perpendicular  bisector  of AA′ , and likewise the set of 
centers of all the rotations that map B to B′  is the perpendicular 
bisector of BB′ . Isn’t it reasonable then to guess that the 
intersect ion  of  the  two  perpendicular  bisectors , lying on 
both  of them, will be the unique  rotation  center  that achieves 
both goals? This guess is correct, as shown in figure 3.12, where we 
also determine the rotation  angle : 
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Although it is next to impossible to achieve perfect precision, 
we see that approximately the same clockwise angle (and center) 
does indeed work for both A and B; in fact the rotation works for all  
points on AB -- we elaborate on this in 3.3.1.

3.2.3 Two midpoints, one axis. You can almost guess the game 
now: always sticking with that ‘first possibility’ of 3.2.1 (or just 
the placement of A′  and B′  in figure 3.12 if you wish), we would like 
to determine a glide  reflection  that maps both  A to A′  and B to B′ . 
We may at this point recall (3.1.3) that a glide reflection maps A to 
A ′  (and B to B′) if and only if it passes through the midpoint  of AA′  
(and the midpoint of BB′). Arguing as in 3.2.2, we conclude that there 
exists a unique  glide  reflection  mapping both A to A′  and B to B′ , 
the axis of which is no other than the l ine  connecting  the  two  
midpoints . The whole affair is presented in figure 3.13, where we 
also determine the gl ide  ref lect ion  vector :  

    
  Fig. 3.13

Again we see that approximately the same S-N vector works for 
both A and B. The glide reflection must  in fact work for all  points 
on AB, as we are going to see in 3.3.1.



3.2.4 The ‘second possibility’. We now take care of the second 
possible labeling of the segment on the right in figure 3.11 (3.2.1) 
and obtain two more isometries between the two segments as shown 
in figures 3.14 (rotation) and 3.15 (glide reflection):

      
Fig. 3.14
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3.2.5 Four isometries! Putting everything together, we see that 
there exist two  rotat ions  and  two glide  ref lect ions  mapping 
every two congruent straight line segments to each other. One  of the 
rotations may be ‘deformed’  into a translation  (in case AB and 
A ′B ′ , hence the perpendicular bisectors of AA′  and BB′  as well, are 
parallel  to each other, ‘meeting at infinity’ -- see also concluding 
remark in 3.1.2); likewise, one  of the glide reflections may be 
‘ reduced’  to a reflection  (in case the line connecting the 
midpoints of AA′ , BB′  is perpendicular  to one -- hence, by a   
geometrical argument, both -- of them). Both situations occur for 
example in the case of any two adjacent hexagons in a beehive!

3.2.6 Homostrophic segments. We conclude by pointing out that, 
under  either  labeling , the segment on the right (in figures 3.11 
through 3.15) is homostrophic to AB. This is further indicated by the 
two rotations determined in figures 3.12 & 3.14, of course. But 
notice here that, quite uniquely as we will see later on, the segment 
A ′B ′ , homostrophic to AB, is at  the  same  t ime  the image of AB 
under the two glide reflections determined in figures 3.13 & 3.15!

3.3  Triangles

3.3.1 Two points almost determine it all. Here is a simple 
question you could have already asked in section 3.2: how do we 
really know that each of the four isometries mapping A and B to the 
endpoints of the ‘image segment’ on the right do actually map (every 
point P on) the segment  AB to (a point P′  on) the segment on the 
right? Good question! Luckily, circles come to the rescue of 
segments in figure 3.16 below.  

Indeed, P′  (the image of P under whatever isometry maps A to A′  
and B to B′) must lie on both  the circle CA ′′′′  = (A ′′′′ ;  |AP|)  of center  A ′′′′  
and radius  |AP|  and the circle CB ′′′′  = (B ′′′′ ;  |BP|)  of center  B ′′′′  and 

radius  |BP| : the distances of P from both A and B must be preserved. 
But these two circles can have only one ‘tangential’  point in 
common, lying  on  A ′′′′B ′′′′ , due to |A′B′| = |AB| = |AP| + |BP| (figure 3.16).   



Fig. 3.16

There are of course precisely  two  possibilities for the exact 
location of P′  on AB’s image on the right, depending on the two 
possibilities for A′  in 3.2.1; but in both cases every point P on AB is 
indeed mapped to a point P′ on A′B′ (with |PA| = |P′A′| and |PB| = |P′B′|, 
of course), therefore the entire  segment  AB is mapped to A′B ′ .

Now that you have seen that the images of the endpoints A, B 
completely determine the image of every point P on the segment AB 
(and in fact of every point on the entire  l ine  of AB, thanks to a 
similar argument involving ‘exterior points’ and ‘interior tangency’), 
you may wonder: what if P lies outside  that line? Once again the 
circles CA ′ and CB ′ can be of great help, except that this time, with 

|A′B ′| < |AP| + |BP| instead of |A′B ′| = |AP| + |BP|, they do intersect  
each other instead of being tangent to each other; hence there are 
two  possibi l i t ies  for P′ , indicated by P1′  and P2′  in figure 3.17:



Fig. 3.17

3.3.2 Congruent triangles. It doesn’t take long to observe that, 
in figure 3.17, A′B ′P1′  is (congruent and) homostrophic  to ABP while 

A′B′P2′  is (congruent and) heterostrophic  to ABP. Reversing this 

observation, we notice that whenever a triangle A′B ′P ′  is congruent 
to a triangle ABP there exists precisely  one  isometry  mapping 
ABP to A′B ′P ′ : a rotation (or translation) in case A′B ′P ′  is 
homostrophic to ABP and a glide reflection (or reflection) in case 
A ′B ′P ′  is heterostrophic to ABP. Indeed, with A ′′′′  and  B ′′′′  determined  
on AB’s image by  P ′′′′ ’s  position  (and |AP| ≠ |BP|, the case |AP| = |BP| 
being deferred to section 3.4), there are precisely two isometries 
mapping AB to A′B ′ , one rotation and one glide reflection (section 
3.2): P′  may then be only  one  of the two  intersection  points  of 
the two circles shown in figure 3.17 (and corresponding to the two  
isometries  mapping AB to A′B ′). 

We illustrate this in figure 3.18: labeling the ‘original’ triangle 
as DEF, we easily determine the images D′, E′, F′ (homostrophic copy 
of DEF) and D″ , E″ , F″  (heterostrophic copy of DEF); it is then clear 



that only  one  of the two intersection points (F′ ) of the circles      
(D′; |DF|) and (E′; |EF|) corresponds to a homostrophic copy of DEF, and 
likewise only  one  of the two intersection points (F″ ) of the circles  
(D″; |DF|) and (E″; |EF|) corresponds to a heterostrophic copy of DEF.  

Fig. 3.18 

3.3.3  Circular orientation revisited. Implicit in the discussion 
above is the assumption that translation and rotation are associated 
with homostrophy (‘same  turning’ ), while reflection and glide 
reflection are associated with heterostrophy (‘opposite  turning’ ). 
We can offer a quick justification for this assumption (and naming) 
as follows. 

Returning to figure 3.17, let us replace the circles CA ′ and CB ′ by 

the three congruent  circles C0, C1, and C2, circumscribed  to the 

triangles ABP, A′B ′P1′ , and A′B′P2′ , respectively:



Fig. 3.19

Clearly the points A, B, P, traced alphabetically , are 
clockwise  placed on C0; their images are clockwise  placed on C1 

(A′, B′, P1′ ) and counterclockwise  placed on C2 (A′ , B′ , P2′ ). As this 

‘circular  order’  among A, B, P on C0 has been preserved  among 

their images on C1 but reversed  on C2, it is easy to see that C1 can  

slide back to C0 returning images to originals, while C2 cannot  

(without flipping, that is). So, homostrophy is associated with 
preservation of circular order, while heterostrophy is associated 
with reversal of circular order. But we have already seen in 1.5.4 -- 
and could certainly verify from scratch by extending section 3.1 
from points to circles! -- that preservation of circular order is 
associated with translations and rotations, while reversal of 
circular order is associated with reflections and glide reflections. 

3.3.4 Triangles determine everything! We just saw that, in the 
case of two congruent triangles, homostrophy is indeed associated 
with translation or rotation, and heterostrophy with reflection or 
glide reflection. This holds true for every pair of congruent sets on 
the plane, and relies on a broader fact, demonstrated in figure 3.20 
below: every isometry on the plane is uniquely determined by its 
effect on any  three  non-col l inear  points !       

 



Fig. 3.20

Indeed, any ‘fourth point’ P lies at the intersection of three  
circles  of centers A, B, C and radii |AP|, |BP|, |CP|, respectively. So 
the image of P is forced by the radius-preserving isometry to lie at 
the intersection of the three  image  circles (of centers A′ , B′ , C′  
(rotation) or A″ , B″ , C″  (glide reflection) and radii |AP|, |BP|, |CP|); but 
every three circles with non-col l inear  centers  can have at  most  
one  point in common, hence the image of P -- P′  under the rotation, 
P ″  under the glide reflection -- is uniquely  determined! 

3.3.5 From theory to practice. Returning to section 3.0 and 
figure 3.1, we demonstrate in figure 3.21 how to find the rotation  
that maps ABC to A′B ′C ′  (homostrophic pair) and the glide  
reflection  that maps ABC to A″B″C ″  (heterostrophic pair).

As you can see, determining the isometries in question reduces , 
in view of 3.3.2, to picking the right type of isometry (rotation or 
glide reflection) that maps AB to A′B ′ ; the rotation center or glide 
reflection axis is subsequently located as in section 3.2. It is 
always wise  to use a third  point  (like C in figure 3.21) and its 
image to determine the rotation angle or glide reflection vector, as 



shown in figure 3.21 -- and even wiser  to check that the same angle 
or vector indeed  works for a fourth  point, as well as for A and B!

Fig. 3.21 

 

3.4  Isosceles triangles

3.4.1 The ‘second possibility’ revived. As we pointed out in 
3.3.2, there is generally only one isometry mapping a ‘randomly 
chosen’ triangle ABC to a congruent triangle A′B ′C ′ : this is because C′  
both  allows only one possibility for the positions  of A′  and B′  on 
the image of AB and determines the kind  of  isometry  that maps AB 
to A′B ′ . While homostrophy/heterostrophy considerations never allow 
us to avoid the second limitation, it is possible to escape from the 
first one in case ABC happens to be isosceles (with |AC| = |BC| ); 
there exist then again, as in 3.2.1, two  possibilities for the images 



of A and B, associated with homostrophy (A1′ , B1′ ) and heterostrophy 

(A2′ , B2′ ). And there exist therefore one rotation  mapping ABC to 

A1′ B1′ C ′  (figure 3.22) and  one glide  reflection  mapping ABC to 

A2′ B2′ C ′  (figure 3.23), determined as in 3.3.5; but, of course, A1′ B1′ C′ 
and A2′ B2′ C ′  are one  and  the  same  triangle, congruent to ABC!     

Fig. 3.22

Fig. 3.23



3.4.2 Old examples revisited. We can at long last confirm and 
justify what we suspected in 3.0.3 and 3.0.4: there exists a rotation 
that achieves what reflection did in figure 1.14, and there also 
exists a glide reflection that rivals the rotation in figure 1.23. We 
demonstrate our findings in figures 3.24 & 3.25:

            
Fig. 3.24

               
Fig. 3.25



3.5  Parallelograms, ‘windmills’, and C n  sets

3.5.1 Two triangles to go to! Consider the congruent, 
heterostrophic  parallelograms  ABCD, EFGH of figure 3.26:

Fig. 3.26

The congruent  triangles ABC and HGF are heterostrophic , so 
there certainly exists a glide reflection mapping ABC to HGF, hence 
ABCD to EFGH as well (3.3.4), obtained in figure 3.27:

  
Fig. 3.27



On the other hand ... don’t you think that ABC could have gone to 
FEH instead? Indeed ABC and FEH also  happen to be congruent and 
heterostrophic, so there must exist a glide reflection mapping ABC 
to FEH, hence ABCD to EFGH as well (3.3.4); and such a glide 
reflection is obtained in figure 3.28: 

Fig. 3.28

So, there exist two  glide  reflections  mapping ABCD to EFGH! 
What has happened? Clearly, the extra flexibility we have here is 
due to the existence of two congruent  triangles within  EFGH, HGF 
and FEH. Digging a bit deeper into this, what has made these two 
‘components’ of the parallelogram EFGH congruent to each other? 
Could there be an ‘obvious’ isometry mapping one to the other? The 
answer is “yes”: there exists an isometry mapping HGF to FEH (or 
vice versa) and that is ... no other than the half  turn  about the 
paral le logram’s  center , K′ ! To put it in more familiar terms 
(1.3.9), the parallelogram EFGH has rotational  symmetry : indeed a 
twofold  (1800) rotation about K′  maps the parallelogram to itself,  
swapping  HGF and FEH; and this twofold rotation is in fact 
‘combined’  (section 7.8) with the glide reflection of figure 3.27 to 
produce the glide reflection of figure 3.28!



3.5.2  How about more triangles? It is not that difficult to come 
up with situations involving more than two glide reflections 
between two congruent sets. Indeed, and in view of the discussion in 
3.5.1, all we need is two copies of a set with ‘richer’ rotational 
symmetry than that of the parallelogram, a set with more than two 
‘triangles’ rotating around a center. How about the following pair of 
heterost roph ic  windmill-like sets:

Fig. 3.29

You should have no trouble realizing that, with five  ‘options’ for 
‘blade’ ABC, there exist indeed five  glide  reflections  mapping the 
‘windmill’ on the right to the ‘windmill’ on the left. We leave it to 
you to determine these glide reflections; and if you go through this 
task with the great precision that is typical of you by now, you are 
going to see all  five glide reflection axes passing  through  the  
same  point , that is the midpoint  of  KK ′′′′ : that should not surprise 
you if you care to notice that all five glide reflections must  map K 
to K′! (You may of course decide to ‘cheat’  by choosing K, K′ as one 
of your two pairs of points needed to determine each one of the five 
glide reflections!)

3.5.3 How about rotations? Returning to the parallelograms of 
figure 3.26, let us ‘rectify’ EFGH a bit, so that ABCD and EFGH are 
now homostrophic : 



Fig. 3.30

Repeating the thought process of 3.5.1 we see that ABC is 
homostrophic to both GHE and EFG, hence there exist two  rotations  
mapping ABCD to EFGH: one of them, by a clockwise 1160, maps ABC 
to GHE (figure 3.31), the other one, by a counterclockwise 640, maps 
ABC to EFG (figure 3.32). Notice that 1160 + 640 = 1800, in the same 
way, say, that the two glide reflection axes in figures 3.27 & 3.28 
are perpendicular to each other: please check and, perhaps, think  
about such ‘phenomena’!  

Fig. 3.31



Fig. 3.32

Just as we turned the two glide reflections between the two 
heterostrophic parallelograms (3.5.1) into two rotations between 
homostrophic parallelograms, we can now turn the five glide 
reflections between the heterostrophic ‘windmills’ of figure 3.29 
into f ive  rotations between homostrophic ‘windmills’: 

Fig. 3.33



Again, it is left to you to check that there exist f ive  rotations 
mapping the ‘windmill’ on the right to the ‘windmill’ on the left, 
determined by the ‘blade’ to which ABC is mapped. As in 3.5.2, all  
five rotations must  map K to K′ , hence all  five rotation centers 
must lie on the same line, the perpendicular  bisector  of  KK ′′′′ !

3.5.4 C n sets and the role of orientation. Let us revisit figures 
3.27, 3.28, 3.31, and 3.32, where we labeled EFGH as D′C′B′A′, B′A′D′C′, 
C ′D ′A ′B ′ , and A′B ′C ′D ′ , respectively -- which, by the way, are the only 
possible labelings induced by isometries mapping ABCD to EFGH. 
Still, what made the difference was not labeling but orientation: 
regardless  of  label ing , we obtained a glide  reflection  between 
the heterostrophic  parallelograms in both  figure 3.27 and figure 
3.28, and, likewise, a rotation between the homostrophic  
parallelograms in both  figure 3.31 and figure 3.32.  

Similarly, revisiting figures 3.29 & 3.33, we see that the 
existence of five glide reflections or  five rotations between the 
two ‘windmills’ is associated solely  with heterostrophy and 
homostrophy, respectively: labeling plays no role whatsoever.

Such observations always hold true between every two congruent 
C n  sets , that is, sets with n-fo ld  rotat ional  symmet r y  wi thout  
mirror  symmetry : there exist either  n  rotations  mapping one to 
the other (in case they are homostrophic ) or  n  glide  reflections  
mapping one to the other (in case they are heterostrophic ).

In addition to ‘n-blade windmills’, examples of Cn sets, known as 
chiral  sets  -- “hand(s)-like”, from Greek “chir” = “hand” -- in 
Molecular Chemistry or Particle Physics, include: non-isosceles 
triangles (C1), parallelograms (C2), the triskelion (three human legs 
joining each other at 1200 angles) from, among several other places, 
Isle of Man (C3), the heterostrophic and culturally unrelated Hindu 
and Nazi swastikas (C4), the Star of David (C6), etc. An excellent 
collection of Cn sets and likewise of Dn sets (studied in section 3.6 
right below), from various regions of the world and historical 
periods, is available in Peter S. Stevens’ book (pages 16-93) already 
cited in section 2.9.



3.6  Rhombuses, ‘daisies’, and D n  sets 

3.6.1 Two triangles and two ways. Let us consider the special 
case |AB| = |BC| = |CD| = |DA| (hence |FE| = |EH| = |HG| = |GF| as well) in 
either of figures 3.26 or 3.30; that is, let us consider the special 
case where each of the two congruent parallelograms is a rhombus :

    
Fig. 3.34

How many isometries map ABCD to EFGH? Arguing in the spirit of 
section 3.5, we notice that every isometry mapping ABCD to EFGH 
has to map ABC to either  FGH or  HEF. But we also notice that ABC 
and either of FGH or HEF are isosceles  triangles, and we do as well 
recall (section 3.4) that there always exist two  isometries mapping 
an isosceles triangle to a congruent to it isosceles triangle. We 
conclude that there exist two  ××××  two = four  isometries mapping 
ABCD to EFGH: two  rotations  (one mapping ABC to FGH (figure 
3.35), another mapping ABC to HEF (figure 3.36)) and two  glide  
reflections  (one mapping ABC to HGF (figure 3.37), another mapping 
ABC to FEH (figure 3.38)); D’s image is simply determined by those 
of A, B, C (3.3.4).

More rigorously , and with composition of isometries (chapter 
7) in mind, we could see how, for example, the rotation in figure 
3.35 is ‘combined’  with the rhombus’ internal reflection swapping 
E, G to produce the glide reflection of figure 3.38, etc.



Fig. 3.35

Fig. 3.36



Fig. 3.37

Fig. 3.38

Notice that homostrophy  or  heterostrophy  induced  by  
labeling  has once again become important, just as in section 3.4: 
we obtained rotations in the cases of homostrophic copies (with 
EFGH labeled in effect as either D ′′′′A ′′′′B ′′′′C ′′′′  (figure 3.35) or B ′′′′C ′′′′D ′′′′A ′′′′  
(figure 3.36), both of them homostrophic  to  ABCD ) and glide 
reflections in the cases of heterostrophic copies (with EFGH labeled 
in effect as either D ′′′′C ′′′′B ′′′′A ′′′′  (figure 3.37) or B ′′′′A ′′′′D ′′′′C ′′′′  (figure 3.38), 
both of them heterostrophic  to  ABCD ) .

3.6.2 Everything in double! What happens if we apply the same 
‘symmetrization’ process applied to the parallelograms of figures 



3.26 & 3.30 to those ‘5-blade  windmil ls’  of figures 3.29 & 3.33? 
We need to replace  non-isosceles triangles by isosceles ones, 
arriving at a pair of congruent ‘5-petal  daisies’ :

Fig. 3.39

How many isometries map the ‘daisy’ on the right to the ‘daisy’ 
on the left? Well, you almost know the game by now: there are five  
‘petals’ to which ‘petal’ ABC can be mapped, and in each case this 
can be done by both  a rotation and a glide reflection mapping the 
‘daisy’ on the right to the ‘daisy’ on the left; putting everything 
together, we see that there exist f ive  ××××  two = ten  isometries 
between the two congruent ‘daisies’, f ive  rotations  and  f ive  
glide  reflections ! We leave it to you to provide the right labeling 
for each one of these ten isometries: you should then be able to 
check that all five glide reflection axes pass through the midpoint of 
KK ′  (3.5.2) and that all five rotation centers lie, despite falling off 
this page on occasion, on the perpendicular bisector of KK′  (3.5.3).

3.6.3 Dn sets and the role of labeling. A closer look at 3.6.1 and 
3.6.2 explains the abundance of isometries between the rhombuses 
and the ‘5-petal daisies’: in addition to rotational  symmetry  (by 
1800 and 720, respectively), they are both blessed by at least one 
isosceles  tr iangle  the reflection axis of which acts as a 
reflection axis for the entire set -- that is, they also have mirror  
symmetry !



Summarizing and generalizing our findings in this section, we 
may say that between every two congruent Dn  sets , that is, sets 
with both  mirror  symmet ry  and  n-fold  rotat ional  symmet ry , 
there exist n  rotations (allowed by ‘homostrophic labeling’) and  n  
glide  ref lections  (allowed by ‘heterostrophic labeling’).

In addition to ‘n-petal daisies’, examples of Dn sets, known to 
scientists as achiral  sets , include: isosceles triangles (D1), 
rhombuses and straight line segments (D2), equilateral triangles 
(D3), squares and the Red Cross symbol (D4), the ‘pentagram’ (D5), 
snowflakes (D6), regular n-gons (Dn), circles and points (D∞ ), etc.

3.6.4 ‘Practical’ issues. You must have observed by now that, 
once we know what type of isometry (rotation or glide reflection) 
between two congruent sets we are looking for, and any and all 
issues of homostrophy/heterostrophy and labeling have been decided, 
the actual determination of the isometry simply reduces to 
constructing one between two congruent segments  and choosing the 
relevant endpoints . Such an observation is of course a natural 
consequence of our discussion in the entire chapter; see in 
particular 3.3.5. 

When looking for a rotation, it is advisable to choose two pairs 
of points such that the perpendicular bisectors of the corresponding 
segments will not  be ‘nearly  parallel’  to each other. The idea here 
is that tiny, almost inevitable, errors in the location of the two 
midpoints and/or the direction of the perpendicular bisectors are 
propagated in case the two lines run nearly parallel to each other, 
hence the rotation center could be greatly misplaced. For example, 
choosing to work with B, B′ and C, C′ would have been a bad idea in 
figure 3.36 but not in figure 3.35. 

Likewise, in the case of a glide reflection, it is not  advisable to 
work with two segments the midpoints of which are ‘ too  close’  to 
each other: again, tiny, almost inevitable, errors in the location of 
the two midpoints are likely to lead to a considerably misplaced 
glide reflection axis; this has in fact happened to some extent with 
B, B′  and C, C′  in figure 3.37 (why?), but probably not in figure 3.38.



Prior to choosing your pair of points, you should decide whether 
you need a rotation or a glide reflection. If both are possible, then 
homostrophy/heterostrophy issues become important. You must 
carefully choose your labeling  so that it will be both possible  
(avoid a disaster situation where, for example, |A′B ′ | ≠ |AB|!) and 
appropriate  (homostrophic or heterostrophic as needed) for the 
isometry you are looking for. Figures 3.35-3.38 should provide 
sufficient illustration in this direction. Another useful tip for 
labeling the image set, suggested by Erin  MacGivney  (Spring 1998), 
is this: trace the original set, including original labels (A, B, C, ...) on 
tracing paper, then slide it in every possible way until it matches 
(and labels!) the image set, with  or  without  f l ipping  the tracing 
paper (and inducing heterostrophic or homostrophic labeling, 
respectively).

Various ‘labeling’ errors can often be caught with the use of a 
‘ third  point’  (in determining the rotation angle or glide reflection 
vector) already advocated in 3.3.5: watch  out  in particular for 
unequal  angle legs or for an axis and vector not  parallel  to each 
other!   

Of course, you should first of all answer the following question 
about the given pair of congruent sets: are  they  Cn  sets  or  Dn  
sets,  and  what  is  n?  If they are Cn  sets  then you must decide 
whether they are homostrophic or heterostrophic, allowing for 
ei ther  n  rotat ions  or  n  gl ide  ref lect ions , respectively. If they 
are Dn  sets  you should keep in mind that, with fully developed 
labeling skills, you ought to be able to get all n  rotations  and  n  
glide  reflections  between the two sets; and keep in mind that one  
rotation could be ‘reduced’ to a translation (in case the two sets are 
side-by-side ‘parallel’  to each other) and one  glide reflection 
might ‘merely’ be a reflection (3.2.5).

3.7*  Cyclic (C n ) and dihedral (D n ) groups  

3.7.1  ‘Turning the windmills’. Let us revisit that ‘5-blade 



windmill’ C5 set of figure 3.29, redrawn and relabeled in figure 3.40 
below; more specifically, the five ‘blades’ are now labeled as T0, T1, 

T2, T3, and T4.

               

Fig. 3.40

As we noticed in 3.5.2, a clockwise 3600/5 = 720 rotation r  
about K maps the ‘windmill’ to itself by moving the ‘blades’ Ts 

around according to the formula r (Ts) = T(s+1)mod5, where, for every 

integer t, tmod5  is the remainder  of the division of t by 5. For 
example, r(T2) = T3, r(T4) = T0, etc. What happens when we apply r  

twice  in  a  row ? Clearly, r (r (T2)) = r (T3) = T4, r (r (T4)) = r (T0) = T1, 

and so on; we write r2(T2) = T4, r2(T4) = T1, and so on, and we notice 

that r 2 is a clockwise rotation by 2 × 720 = 1440, ‘rigorously’ 
defined via r2(Ts) = T(s+2)mod5. And likewise we can go on and define 

r3 and r4 as clockwise rotations by 3 × 720 = 2160 and 4×720 = 2880, 
respectively, subject to the rule, for l = 3 and l = 4, respectively, 
r l(Ts) = T(s+l)mod5. For example, for l = 3 and s = 4, (s+l)mod5 = 7mod5 

= 2, therefore r 3(T4) = T2, a result that you may certainly confirm 

geometrically  (by rotating T4 about K by a clockwise 2160).



All this extends naturally to the ‘n-wing windmill’ (of ‘blades’ 
T0, T1, ... , Tn−1), where the clockwise 3600/n rotation r  satisfies 

r l(Ts) = T(s+l)modn for all integers s, l between 0 and n−1. We may in 

fact extend this formula for all l ≥  n; for l = n , in particular, we 
notice that (s+n)modn = (s+0)modn, hence rn(Ts) = Ts for all s: that 

is, r n  = r0 = I is a ‘dead’ rotation (Identi ty  map ) that leaves all the 
‘blades’ unchanged. Moreover, we can easily compute the product  of 
the rotations r k  and r l (a clockwise rotation of l × 3600/n followed 
by a clockwise rotation by k × 3600/n) via r k ∗∗∗∗ r l(Ts) = r k (r l(Ts)) = 

r k (T(s+l)modn) = T(s+l+k)modn = r k+l (Ts); that is, r k ∗∗∗∗ r l = r(k+l)modn , due to 

(s+l+k)modn = (s+(l+k)modn)modn: please check! 

You may also verify this ‘rotation multiplication’ by adding  the  
angles  via l × 3600/n + k × 3600/n = (l+k) × 3600/n and noticing that 
a (l+k) × 3600/n rotation is the same as a ((l+k)modn) × 3600/n 
rotation. Moreover, you may certainly confirm this multiplication 
rule geometrically by returning to our ‘5-blade windmill’ and 
checking that, for example, the r 3 rotation of 2160 followed by the 
r 4 rotation of 2880 does indeed produce the r 2 rotation of 1440, 
precisely as (4+3)mod5 = 2 would predict!

The relations r n  = r0 = I and r k ∗∗∗∗ r l = r(k+l)modn  derived above 
define the cyclic group of order n , denoted by Cn : an algebraic 
structure whose elements are I, r, ..., rn −−−−1 and whose importance in 
Mathematics is inversely proportional to its simplicity! It is in fact 
a commutat ive  group: the order of ‘multiplication’ does not matter 
(r k ∗∗∗∗ r l  = rl*r k  = r(k+l )modn ). Its identity element is the ‘dead map’ 
(rotation) r n  = I we already discussed, and the inverse  of r l is 
simply r n −−−− l  (w i th  r l * r n −−−− l  = rn −−−− l * r l  = r0  = I) .

3.7.2 ‘Bisecting the daisies’. Let us now apply the notation of 
3.7.1 to the ‘leaves’ of that ‘5-petal daisy’ from figure 3.39, drawing 
its reflection axes (‘bisectors’) at the same time; we end up with 
the axis m s  bisecting ‘petal’ Ts for s = 1, 2, 3, 4, and with axis m 5 

bisecting ‘petal’ T0:



    
Fig. 3.41

In addition to the reflections, our ‘5-petal daisy’ has five 
rotations, including the trivial one, all ‘inherited’ from 3.7.1. In 
total, there are ten isometries mapping the daisy to itself: I, r , r 2, 
r 3, r 4, m 1, m 2, m 3, m 4, and m 5. Could these isometries possibly 

form a group? The answer would be “yes” if we could show that the 
product (successive application) of every two of them is still one of 
the ten isometries listed above, and that each one of the ten 
isometries has an inverse. Starting from the latter, recall (1.4.4) 
that every reflection is the inverse of itself, hence the inverse of 
m s  is m s  with m s ∗∗∗∗ m s = I for s = 1, ... , 5; moreover, the inverse of r l 

for l = 1, ... , 4 is r 5−−−− l (3.7.1), and I is of course the inverse of itself. 
Observe next that the product of every two rotations is indeed a 
rotation, with r k *r l  = rl*r k  = r(k+ l )mod5  (3.7.1), and same holds for 
the product of every two reflections (as we will see in section 7.2 
and as you could probably verify even now). Keeping the latter in 
mind and observing also that m t(Ts) = T(2t−s)mod5, let us now compute 

m t∗∗∗∗ m s(T0) = m t(m s(T0)) = m t(T(2s−0)mod5) = m t(T2smod5) = T(2t−2s)mod5 = 

r (2t −−−−2s)mod5 (T0) -- the last step follows from r k (T0) = Tk -- and 



conclude that m t ∗∗∗∗ m s = r(2t−−−−2s)mod5 : if two rotations  have the same 

effect on any one of the ‘petals’ (in this case T0) then they must be 

one and the same! ‘Multiplying’ both sides of the derived identity by 
m t  (from the left) and by m s  (from the right), we obtain, with some 

details omitted, the identities r l ∗∗∗∗ m s  = mk  (where 2k = 

(2s+l)mod5 )  and m t ∗∗∗∗ r l  = mk  (where 2k = (2t−−−− l )mod5 ), 

respectively. (You may not be able to derive the missing details right 
now, but you can certainly verify them geometrically : for l = 3 and 
s = 2, for example, k = 1 satisfies 2k = (2s+l)mod5, hence the 
product r 3 ∗∗∗∗ m 2 (reflection bisecting T2 followed by clockwise 2160 

rotation) ought to be m 1 (reflection bisecting T1), etc.)

Replacing 5 by any  odd  n , we can extend the results and 
formulas of the preceding paragraph to arbitrarily large groups of 2n 
elements (and yet very similar structure). For even  n  some slight 
modifications, as well as a ‘6-petal daisy’, are in order:

      
Fig. 3.42



Observe that our new ‘daisy’ is now bisected in two different 
ways, with some axes (m 2, m 4, m 6) cutting through ‘petals’ and 

other axes (m 1, m 3, m 5) passing right between ‘petals’. The effect 

of the reflections on the ‘petals’ is now somewhat different, with 
m t(Ts) = T(2t−s)mod5 replaced by m t(Ts) = T(t−s)mod6; that leads in turn 

to m t ∗∗∗∗ m s = r(t−−−−s)mod6 , as opposed to m t ∗∗∗∗ m s = r(2t−−−−2s)mod5 . At the 

same time, r k ∗∗∗∗ r l  = rl ∗∗∗∗ r k  = r(k+l)modn  (3.7.1) remains intact, while 
the other two kinds of products are in fact simplif ied : proceeding 
as in the preceding paragraph, we now establish r l∗∗∗∗ m s = m(s+l)mod6  

and m t ∗∗∗∗ r l = m(t−−−− l)mod6 . (Once again you should be able to verify 

these formulas geometrical ly ; for example, m 3 ∗∗∗∗ r 4 (clockwise 

4×3600/6 = 2400 rotation followed by ‘in-between’ bisection m 3) 

ought to be equal to m (3−−−−4)mod6  = m(−−−−1)mod6  = m5, another ‘in-

between’ bisection.) Notice that all formulas obtained in this 
paragraph for n = 6 can be easily modified for arbitrary  even  n .

To summarize, we have just proven, by going through two 
distinct cases (odd n and even n), that, for every n, the set of 2n 
isometries {I, r, ..., rn −−−−1, m 1, ... , m n } forms indeed a group  under 

composit ion  of  isometries , subject to the rules and formulas 
established in this section. This non-commutative  group, which 
contains Cn  as a subgroup , is well known in the literature as 
dihedral  group  of  order  2n, denoted by Dn . It may be shown -- 
see for example chapter 8 in George E. Martin’s Transformation  
Geometry: An  Introduction  to  Symmetry  (Springer, 1982) -- 
that every finite  group  of isometries in the plane must  be C n  or D n  
for some n: this result is attributed to none other than Leonardo da 
Vinci and is known as Leonardo’s  Theorem !

[How about infinite  such groups? Well, those are actually 
studied in chapters 2 and 4, but our approach tends to be informal 
and geometrical (even in chapter 8) rather than group-theoretic -- a 
group-theoretic approach is available in Martin’s book above, as well 
as in several Abstract  Algebra  texts, such as M. A. Armstrong’s 
Groups  and  Symmetry  (Springer, 1997), for example.] 
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