# TOTALLY REAL SURFACES IN THE COMPLEX 2-SPACE 

REIKO AIYAMA

## Introduction

Let $M$ be an immersed oriented surface in the complex 2 -space $\mathbb{C}^{2}=\left(\mathbb{R}^{4},\langle\rangle, J,\right)$, where $\mathbb{C}^{2}$ is identified with the real 4 -space $\mathbb{R}^{4}$, and $\langle$,$\rangle denotes the standard in-$ ner product and $J$ the standard almost complex structure on $\mathbb{R}^{4}$. A point $p$ in $M$ is called a complex point if the tangent space $T_{p} M$ is $J$-invariant. If there is no complex point on $M$, the surface $M$ is said to be totally real, and we obtain that $T_{p} M \oplus J T_{p} M=\mathbb{C}^{2}$ at each point $p \in M$. Especially, if $T_{p} M \perp J T_{p} M$ at each point $p \in M$, the surface $M$ is said to be Lagrangian.

In this article, we prove that any totally real conformal immersion from $M$ into $\mathbb{C}^{2}$ can be given merely by an algebraic combination of the components of a solution of a linear system of first order differential equations, which system is a specific Dirac-type equation on $M$. This equation and the combination are given by means of the Kähler angle function $\alpha: M \rightarrow(0, \pi)$ and the Lagrangian angle function $\beta: M \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ for the constructed totally real immersed surface $M$ in $\mathbb{C}^{2}$. Moreover, the pair of $\alpha$ and $\beta$ describes the self-dual part of the generalized Gauss map of the immersed surface $M$ in the Euclidean 4 -space $\left(\mathbb{R}^{4},\langle\rangle,\right)$.

This representation formula for the totally real surfaces in $\mathbb{C}^{2}$ gives a new method of constructing surfaces in $\mathbb{R}^{4}$. The particular known methods are the WeierstrassKenmotsu formulas for surfaces with prescribed mean curvature in $\mathbb{R}^{3}$ and $\mathbb{R}^{4}$ ([Ke1, Ke2]) and their spin versions ([Ko, KL]) (cf. [AA]). The spin versions of Weierstrass-Kenmotsu formulas represent conformal immersions of surfaces by integrating a combination of the components of solutions of a similar Dirac-type equation to ours. In [HR], Hélein and Romon have given such a Weierstrass type representation formula for Lagrangian surfaces in $\mathbb{C}^{2}$. We note that their method does not directly imply the following known result in [CM1]: Minimal Lagrangian orientable surfaces in $\mathbb{C}^{2}$ can be represented as holomorphic curves by exchanging the orthogonal complex structure on $\mathbb{R}^{4}$, however ours implies this fact as a simple corollary.

[^0]1. Angle functions on a surface in $\mathbb{C}^{2}$ and the generalized Gauss map

We consider $\mathbb{C}^{2}$ as the Euclidean 4 -space $\left(\mathbb{R}^{4},\langle\rangle,\right)$ with the orthonormal complex structure $J\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{3},-x_{4}, x_{1}, x_{2}\right)$, that is, a complex vector $\mathbf{x}=\left(x_{1}+\mathbf{i} x_{3}, x_{2}+\mathbf{i} x_{4}\right) \in \mathbb{C}^{2}$ is identified with the real vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$. Let $f: M \rightarrow \mathbb{C}^{2}$ be a conformal immersion from a Riemann surface $M$ into $\mathbb{C}^{2}$. For a given oriented orthonormal basis $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ of the tangent space $f_{*} T_{p} M$, we put

$$
\alpha\left(T_{p} M\right)=\cos ^{-1}\left\langle J \mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle .
$$

Then $\alpha\left(T_{p} M\right) \in[0, \pi]$ is independent of the choice of the oriented orthonormal basis of $f_{*} T_{p} M . \alpha(p)=\alpha\left(T_{p} M\right)$ is called the Kähler angle at $p \in M . f$ is totally real if and only if $0<\alpha<\pi$ at all point of $M$, and in this case $\alpha: M \rightarrow(0, \pi)$ is a smooth function. $f$ is Lagrangian if and only if $\alpha \equiv \pi / 2$. Regarding $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ as the complex column vectors in $\mathbb{C}^{2}$, we can obtain that $\left|\operatorname{det}\left(\mathbf{e}_{1}, \mathrm{e}_{2}\right)\right|=|\sin \alpha|$. Then, if $f$ is totally real, we can define a function $\beta: M \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ by, at $p \in M$,

$$
\mathbf{e}_{1} \wedge \mathbf{e}_{2}=e^{\mathbf{i} \beta(p)} \sin \alpha(p) \mathbf{e}_{1}^{C} \wedge \mathbf{e}_{2}^{C}
$$

where $\mathbf{e}_{1}^{C}=(1,0), \mathbf{e}_{2}^{C}=(0,1) \in \mathbb{C}^{2}$. We call $\beta$ the Lagrangian angle function for $f$.

Regarding $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ as the real vectors in $\mathbb{R}^{4}$, we can define the normalization of the real wedge product $\mathrm{e}_{1} \wedge \mathrm{e}_{2}$ and identify it with the real 2-subspace $\mathcal{G}(p)$ parallel to the tangent plane $f_{*} T_{p} M$ in $\mathbb{R}^{4}$. So we obtain the generalized Gauss map $\mathcal{G}: M \rightarrow G_{2,2}$ of the immersed surface in $\mathbb{R}^{4}$, where $G_{2,2}$ stands for the Grassmann manifold of oriented 2-planes in $\mathbb{R}^{4}$. According to the direct sum decomposition of the real wedge product space $\Lambda^{2}\left(\mathbb{R}^{4}\right)$ between the self-dual subspace $\Lambda_{+}^{2}$ and the anti-self-dual subspace $\bigwedge_{-}^{2}, \mathcal{G}$ can be decomposed into the self-dual part $\mathcal{G}_{+}$and the anti-self dual part $\mathcal{G}_{-}$. We consider each of the real 3 -spaces $\bigwedge_{ \pm}^{2}$ as the Euclidean 3 -subspace $\mathbb{R}^{3}$ in $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ defined by $x_{1}=0$, identifying the basis $\left\{E_{1}^{ \pm}, E_{2}^{ \pm}, E_{3}^{ \pm}\right\}$ of $\bigwedge_{ \pm}^{2}$ with the standard basis $\left\{\mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ of $\mathbb{R}^{3}$, where

$$
\begin{aligned}
& E_{1}^{ \pm}=\frac{1}{2}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2} \mp \mathbf{e}_{3} \wedge \mathbf{e}_{4}\right), \quad E_{2}^{ \pm}=\frac{1}{2}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{3} \pm \mathbf{e}_{2} \wedge \mathbf{e}_{4}\right), \\
& E_{3}^{ \pm}=\frac{1}{2}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{4} \pm \mathbf{e}_{3} \wedge \mathbf{e}_{2}\right), \\
& \mathbf{e}_{1}=(1,0,0,0), \cdots, \mathbf{e}_{4}=(0,0,0,1) \in \mathbb{R}^{4} .
\end{aligned}
$$

Then $\mathcal{G}_{+}$and $\mathcal{G}_{-}$are maps from $M$ to the unit 2 -sphere $S^{2}$ in the real 3 -space $\mathbb{R}^{3}$.
Proposition 1. For a totally real immersed oriented surface $M$ in $\mathbb{C}^{2}$, the self-dual part $\mathcal{G}_{+}$of the generalized Gauss map can be represented in terms of the Kähler angle function $\alpha$ and the Lagrangian angle function $\beta$ as follows:

$$
\mathcal{G}_{+}=\left(\mathbf{i} \cos \alpha, e^{\mathbf{i} \beta} \sin \alpha\right): M \rightarrow S^{2} \subset \mathbb{C}^{2} .
$$

This proposition follows from the framing method below.

Assume $f: M \rightarrow \mathbb{C}^{2}$ is totally real conformal immersion with the Kähler angle $\alpha: M \rightarrow(0, \pi)$ and the Lagrangian angle $\beta: M \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$. Let $\left\{e_{1}, e_{2}\right\}$ be an oriented orthonormal tangent frame defined on a neighborhood $U$ in the immersed surface $M$ in $\mathbb{R}^{4}$. Then we can choose a local orthonormal normal frame $\left\{e_{3}, e_{4}\right\}$ on $U$ such that

$$
\begin{equation*}
e_{3}=\frac{1}{\sin \alpha}\left(J e_{1}-(\cos \alpha) e_{2}\right), \quad e_{4}=\frac{1}{\sin \alpha}\left(J e_{2}+(\cos \alpha) e_{1}\right) \tag{1.1}
\end{equation*}
$$

Since the identity component $\operatorname{Isom}_{0}\left(\mathbb{R}^{4}\right)$ of the isometry group of $\mathbb{R}^{4}$ acts transitively also on the oriented orthonormal frame bundle on $\mathbb{R}^{4}$, we can take a smooth map $\mathcal{E}: U \rightarrow \operatorname{Isom}_{0}\left(\mathbb{R}^{4}\right)$ such that $f=\mathcal{E} \cdot \mathbf{0}, e_{a}=\mathcal{E} \cdot \mathbf{e}_{a}-f(a=1,2,3,4)$. We call this map $\mathcal{E}$ the adapted framing of $f$. Making the most of the complex structure on $\mathbb{C}^{2}$ and $M$, we will use the Lie group $G=\mathbb{R}^{4} \rtimes(S U(2) \times S U(2))$ instead of $\operatorname{Isom}_{0}\left(\mathbb{R}^{4}\right)=G / \mathbb{Z}_{2}$. Identify $\mathbb{C}^{2}$ with the linear hull $\mathbb{R} \cdot S U(2)$ of the special unitary group $S U(2)$ by the map

$$
\mathbf{x}=\left(x_{1}^{C}, x_{2}^{C}\right)=\left(x_{1}+\mathbf{i} x_{3}, x_{2}+\mathbf{i} x_{4}\right) \mapsto \underline{\mathbf{x}}=\left(\begin{array}{cc}
x_{1}^{C} & \overline{-\overline{x_{2}^{C}}} \\
x_{2}^{C} & \overline{x_{1}^{C}}
\end{array}\right) .
$$

So the standard vectors $\mathbf{e}_{a}(a=1,2,3,4)$ in $\mathbb{R}^{4}$ corresponds the following matrices:

$$
\underline{\mathbf{e}_{1}}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=: \mathbf{I}, \quad \underline{\mathbf{e}_{2}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \underline{\mathbf{e}_{3}}=\left(\begin{array}{cc}
\mathbf{i} & 0 \\
0 & -\mathbf{i}
\end{array}\right)=: \mathbf{J}, \quad \underline{\mathbf{e}_{4}}=\left(\begin{array}{cc}
0 & \mathbf{i} \\
\mathbf{i} & 0
\end{array}\right) .
$$

$G$ acts isometrically and transitively on $\mathbb{C}^{2}$ by

$$
\underline{\mathrm{g} \cdot \mathbf{x}}=\mathrm{g}_{1} \underline{\mathrm{x}}_{2}^{*}+\underline{\mathbf{v}} \quad\left(\mathrm{g}=\left(\mathbf{v},\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right)\right) \in G=\mathbb{R}^{4} \rtimes(S U(2) \times S U(2))\right)
$$

Now we can take the adapted framing $\mathcal{E}: U \rightarrow G=\mathbb{R}^{4} \rtimes(S U(2) \times S U(2))$ of $f$ as follows:

$$
\begin{equation*}
\mathcal{E}=\left(f,\left(\mathcal{E}_{-}, \mathcal{E}_{+}\right)\right) \quad \text { such that } \quad \underline{e_{a}}=\mathcal{E}_{-} \underline{\mathbf{e}_{a}} \mathcal{E}_{+}^{*}(a=1,2,3,4) . \tag{1.2}
\end{equation*}
$$

The complex structure $J\left(\in \operatorname{Isom}_{0}\left(\mathbb{R}^{4}\right)\right)$ corresponds the action of $(\mathbf{0}, \pm(\mathbf{I}, \mathbf{J})) \in G$. We remark that $e_{i+2}=J \cdot\left(\mathcal{E} \cdot \underline{\mathbf{e}_{i}}\right)=\mathcal{E} \cdot\left(J \cdot \underline{\mathbf{e}_{i}}\right)(i=1,2)$. This fact implies that $\mathcal{E}_{+}$ can be written as follows and hence it is defined globally:

$$
\mathcal{E}_{+}=\left(\begin{array}{cc}
e^{-\mathbf{i} \beta / 2} \cos (\alpha / 2) & -\mathbf{i} e^{-\mathbf{i} \beta / 2} \sin (\alpha / 2)  \tag{1.3}\\
-\mathbf{i} e^{\mathbf{i} \beta / 2} \sin (\alpha / 2) & e^{\mathbf{i} \beta / 2} \cos (\alpha / 2)
\end{array}\right) T
$$

where

$$
T:=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & \mathbf{i} \\
\mathbf{i} & 1
\end{array}\right) \in S U(2)
$$

and moreover $(\mathbf{0},(T, T)) \in G$ acts on $\mathbb{C}^{2}$ as

$$
T \underline{\mathbf{e}_{1}} T^{*}=\underline{\mathbf{e}_{1}}, T \underline{\mathbf{e}_{2}} T^{*}=\underline{\mathbf{e}_{3}}, T \underline{\mathbf{e}_{3}} T^{*}=-\underline{\mathbf{e}_{2}}, T \underline{\mathbf{e}_{4}} T^{*}=\underline{\mathbf{e}_{4}} .
$$

Now, we can show that the generalized Gauss map $\mathcal{G}=\left(\mathcal{G}_{+}, \mathcal{G}_{-}\right): M \rightarrow S^{2} \times S^{2}$ of $f$ is represented as

$$
\mathcal{G}_{ \pm}=\left[\left(e_{1} \wedge e_{2}\right)^{ \pm}\right]=\left(\mathcal{E}_{ \pm} T^{*}\right) \underline{\mathbf{e}_{3}}\left(\mathcal{E}_{ \pm} T^{*}\right)^{*}: M \rightarrow S^{2} \subset \mathbb{R}^{3} \cong \mathfrak{s u}(2)
$$

Moreover, regarding $S^{2}$ as the extended complex plane $\widehat{\mathbb{C}}$ by the stereographic projection from the north pole $\mathbf{e}_{3} \in S^{2}$, we represent them as

$$
\mathcal{G}_{ \pm}=\frac{P_{ \pm}}{Q_{ \pm}}: M \rightarrow \hat{\mathbb{C}}, \quad \text { where } \quad \mathcal{E}_{ \pm} T^{*}=\left(\begin{array}{cc}
P_{ \pm} & -\overline{Q_{ \pm}} \\
Q_{ \pm} & \overline{P_{ \pm}}
\end{array}\right) \quad\left(\left|P_{ \pm}\right|^{2}+\left|Q_{ \pm}\right|^{2}=1\right)
$$

Then we can obtain $\mathcal{G}_{+}=\mathbf{i} e^{\mathbf{i} \beta} \cot (\alpha / 2)$.
We also represent $\mathcal{G}_{ \pm}$by means of the complex projective line $\mathbb{C} P^{1} \cong S^{2}$ as

$$
\mathcal{G}_{ \pm}=\left[P_{ \pm} ; Q_{ \pm}\right]: M \rightarrow \mathbb{C} P^{1}
$$

Remark. For a totally real immersed surface $M$ in $\mathbb{C}^{2}$, we can define a map $\mathcal{G}_{0}$ : $M \rightarrow S^{1}$ by $\mathcal{G}_{0}=e^{\mathrm{i} \beta}$, where $\beta$ is the Lagrangian angle. Let $\Omega$ be the volume form of $S^{1}$. The Maslov form defined in [CM2] and [B] coincides with the 1-form $\Phi=\left(\mathcal{G}_{0}\right)^{*} \Omega=(1 / 2 \pi) d \beta$. The Maslov class is the first cohomology class defined by $[\Phi] \in H^{1}(M ; \mathbb{Z})$.

## 2. Representation formula for totally real surfaces in $\mathbb{C}^{2}$

Now we give the representation formula of the totally real surfaces in $\mathbb{C}^{2}$.
Theorem. Let $M$ be a Riemann surface with an isothermal coordinate $z=x+\mathbf{i} y$. Given two smooth functions $\alpha: M \rightarrow(0, \pi)$ and $\beta: M \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$, put

$$
U_{ \pm}=\frac{1}{2}\left(\mathbf{i} \alpha_{z} \pm \beta_{z} \sin \alpha\right), \quad V=\frac{1}{2} \mathbf{i} \beta_{z} \cos \alpha
$$

Let $F=\left(F_{1}, F_{2}\right): M \rightarrow \mathbb{C}^{2}$ be a solution of the Dirac-type equation

$$
\left(\begin{array}{cc}
0 & \partial_{z}  \tag{2.1}\\
-\partial_{\bar{z}} & 0
\end{array}\right)\left(\begin{array}{l}
\frac{F_{1}}{F_{2}}
\end{array}\right)=\left(\begin{array}{cc}
U_{+} & V \\
-\bar{V} & \overline{U_{+}}
\end{array}\right)\left(\frac{F_{1}}{F_{2}}\right),
$$

and define a smooth map $S=\left(S_{1}, S_{2}\right): M \rightarrow \mathbb{C}^{2}$ as follows:

$$
\binom{S_{1}}{S_{2}}=\left[\left(\begin{array}{cc}
0 & \partial_{z} \\
-\partial_{\bar{z}} & 0
\end{array}\right)+\left(\begin{array}{cc}
U_{-} & V \\
-\bar{V} & \overline{U_{-}}
\end{array}\right)\right]\binom{\overline{F_{1}}}{F_{2}} .
$$

If $S$ does not vanish on $M$, the following functions

$$
\begin{aligned}
f_{1}+\mathbf{i} f_{3} & =\exp (\mathbf{i} \beta / 2)\left[\cos (\alpha / 2) F_{1}-\mathbf{i} \sin (\alpha / 2) \overline{F_{2}}\right] \\
f_{2}+\mathbf{i} f_{4} & =\exp (\mathbf{i} \beta / 2)\left[\cos (\alpha / 2) F_{2}+\mathbf{i} \sin (\alpha / 2) \overline{F_{1}}\right]
\end{aligned}
$$

define a conformal immersion $f=\left(f_{1}+\mathbf{i} f_{3}, f_{2}+\mathbf{i} f_{4}\right): M \rightarrow \mathbb{C}^{2}$ with the Kähler angle $\alpha$ and the Lagrangian angle $\beta$. The induced metric on $M$ by $f$ takes the form

$$
f^{*} d s^{2}=e^{2 \lambda}|d z|^{2}, \quad e^{2 \lambda}=\left|S_{1}\right|^{2}+\left|S_{2}\right|^{2}
$$

and the anti-self-dual part $\mathcal{G}_{-}$of the generalized Gauss map is given by

$$
\mathcal{G}_{-}=\left[-S_{2} ; S_{1}\right]\left(=-S_{2} / S_{1}\right): M \rightarrow S^{2} \cong \mathbb{C} P^{1}(\cong \hat{\mathbb{C}})
$$

Conversely, every totally real conformal immersion $f: M \rightarrow \mathbb{C}^{2}$ with the Kähler angle $\alpha$ and the Lagrangian angle $\beta$ is congruent with the one constructed as above.

Proof. For a totally real conformal immersion $f: M \rightarrow \mathbb{C}^{2}$ with the Kähler angle $\alpha$ and the Lagrangian angle $\beta$, we can define the smooth map $F=\left(F_{1}, F_{2}\right): M \rightarrow \mathbb{C}^{2}$ by

$$
\underline{F}=\left(\begin{array}{cc}
F_{1} & -\overline{F_{2}}  \tag{2.2}\\
F_{2} & \overline{F_{1}}
\end{array}\right):=\underline{f}\left(\mathcal{E}_{+} T^{*}\right),
$$

where $\mathcal{E}_{+}$is given by (1.3).
Let $\left\{\omega^{1}, \omega^{2}\right\}$ be the dual coframe for $\left\{e_{1}, e_{2}\right\}$, and put $\phi=\omega^{1}+\mathbf{i} \omega^{2}$. Locally we choose the isothermal coordinate $z=x+\mathbf{i} y$ on $M$ such that $f_{x}=e^{\lambda} e_{1}$ and $f_{y}=e^{\lambda} e_{2}$. Hence $\phi=e^{\lambda} d z$ and the induced metric on $M$ by $f$ is given by $f^{*} d s^{2}=\phi \cdot \bar{\phi}=e^{2 \lambda}|d z|^{2}$. We compute that

$$
\begin{aligned}
& d \underline{f}=\underline{e_{1}} \omega^{1}+\underline{e_{2}} \omega^{2}=\mathcal{E}_{-} \underline{\mathbf{e}_{1}} \mathcal{E}_{+}^{*} \omega^{1}+\mathcal{E}_{-} \underline{\mathbf{e}_{2}} \mathcal{E}_{+}^{*} \omega^{2}=\mathcal{E}_{-} T^{*}\left(\underline{\mathbf{e}_{1}} \omega^{1}+\underline{\mathbf{e}_{3}} \omega^{2}\right) T \mathcal{E}_{+}^{*} \\
& =\mathcal{E}_{-} T^{*}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) T \mathcal{E}_{+}^{*} \phi+\mathcal{E}_{-} T^{*}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) T \mathcal{E}_{+}^{*} \bar{\phi}, \\
& (d \underline{f}) \mathcal{E}_{+} T^{*}=\left(\begin{array}{cc}
P_{-} & 0 \\
Q_{-} & 0
\end{array}\right) \phi+\left(\begin{array}{cc}
0 & \overline{Q_{-}} \\
0 & \overline{P_{-}}
\end{array}\right) \bar{\phi}, \\
& d \underline{F}=\left(\begin{array}{ll}
\left(F_{1}\right)_{z} & * \\
\left(F_{2}\right)_{z} & *
\end{array}\right) d z+\left(\begin{array}{ll}
\left(F_{1}\right)_{\bar{z}} & * \\
\left(F_{2}\right)_{\bar{z}} & *
\end{array}\right) d \bar{z} \\
& =d \underline{f}\left(\mathcal{E}_{+} T^{*}\right)+\underline{f} d\left(\mathcal{E}_{+} T^{*}\right)=d \underline{f}\left(\mathcal{E}_{+} T^{*}\right)+\underline{F}\left(\mathcal{E}_{+} T^{*}\right)^{-1} d\left(\mathcal{E}_{+} T^{*}\right) \text {, } \\
& \left(\mathcal{E}_{+} T^{*}\right)^{-1} d\left(\mathcal{E}_{+} T^{*}\right)=-\left(\begin{array}{cc}
V & U_{+} \\
U_{-} & -V
\end{array}\right) d z+\left(\begin{array}{cc}
\bar{V} & \overline{U_{-}} \\
U_{+} & -\bar{V}
\end{array}\right) d \bar{z}, \quad \text { and } \\
& d \underline{F}=\left(\begin{array}{ll}
P_{-} e^{\lambda}-V F_{1}+U_{-} \overline{F_{2}} & * \\
Q_{-} e^{\lambda}-V F_{2}-U_{-} \overline{F_{1}} & *
\end{array}\right) d z+\left(\begin{array}{ll}
\bar{V} F_{1}-\overline{U_{+} F_{2}} & * \\
\bar{V} F_{2}+\overline{U_{+} F_{1}} & *
\end{array}\right) d \bar{z} .
\end{aligned}
$$

Then we obtain that

$$
\begin{aligned}
& \left(F_{1}\right)_{\bar{z}}=\bar{V} F_{1}-\overline{U_{+} F_{2}}, \quad\left(F_{2}\right)_{\bar{z}}=\overline{U_{+} F_{1}}+\bar{V} F_{2} \\
& \left(F_{1}\right)_{z}=P_{-} e^{\lambda}-V F_{1}+U_{-} \overline{F_{2}}, \quad\left(F_{2}\right)_{z}=Q_{-} e^{\lambda}-U_{-} \overline{F_{1}}-V F_{2}
\end{aligned}
$$

Put $S_{1}=Q_{-} e^{\lambda}$ and $S_{2}=-P_{-} e^{\lambda}$, then we have

$$
\begin{align*}
& S_{1}=\left(F_{2}\right)_{z}+U_{-} \overline{F_{1}}+V F_{2}\left(=e^{-\mathbf{i} \beta}\left(f_{2}+\mathbf{i} f_{4}\right)_{z} / \cos (\alpha / 2)\right) \\
& S_{2}=-\left(F_{1}\right)_{z}-V F_{1}+U_{-} \overline{F_{2}}\left(=-e^{-\mathbf{i} \beta}\left(f_{1}+\mathbf{i} f_{3}\right)_{z} / \cos (\alpha / 2)\right) \tag{2.4}
\end{align*}
$$

This completes the proof of Theorem.
Moreover, we obtain the following

Proposition 2. The spinor representation $S=\left(S_{1}, S_{2}\right): M \rightarrow \mathbb{C}^{2}$ of $\mathcal{G}_{-}: M \rightarrow$ $S^{2}$, which is defined by (2.4), satisfies the Dirac-type equation

$$
\left(\begin{array}{cc}
0 & \partial_{z}  \tag{2.5}\\
-\partial_{\bar{z}} & 0
\end{array}\right)\binom{S_{1}}{S_{2}}=\left(\begin{array}{cc}
\overline{U_{-}} & V \\
-\bar{V} & U_{-}
\end{array}\right)\binom{S_{1}}{S_{2}}
$$

Remark. For a Lagrangian conformal immersed surface in $\mathbb{C}^{2}$ with the Lagrangian angle $\beta$, we obtain that $V \equiv 0$ and $U_{ \pm}= \pm \beta_{z} / 2$. Hence the Dirac-type equations (2.1) and (2.5) are the same as the Davey-Stewartson linear problem appeared in the Konopelchenko's representation for surfaces in $\mathbb{R}^{4}([\mathrm{KL}])$. For the explicit representation formula of Lagrangian immersed surfaces in $\mathbb{C}^{2}$, see also [A]. The Hélein-Romon's representation formula for Lagrangian surfaces in $\mathbb{C}^{2}([\mathrm{HR}])$ corresponds to the method of constructing a surface by integrating a combination of the components of a solution $S$ of the Dirac-type equation (2.5).

Here we give a simple example.
Example (Clifford torus). The rectangular torus $T=\mathbb{C} /\left(a_{1} \mathbb{Z} \oplus \mathbf{i} a_{2} \mathbb{Z}\right)$ is conformally embedded in $\mathbb{C}^{2}$ as the product of circles by the map

$$
f(x+\mathbf{i} y)=\left(\mathbf{i} a_{1} e^{2 \pi \mathbf{i} x / a_{1}}, \mathbf{i} a_{2} e^{2 \pi \mathbf{i} y / a_{2}}\right)
$$

(When $a_{1}=a_{2}=1$, it is called the Clifford torus.) It is well known that this torus in $\mathbb{R}^{4}$ is flat and has parallel mean curvature vector. Moreover, it is a Lagrangian surface with the Lagrangian angle $\beta=2 \pi\left(x / a_{1}+y / a_{2}\right)$, and hence the Maslov class $(1,1) \in H^{1}(T ; \mathbb{Z}) \cong \mathbb{Z}^{2}$. So this immersion $f$ corresponds to the solution

$$
F=\left(F_{1}, F_{2}\right)=(1 / \sqrt{2})\left(a_{2}+\mathbf{i} a_{1}\right)\left(e^{\pi \mathbf{i}\left(x / a_{2}-y / a_{1}\right)}, \mathbf{i} e^{-\pi \mathbf{i}\left(x / a_{2}-y / a_{1}\right)}\right)
$$

of the Dirac-type equation

$$
\left(\begin{array}{cc}
0 & \partial_{z} \\
-\partial_{\bar{z}} & 0
\end{array}\right)\left(\frac{F_{1}}{F_{2}}\right)=\left(\begin{array}{cc}
\frac{\pi}{2}\left(\frac{1}{a_{1}}-\mathbf{i} \frac{1}{a_{2}}\right) & 0 \\
0 & \frac{\pi}{2}\left(\frac{1}{a_{1}}+\mathbf{i} \frac{1}{a_{2}}\right)
\end{array}\right)\left(\frac{F_{1}}{F_{2}}\right) .
$$

## 3. Curvatures of totally real surfaces in $\mathbb{C}^{2}$

Let $f: M \rightarrow \mathbb{C}^{2}$ be a totally real conformal immersion with the Kähler angle $\alpha$ and the Lagrangian angle $\beta$, and let $\mathcal{E}=\left(f,\left(\mathcal{E}_{-}, \mathcal{E}_{+}\right)\right): M \rightarrow G=\mathbb{R}^{4} \rtimes(S U(2) \times$ $S U(2))$ be the adapted framing of $f$ as in (1.2) and (1.3). The Gauss-Weingarten equation of the immersed surface in $\mathbb{R}^{4}$ is given by the pull-back of the MaurerCartan form on the Lie group $G$ by $\mathcal{E}$, and hence described as follows:

$$
\begin{aligned}
\mathcal{E}_{-}^{-1} d \mathcal{E}_{-} & =\frac{1}{2}\left(\begin{array}{cc}
\mathbf{i}\left(\omega_{1}^{3}-\omega_{2}^{4}\right) & -\left(\omega_{3}^{4}+\omega_{1}^{2}\right)+\mathbf{i}\left(\omega_{2}^{3}+\omega_{1}^{4}\right) \\
\left(\omega_{3}^{4}+\omega_{1}^{2}\right)+\mathbf{i}\left(\omega_{2}^{3}+\omega_{1}^{4}\right) & -\mathbf{i}\left(\omega_{1}^{3}-\omega_{2}^{4}\right)
\end{array}\right), \\
\mathcal{E}_{+}^{-1} d \mathcal{E}_{+} & =\frac{1}{2}\left(\begin{array}{cc}
-\mathbf{i}\left(\omega_{1}^{3}+\omega_{2}^{4}\right) & -\left(\omega_{3}^{4}-\omega_{1}^{2}\right)+\mathbf{i}\left(\omega_{2}^{3}-\omega_{1}^{4}\right) \\
\left(\omega_{3}^{4}-\omega_{1}^{2}\right)+\mathbf{i}\left(\omega_{2}^{3}-\omega_{1}^{4}\right) & \mathbf{i}\left(\omega_{1}^{3}+\omega_{2}^{4}\right)
\end{array}\right),
\end{aligned}
$$

where $\omega_{b}^{a}$ are the connection forms on $M$ defined by $\omega_{b}^{a}=\left\langle e_{a}, \bar{\nabla} e_{b}\right\rangle$ for the LeviCivita connection of $\left(\mathbb{R}^{4},\langle\rangle,\right)$. Moreover, from (1.1), we obtain that

$$
\begin{equation*}
\omega_{3}^{4}=\omega_{1}^{2}-\cot \alpha\left(\omega_{1}^{3}+\omega_{2}^{4}\right), \quad \omega_{2}^{3}=\omega_{1}^{4}-d \alpha \tag{3.1}
\end{equation*}
$$

Hence the Gauss-Weingarten equation of the totally real immersed surface in $\mathbb{C}^{2}$ is written as the following matrix equation

$$
\begin{align*}
\mathcal{E}_{-}^{-1} d \mathcal{E}_{-} & =T^{*}\left(\begin{array}{cc}
\mathbf{i}(\rho-\cot \alpha \eta) & -\bar{\psi} \\
\psi & -\mathbf{i}(\rho-\cot \alpha \eta)
\end{array}\right) T,  \tag{3.2}\\
\mathcal{E}_{+}^{-1} d \mathcal{E}_{+} & =T^{*}\left(\begin{array}{cc}
-\mathbf{i} \cot \alpha \eta & -\eta-(\mathbf{i} / 2) d \alpha \\
\eta-(\mathbf{i} / 2) d \alpha & \mathbf{i} \cot \alpha \eta
\end{array}\right) T \tag{3.3}
\end{align*}
$$

where $\rho=\omega_{1}^{2}, \psi=(1 / 2)\left\{\left(\omega_{2}^{4}-\omega_{1}^{3}\right)+\mathbf{i}\left(\omega_{1}^{4}+\omega_{2}^{3}\right)\right\}$ and $\eta=(1 / 2)\left(\omega_{1}^{3}+\omega_{2}^{4}\right)$. Combining (2.3) with (3.3), we obtain

$$
\begin{equation*}
\eta=\frac{1}{2} \sin \alpha d \beta . \tag{3.4}
\end{equation*}
$$

The second fundamental form of $f$ is given by

$$
\Pi=h_{i j}^{3} \omega^{i} \otimes \omega^{j} \otimes e_{3}+h_{i j}^{4} \omega^{i} \otimes \omega^{j} \otimes e_{4}
$$

where $h_{i j}^{3}=\omega_{i}^{3}\left(e_{j}\right)=\omega_{j}^{3}\left(e_{i}\right)$ and $h_{i j}^{4}=\omega_{i}^{4}\left(e_{j}\right)=\omega_{j}^{4}\left(e_{i}\right)(i, j=1,2)$. Moreover, from the second equation in (3.1), these components satisfy

$$
h_{11}^{4}=h_{12}^{3}+d \alpha\left(e_{1}\right), \quad h_{12}^{4}=h_{22}^{3}+d \alpha\left(e_{2}\right)
$$

Put $h^{3}=(1 / 2)\left(h_{11}^{3}+h_{22}^{3}\right)$ and $h^{4}=(1 / 2)\left(h_{11}^{4}+h_{22}^{4}\right)$. The mean curvature vector $\vec{H}$ of $f$ is given by

$$
\vec{H}=h^{3} e_{3}+h^{4} e_{4}=\frac{1}{2}\left(h^{3}+\mathbf{i} h^{4}\right)\left(e_{3}-\mathbf{i} e_{4}\right)+\frac{1}{2}\left(h^{3}-\mathbf{i} h^{4}\right)\left(e_{3}+\mathbf{i} e_{4}\right) .
$$

The 1 -form $\eta$ is also given by

$$
\begin{align*}
\eta & =\frac{1}{2}\left(h_{11}^{3}+h_{21}^{4}\right) \omega^{1}+\frac{1}{2}\left(h_{12}^{3}+h_{22}^{4}\right) \omega^{2} \\
& =h^{3} \omega^{1}+h^{4} \omega^{2}+\frac{1}{2}\left\{d \alpha\left(e_{2}\right) \omega^{1}-d \alpha\left(e_{1}\right) \omega^{2}\right\}  \tag{3.5}\\
& =\frac{1}{2}\left\{\left(h^{3}-\mathbf{i} h^{4}\right) \phi+\left(h^{3}+\mathbf{i} h^{4}\right) \bar{\phi}\right\}+\frac{\mathbf{i}}{2}\left\{\alpha_{z} d z-\alpha_{\bar{z}} d \bar{z}\right\} .
\end{align*}
$$

From (3.4) and (3.5), we obtain that $h^{3}-\mathbf{i} h^{4}=-2 e^{-\lambda} U_{-}$. Namely, the mean curvature vector $\vec{H}$ has the representation of

$$
\vec{H}=\mathbf{i} e^{-2 \lambda}\left\{-\overline{U_{-}} \cot (\alpha / 2) f_{z}+U_{-} \tan (\alpha / 2) f_{\bar{z}}\right\}
$$

and the mean curvature $H=|\vec{H}|$ is given by

$$
H=2 e^{-\lambda}\left|U_{-}\right|
$$

It follows from (3.2) combined with

$$
\mathcal{E}_{+} T^{*}=e^{-\lambda}\left(\begin{array}{cc}
-S_{2} & -\overline{S_{1}} \\
S_{1} & -\overline{S_{2}}
\end{array}\right)
$$

that

$$
\psi=e^{-2 \lambda}\left(S_{1} d S_{2}-S_{2} d S_{1}\right)
$$

$$
\begin{aligned}
& \rho=\frac{1}{2}\left\{(\cos \alpha) d \beta-\mathbf{i} e^{-2 \lambda}\left(\overline{S_{1}} d S_{1}+\overline{S_{2}} d S_{2}-S_{1} d \overline{S_{1}}-S_{2} d \overline{S_{2}}\right)\right\}, \\
& d \rho=-\frac{1}{2}(\sin \alpha) d \alpha \wedge d \beta+\mathbf{i} \psi \wedge \bar{\psi} .
\end{aligned}
$$

We note that the $(0,1)$-part $\psi^{\prime \prime} d \bar{z}$ of $\psi=\psi^{\prime} d z+\psi^{\prime \prime} d \bar{z}$ coincides with $-(1 / 2)\left(h^{3}-\right.$ $\left.\mathbf{i} h^{4}\right) \bar{\phi}=U_{-} d \bar{z}$. The Gauss curvature $K$ of $f$ is given by $d \rho=-(\mathbf{i} / 2) K \phi \wedge \bar{\phi}$, and hence

$$
K=-e^{-2 \lambda}\left\{\mathbf{i}\left(\alpha_{z} \beta_{\bar{z}}-\alpha_{\bar{z}} \beta_{z}\right) \sin \alpha+2\left(\left|\psi^{\prime}\right|^{2}-\left|\psi^{\prime \prime}\right|^{2}\right)\right\} .
$$

Proposition 3. If a totally real immersed oriented surface $M$ in $\mathbb{C}^{2}$ is minimal, the Kähler angle $\alpha$ and Lagrangian angle $\beta$ satisfies the partial differential equation

$$
\mathbf{i} \alpha_{z}-\beta_{z} \sin \alpha=0
$$

and hence the Gauss curvature is given by

$$
K=-2 e^{-2 \lambda}\left(\left|\alpha_{z}\right|^{2}+\left|\psi^{\prime}\right|^{2}\right)
$$

Corollary. If a totally real immersed oriented surface $M$ in $\mathbb{C}^{2}$ with either constant Kähler angle or constant Lagrangian angle is minimal, then the other angle is also constant and the map $F=\left(F_{1}, F_{2}\right): M \rightarrow \mathbb{C}^{2}$ defined as in (2.2) is holomorphic. Namely, such a surface can be represented as a holomorphic curve by exchanging the orthogonal complex structure on $\mathbb{R}^{4}$.

So, this corollary implies the known result for minimal Lagrangian surfaces in $\mathbb{C}^{2}$ mentioned as in Introduction (Chen-Morvan [CM1]).

## References

[A] R. Aiyama, Lagrangian surfaces in the complex 2-space, to appear in Proceedings of the 5th International Workshops on Differential Geometry, Kyungpook National Univ., Korea, 2000.
[AA] R. Aiyama and K. Akutagawa, Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3-sphere, Tohoku Math. J. 52 (2000), 95-105.
[B] V. Borrelli, Maslov form and $J$-volume of totally real immersions, J. Geom. Phys. 25(1998), 271-290.
[CM1] B.-Y. Chen and J.-M. Morvan, Geometrie des surfaces lagrangiennes de $\mathbb{C}^{2}$, J. Maht. Pures Appl. 66 (1987), 321-325.
[CM2] B.-Y. Chen and J.-M. Morvan, A cohomology class for totally real surfaces in $\mathbb{C}^{2}$, Japan. J. Math. 21 (1995), 189-205.
[HR] F. Hélein and P. Romon, Weierstrass representation of Lagrangian surfaces in fourdimensional space using spinors and quaternions, Comment. Math. Helv. 75 (2000), 668680.
[Ke1] K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 89-99.
[Ke2] K. Kenmotsu, The mean curvature vector of surfaces in $R^{4}$, Bull. London Math. Soc. 19 (1987), 458-462.
[Ko] B. B. Konopelchenko, Induced surfaces and their integrable dynamics, Stud. Appl. Math. 96 (1996), 9-51.
[KL] B. B. Konopelchenko and G. Landolfi, Induced surfaces and their integrable dynamics II. Generalized Weierstrass representations in 4D spaces and deformations via DS hierarchy, preprint (arXiv:math.DG/9810138).

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan
E-mail address: aiyama@sakura.cc.tsukuba.ac.jp


[^0]:    Received by the editors October, 2000. Revised version: May, 2001.
    This research was partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan, No. 11740034.

