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STRUCTURE OF GEODESICS IN A 13-DIMENSIONAL GROUP
OF HEISENBERG TYPE

ZDENĚK DUŠEK

Abstract. A g.o. space is a homogeneous Riemannian manifold (G/H, g) on

which every geodesic is an orbit of a one-parameter subgroup of the group G.
Each g.o. space can be characterized by the degree of certain rational map

called ”geodesic graph”, which is linear in the naturally reductive case and
non-linear otherwise. For a g.o. space which is not naturally reductive we try

to find a geodesic graph of ”minimal” degree.

Up to now only geodesic graphs of degree zero or two were observed. Here
we study the generalized Heisenberg group (in the sense of A. Kaplan) of
dimension 13 and with 5-dimensional center, which gives a new interesting

example of a g.o. space for which the degree of the canonical geodesic graph
is equal to six.

1. Introduction

Let (M, g) be a connected Riemannian manifold and let G be a connected group
of isometries which acts transitively on M . Then M can be viewed as a homoge-
neous space (G/H, g), where H is the isotropy subgroup of a fixed point p. On
the Lie algebra g of the group G there exists an Ad(H)-invariant decomposition
(reductive decomposition) g = m + h, where h is the Lie algebra of the group H
and m is a vector space m ⊂ g. (Such a decomposition is not unique.)

Definition 1. A homogeneous space (G/H, g) is called a (Riemannian) g.o.
space, if each geodesic of (G/H, g) (with respect to the Riemannian connection) is
an orbit of a one-parameter subgroup {exp(tZ)}, Z ∈ g of the group of isometries
G.

Definition 2. A homogeneous space (G/H, g) is naturally reductive with re-
spect to a reductive decomposition g = m+h if, for any vector X ∈ m\{0}, the curve
γ(t) = (exp(tX))(p) is a geodesic (with respect to the Riemannian connection).

It is known that naturally reductive spaces form a proper subclass of the class
of g.o. spaces. The difference can be described in terms of ”geodesic vectors” and
special maps called ”geodesic graphs”.

A geodesic graph (see the next section) is an Ad(H)-equivariant map ξ : m 7→ h
such that for any X ∈ m\{0} the curve expt(X + ξ(X))(p) is a geodesic. This
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map is either linear (and the space is naturally reductive with respect to some
reductive decomposition g = m′ + h) or it is non-differentiable at the origin. Then
the geodesic graph is a rational map and we are interested in the degree of this
rational map.

We briefly recall some facts about the construction of the geodesis graphs and
then we proceed to the H-type groups, which provide examples of g.o. spaces which
are in no way naturally reductive (so each geodesic graph is non-linear).

2. Geodesic graph

Definition 3. Let (G/H, g) be a Riemannian g.o. space. A vector X ∈ g\{0}
is called a geodesic vector if the curve exp(tX)(p) is a geodesic.

If we consider a reductive decomposition g = m + h of a g.o. space, there is
a natural Ad(H)-invariant scalar product on the vector space m. It comes from
the identification of m ⊂ TeG with the tangent space TpM via the projection
π : G 7→ M .

We have the simple criterion for the property of the vector to be a geodesic
vector:

Proposition 1 (cf. [3], Corollary 2.2). A vector Z ∈ g\{0} is geodesic if and
only if

〈[Z, Y ]m, Zm〉 = 0 for all Y ∈ m. (1)

Here the subscript m indicates the projection into m.

Now we will head to the construction of the canonical geodesic graph, which is
an Ad(H)-equivariant map assigning to each vector X ∈ m the vector A ∈ h, so
that the vector X + A is geodesic. Let X ∈ m\{0}, denote

qX = {A ∈ h | [A,X] = 0},

NX = {B ∈ h | [B,A] ∈ qX ∀A ∈ qX}.
Obviously qX is a subalgebra of h and qX ⊂ NX .

Let’s briefly recall some facts from [1]:
• Let X ∈ m\{0}. There is at least one element A ∈ h such that X + A is a

geodesic vector and it holds A ∈ NX .
• Let Z ∈ g\{0} be a geodesic vector and A ∈ h. Then the vector Z + A is

geodesic if and only if A ∈ qZm .

Now choose an Ad(H)-invariant scalar product on h and let NX = qX + cX be
the orthogonal decomposition with respect to this scalar product. Let X ∈ m\{0}
and A ∈ h so that X +A is a geodesic vector. Denote A′ the orthogonal projection
of A into cX . Then the vector X + A′ is also geodesic.
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Definition 4. Let (G/H, g) be a Riemannian g.o. space and g = m + h an
Ad(H)-invariant decomposition. For any fixed X ∈ m\{0} let NX = qX + cX be
the decomposition as above and let πX : NX 7→ cX be the orthogonal projection.
If A ∈ h is any vector such that X +A is a geodesic vector, we define the canonical
geodesic graph ξ as follows:

ξ(X) = πX(A) for each X ∈ m\{0},
ξ(0) = 0.

Remark. The canonical geodesic graph from Definition 4 is uniquely deter-
mined and Ad(H)-equivariant.

A practical way of finding the geodesic graph of a g.o. space is solving the
equation (1) with respect to some bases. For a given vector X ∈ m\{0} we
put X =

∑m
i=1 xiEi and ξ(X) =

∑r
j=1 djFj , where {Ei}m

i=1 is a basis of m and
{Fj}r

j=1 is a basis of h. From the equation (1) we obtain a system of m (nonho-
mogeneous) linear equations for the parameters dj , by puting Z = X + ξ(X) and
Y = E1, . . . , Em, respectively. These equations are compatible but not necessarily
linearly independent.

The corresponding system of homogeneous linear equations characterizes the
property ξ(X) =

∑r
j=1 bjFj ∈ qX . Let us restrict ourselves to the open dense

subset of m\{0} on which this system has the maximal rank, so the subalgebra qX

has the minimal dimension. This minimal dimension is called anihilating dimension
and denoted by q. A vector X ∈ m\{0} which fulfills the condition dimqX = q
is called a generic vector. The number q is independent on the decomposition
g = m + h.

If X is generic, then the vector ξ(X) must satisfy a system of exactly r−q linearly
independent nonhomogeneous linear equations and it must be also orthogonal to
the subspace qX (of dimension q) described by corresponding homogeneous system.
Hence we get additional q homogeneous linear equations. Altogether we obtain r
independent equations for r independent parameters (r is the dimension of h).

Such a system of linear equations is solvable by using the Cramer’s rule. We
obtain formally a solution in the form di = P̃i/P̃ , where P̃ is polynomial of degree
p̃ = (q + 1)(r− q) and P̃i are polynomials of degree p̃ + 1. It may happen that the
polynomials P̃ and P̃i have a nontrivial greatest common divizor. After cancelling
out we obtain finally di = Pi/P , where the degree p of P is less then p̃. This
”minimal” degree is called the degree of the geodesic graph ξ.
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3. H-type groups

Let’s briefly recall basic facts about generalized Heisenberg groups (H-type
groups). These are very important, because the first examples of g.o. spaces
which are in no way naturally reductive were found among H-type groups (see[4]).

Definition 5. Let n be a 2-step nilpotent Lie algebra with an inner product
〈, 〉. Let z be the center of n and let v be it’s orthogonal complement. For each
vector Z ∈ z define the operator JZ : v 7→ v by the relation

〈JZX, Y 〉 = 〈Z, [X, Y ]〉 for all X, Y ∈ v. (2)

The algebra n is called a generalized Heisenberg algebra (H-type algebra) if, for each
Z ∈ z, the operator JZ satisfies the identity

JZ
2 = −〈Z,Z〉idv. (3)

A connected, simply connected Lie group whose Lie algebra is an H-type algebra
is called an H-type group. It is endowed with a left-invariant metric.

The classification of H-type algebras is based on the classification of represen-
tations of real Clifford algebras, which is already known. Particularly, the H-type
groups which are g.o. spaces but in no way naturally reductive are also classified.
There are just the following cases:

(i) dimz = 2, or
(ii) dimz = 3 and v is not an isotypic module, or
(iii) dimz = 5, 6, 7 and dimv = 8, or
(iv) dimz = 7, dimv = 16, 24 and v is an isotypic module.

(A comprehensive information can be found in [2] but there the case (ii) was
incorrectly described. The same error appeared in [1].)

The example of an H-type group with dimz = 2 and dimv = 4 was already
treated in [4], [3] and [1] and the computation was made by hand. The general
cases (i) and (ii) were treated by the present author (to be published elsewhere).
Here the degree of a geodesic graph is always equal to 2. Now we shall continue
with the next example (of dimension 13), where the computer aid is necessary.

4. H-type group of dimension 13

Let m be a vector space of dimension 13 equipped with a scalar product and
let m = span(Ei, Zj), i = 1, . . . , 8, j = 1, . . . , 5, where {Ei, Zj}8

i=1
5
j=1 form an or-

thonormal basis. We define the structure of a Lie algebra by the following relations:
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[E1, E2] = −Z1,

[E1, E3] = −Z2, [E2, E3] = −Z3,

[E1, E4] = Z3, [E2, E4] = −Z2, [E3, E4] = Z1,

[E1, E5] = Z4, [E2, E5] = Z5, [E3, E5] = 0, [E4, E5] = 0,

[E1, E6] = −Z5, [E2, E6] = Z4, [E3, E6] = 0, [E4, E6] = 0,

[E1, E7] = 0, [E2, E7] = 0, [E3, E7] = −Z4, [E4, E7] = −Z5,

[E1, E8] = 0, [E2, E8] = 0, [E3, E8] = Z5, [E4, E8] = −Z4,

[E5, E6] = Z1,

[E5, E7] = −Z2, [E6, E7] = −Z3, [Zi, Zj ] = 0,

[E5, E8] = Z3, [E6, E8] = −Z2, [E7, E8] = −Z1, [Ei, Zj ] = 0.

It is obvious that z = span(Z1, . . . , Z5) is the center of the algebra m. One
can easily verify, for v = span(E1, . . . , E8), that the operators JZ defined by the
equation (2) satisfy the condition (3), so the algebra m is a generalized Heisenberg
algebra.

Now, let us express the H-type group M corresponding to the Lie algebra m
as a homogeneous space G/H. On the Lie algebra level we have a decomposition
g = h+m. Put h = Der(m)∩so(m) - the algebra of skew-symetric derivations on m.
Then g = h + m is the Lie algebra of the maximal group of isometries G = I0(M)
of the space M . We are going to make explicit computations here. The generators
of h can be derived by solving the equation

D[X, Y ] = [DX,Y ] + [X, DY ],

where X, Y ∈ m, D =
∑

1≤i<j≤8

aijAij +
∑

1≤k<l≤5

bklBkl ∈ h.

Aij is the basis of so(v) acting on v by Aij(Ek) = δikEj − δjkEi and, similarly,
Bij is the basis of so(z) acting on z by Bij(Zk) = δikZj − δjkZi. As a solution we
obtain the following eleven operators:

D1 = 2B12 −A14 + A23 + A58 −A67, D7 = 2 B25 + A18 −A27 + A36 −A45,

D2 = 2B13 −A13 −A24 + A57 + A68, D8 = 2 B34 + A18 −A27 −A36 + A45,

D3 = 2B14 + A16 −A25 + A38 −A47, D9 = 2B35 + A17 + A28 −A35 −A46,

D4 = 2B15 + A15 + A26 + A37 + A48, D10 = 2B45 + A12 + A34 −A56 −A78,

D5 = 2B23 + A12 −A34 + A56 −A78, D11 = A12 + A34 + A56 + A78.

D6 = 2B24 −A17 −A28 −A35 −A46,
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Thus h = span(D1, . . . , D11) and we can write each D ∈ h in the form D =∑11
i=1 diDi. Now the canonical geodesic graph ξ : m 7→ h satisfies the equation

〈[X + D,Y ]m, X〉 = 0,

where X ∈ m\{0} is given, Y runs over all m and D = ξ(X) ∈ h is to be determined.
Here for Y ∈ m we substitute, step by step, all 13 elements {Ei, Zj}8

i=1
5
j=1 of

the given orthonormal basis. We obtain a system of 13 linear equations for the
parameters d1, . . . , d11, but the rank of this system is 10. We select, in a convenient
way, a subsystem of 10 linearly independent equations. The matrix A of the
coefficients of the corresponding homogeneous system and the vector b of the right-
hand sides are given by

A =



−x4 −x3 x6 x5 x2 −x7 x8 x8 x7 x2 x2

x3 −x4 −x5 x6 −x1 −x8 −x7 −x7 x8 −x1 −x1

−x2 x1 x8 x7 −x4 −x5 x6 −x6 −x5 x4 x4

x1 x2 −x7 x8 x3 −x6 −x5 x5 −x6 −x3 −x3

x8 x7 x2 −x1 x6 x3 x4 −x4 x3 −x6 x6

−x7 x8 −x1 −x2 −x5 x4 −x3 x3 x4 x5 −x5

−2 z1 0 0 0 2 z3 2 z4 2 z5 0 0 0 0

0 −2 z1 0 0 −2 z2 0 0 2 z4 2 z5 0 0

0 0 −2 z1 0 0 −2 z2 0 −2 z3 0 2 z5 0

0 0 0 −2 z1 0 0 −2 z2 0 −2 z3 −2 z4 0



,

b =



x2z1 + x3z2 − x4z3 − x5z4 + x6z5

−x1z1 + x3z3 + x4z2 − x5z5 − x6z4

−x1z2 − x2z3 − x4z1 + x7z4 − x8z5

x1z3 − x2z2 + x3z1 + x7z5 + x8z4

x1z4 + x2z5 − x6z1 + x7z2 − x8z3

−x1z5 + x2z4 + x5z1 + x7z3 + x8z2

0

0

0

0



.

Next, there are just two cases to study, for which one obtains a g.o. space.

Case 1) M = G′/H ′, where H ′ = Spin(5) and G′ = M o H ′.

We consider the 10-dimensional subalgebra h′ = span(D1, . . . , D10) and we put
g′ = m + h′. (D11 ∈ h is an element of the center of h.) It is known from the
theory (see [5]) that the corresponding homogeneous space G′/H ′ is a g.o. space.
We get a restricted matrix equation A′d = b, where A′ is the matrix consisting of
the first ten columns of the matrix A. (The last, omitted column of the matrix A
corresponds to the omitted operator D11.) This equation has obviously the unique
solution. Solving it by the Cramer’s rule we obtain a vector d with 10 components,
which are of the form di = P̃i/P̃ , i = 1, . . . , 10. Polynomials P̃i, i = 1, . . . , 10 are of
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degree 11 and P̃ is of degree 10. They can be shown to have a common factor

(4)
α1 = 16 z1 ((x7x5 + x6x8) z2 + (−x8x5 + x6x7) z3+

+ (x7x3 + x4x8) z4 + (−x8x3 + x4x7) z5)

of degree 4, and hence we can simplify

di =
α1Pi

α1P
=

Pi

P
, i = 1, . . . , 10.

The polynomials Pi are of degree 7 and the polynomial P is of degree 6. Using the
substitutions

K1 = x3
2 + x4

2 + x5
2 + x6

2 − x1
2 − x2

2 − x7
2 − x8

2,

K2 = 2x1x4 − 2 x2x3 − 2 x7x6 + 2 x8x5,

K3 = 2x1x3 + 2 x2x4 + 2 x7x5 + 2 x8x6,

K4 = −2 x1x6 + 2 x2x5 − 2 x7x4 + 2 x8x3,

K5 = −2 x1x5 − 2 x2x6 + 2 x7x3 + 2 x8x4,

I1 = ‖x‖2 =
8∑

j=1

xj
2, I2 = ‖z‖2 =

5∑
j=1

zj
2 I3 =

5∑
j=1

zjKj .

we can express the denominator in the form

P = −I1
2I2 + I3

2.

All the terms I1, I2 and I3 are algebraic invariants with respect to the action of
the group G′ on M and so is P . Moreover, I1, I2, I3 form a basis of all algebraic
invariants. But none of Pi is an invariant and it can’t be expressed in such a nice
form. Also α1 is not an invariant. Because of the excessive length of the terms Pi

we prefer to write down only the terms which arise after the substitution

x1 = x3 = x5 = x6 = x7 = z2 = z3 = z5 = 0.

We obtain for example
α1 = z1z4x4x8,

P7 = −4 x2x4
2x8z1

(
z1

2 + z4
2
)
,

P = −4 x4
2z1

2
(
x2

2 + x8
2
)
− z4

2
(
x2

2 + x4
2 + x8

2
)2

.

In this way one easily verifies that P7 and P have no longer a common factor.
So the degree of the geodesic graph in the space G′/H ′ is equal to six. The full
expressions for the polynomials P, P1, . . . , P10 can be viewed on the Internet address
http://www.karlin.mff.cuni.cz/˜dusek/h13/h13.php.

Case 2) M = G/H, where H = Spin(5)× So(2) and G = M o H.

Here we consider the geodesic graph in the full isometry group G = I0(M). (Let
us remark that the algebraic invariants with respect to G are the same as those
with respect to G′.) In this case we need to find the ”canonical” solution of the
matrix equation Ac = b, where c denotes the vector (c1, . . . , c11)t. For this purpose
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we have to express the additional property ξ(X) ⊥ qX . This gives a new linear
equation whose coefficients form an additional row e = (e1, . . . , e11) extending the
matrix A (of type (10,11)) to a square matrix AS . The last row e will be fixed as
the most natural solution of the homogeneous linear matrix equation Ae = 0, i.e.,
ei are chosen as the corresponding subdeterminants (up to the sign) of the matrix
A. But then we obtain ei = α1Ti, i = 1, . . . , 11, where α1 is the polynomial of
degree 4 as in (4) and Ti are polynomials of degree 6. We put T = (T1, . . . , T11).

Now, solving the extended matrix equation ASc = b by the Cramer’s rule we
obtain the eleven components of the vector c, which are (after factorization) of the
form

ci =
α1

2α2Ri

α1
2α2R

, i = 1, . . . , 11. (5)

Here α1 is the same polynomial of degree 4 as in (4), α2 and R are polynomials
of degree 6 and Ri, i = 1, . . . , 10, are polynomials of degree 7. The degree of the
denominator in the expressions for ci, i = 1, . . . , 10, is 20. (This is the formal upper
bound p̃ mentioned in section 2.) After canceling out the common factors we see
that the geodesic graph is in fact of degree 6. Even more, we see that R = −P,Ri =
−Pi for i = 1, . . . , 10 and R11 = 0. So the final solution c = (ci)11i=1 is ”the same”
as the solution d = (di)10i=1 in the smaler group G′. It is also worth mentioning
that the second factor α2 and the square of the norm of the vector T are algebraic
invariants and it holds α2 = 2

(
I1

2I2 − I3
2
)

= −2 P , ‖T‖2 = 2 (I1
2I2 − I3

2)2.

5. Conclusion

For the computation using the computer was essential. We used the software
”Maple V”, c©Waterloo Maple Inc., on the computer equipped with the processor
Alpha EV6/500MHz and 1GB of memory. As an example - the computation of the
factorization (5) allocated 170 MB of memory (used 55 GB) and took approximately
26 hours of time.
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