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GEODESIC VECTORS OF THE SIX-DIMENSIONAL SPACES

SZILVIA HOMOLYA

Abstract. The result of this article is close to the article of O. Kowalski

and S.Ž. Nikcevič: ”On geodesic graphs of Riemannian g.o. spaces”, but it
works with an other method. There as problem arises the investigation of
the structure of geodesic graphs in the framework of the general theory of

g.o. spaces by Carolyn Gordon. We investigate now the geodesic graphs of
the six-dimensional spaces according to the theory of g.o. spaces by Gordon.

1. Introduction

Let M be a connected homogeneous Riemannian manifold. If G is any connected
transitive group of isometries of M and H is the isotropy subgroup at a point , then
M is naturally identified with the coset space G/H with a left-invariant Riemannian
metric.

Remark 1.1. The Lie algebra h of H is compactly embedded in g; i.e., g admits
an inner product relative to which ad (X) is skew-symmetric for all X ∈ h. In
particular, we can choose a complement q of h in g with ad (H)q ⊆ q. The space q
is identified with the tangent space via the mapping X −→ d

dt |t=0exp (tX) · p and
the Riemannian structure defines an ad (H)-invariant inner product 〈, 〉 on q.

Definition 1.2. (M, g) is said to be naturally reductive if for some transitive
connected group G of isometries and decomposition g = h + q as above, ad (X) is
skew-symmetric for all X ∈ q. I.e., 〈[X, Y ]q, Z〉 = −〈Y, [X, Z]q〉 for all X, Y, Z ∈ q,
where the subscript q indicates the corresponding projection.

Remark 1.3. It is well known that a Riemannian homogeneous space (M, g) = G/H
with origin p = {H} and with an ad (H)-invariant decomposition g = h + q is
naturally reductive (with respect to this decomposition) if and only if the following
holds: For any vector X ∈ q\{0},the curve γ(t) = exp (tX)p is a geodesic with
respect to the Riemannian connection.

Definition 1.4. M is said to be geodesic orbit (g. o.) space if every geodesic in
M is an orbit of a one-parameter group of isometries. I.e., there exists a transitive
group G of isometries such that every geodesic in M is of the form exp (tX) ·p with
X ∈ g, p ∈ M.
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Remark 1.5. The naturally reductive homogeneous spaces form a subclass of the
g.o. manifolds, because the g.o. condition is considerably weaker than natural re-
ductivity. There are Riemannian g.o. spaces which are never naturally reductive in
any group extension. One class of such spaces consists of two-step nilpotent Lie-
groups with two-dimensional centers, equipped with special left invariant metrics.
Our paper is devoted to the investigation of these spaces.

All the calculations for a g.o. space G/H can be reduced to algebraic computa-
tions using geodesic vectors, which are defined in the following way:

Definition 1.6. Fix a choice of base point p ∈ M . For G a transitive group
of isometries of M , we will say a nonzero element X of g is a geodesic vector if
exp (tX) · p is a geodesic.

The following criterion for geodesic vectors is important. See [3].

Lemma 1.7. Let M be a connected homogeneous Riemannian manifold and G a
transitive group of isometries. A nonzero element X of g is a geodesic vector if
and only if 〈[X, Y ]q, Xq〉 = 0 for all Y ∈ q.

The following proposition is consequence of Lemma 1.7. and the definitons
above.

Proposition 1.8. a.) M is naturally reductive with respective to the transitive
group G of isometries and decomposition g = h+ q if and only if every nonzero
element of q is a geodesic vector.b.) Every geodesic in M is an orbit of a one-
parameter group of isometries of G if and if and only if for each X ∈ q, there
exists A ∈ h such that 〈[X +A, Y ]q, X〉 = 0 for all Y ∈ q. (I.e., X +A is a geodesic
vector.) In particular, M is a g.o. manifold if and only if this condition holds for
G = I0(M), where I0(M) is the identity component of the full isometry group of
M.

2. G.o. nilmanifolds

A connected Riemannian manifold which admits a transitive nilpotent group
N of isometries is called a nilmanifold. The action of N is a neccesarily simply
transitive [1], thus the manifold may be identified with the group N endowed with
a left-invariant metric. We say N is a g.o. nilmanifold if every geodesic is an orbit
of a one-parameter subgroup of G.

We may restrict our attention to two-step nilmanifolds.
All two-step homogeneous nilmanifolds can be constructed in the following way:
Let (a, 〈., .〉a) and ( z, 〈., .〉z) be inner product spaces and j : z −→ so (a) an

injective linear map. Let (n, 〈., .〉) be the direct sum of (a, 〈., .〉a) and (z, 〈., .〉z).
The skew-symmetric bilinear map (Lie-bracket): [., .] : n × n −→ z defined by
〈j(Z)X, Y 〉 = 〈Z, [X, Y ]〉 for all X, Y ∈ a and Z ∈ z; with the conditions

(i) [a, a] ⊂ z
(ii) [n , z] = 0,
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defines a Lie algebra structure on n. Then let N be the associated simply-connected
Lie group with the left-invariant Riemannian metric defined by the inner product
〈, 〉. We will say (a, z, j) is the data triple associated with the simply-connected
Riemannian nilmanifold N .

Since [n , n ] = [a, a] ⊂ z and [n , z] = 0 N is a Riemannian two-step nilmanifold.

Proposition 2.1. [1] Let N be a simply-connected Riemannian nilmanifold. The
Lie algebra of the full isometry group is a semi-direct sum g = h + n where the
isotropy algebra h consists of all derivations of n which are skew-symmetric relative
to the Riemannian inner product.

To describe the full isometry group of N , we need only find the skew-symmetric
derivations of n and then apply Proposition 2.1.

Lemma 2.2. [1] Let N be a simply-connected two-step nilmanifold and (a, z, j)
the associated data triple. Then a skew-symmetric linear map D : n −→ n is a
derivation if and only if the following conditions hold:

(i) D leaves each of a and z invariant and
(ii)j(D(Z)) = [D|a, j(Z)] for all Z ∈ z where the bracket is that of so (a).Thus

the isotropy algebra of h is isomorphic to the subalgebra of so (a) given by {δ ∈
so (a) : [δ, j(z)] ⊂ j(z) and j−1 ◦ ad (δ) ◦ j ∈ so (z)}.

Theorem 2.3. [1] Let N be a simply-connected 2-step nilmanifold. In the notation
as above, N is a g.o. manifold if and only if for each X ∈ a and Z ∈ z, there exists
a skew-symmetric derivation D of n such that D(Z) = 0 and D(X) = j(Z)X.

Proof. Let D ∈ h and U ∈ n. Depending on whether we are viewing D as an element
of the Lie-algebra g = h+n or as a derivation of n, we will write, respectively [D,U ]
or D(U) for the action of D on U ∈ n.Given X ∈ a, Z ∈ z, and D ∈ h , then by
Lemma 1.7., X + Z + D is a geodesic vector if and only if the following holds:
〈[X + Z + D,Y ]n, Xn〉 = 0 for all Y ∈ n = a + z

(i) for all U ∈ a, we have

0 = 〈[X +Z +D,U ], X +Z〉 = 〈[X, U ], X +Z〉+〈[Z,U ], X +Z〉+〈[D,U ], X +Z〉 =

= 〈[X, U ], Z〉+ 〈D(U), X〉 = 〈j(Z)X −D(X), U〉 =⇒ D(X) = j(Z)X

(ii) for all W ∈ z, we have

0 = 〈[X + Z + D,W ], X + Z〉 = 〈[D,W ], Z〉 = −〈D(Z),W 〉 =⇒ D(Z) = 0

3. Szenthe-construction

Kowalski and Vanhecke [3] classified the g.o. nilmanifolds using the results of
J.Szenthe [4]. In the following we give an analog characterisation for g.o. nilman-
ifolds, because we use this method by the case if we have X + Z ∈ n, so that
X = 0 ∈ a and Z ∈ z.
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Let N = G/H be a reductive homogeneous space with an ad (H)- invariant
decomposition g = n + h . For any X ∈ n \{0}, put

qx = {A ∈ h : [A,X] = λX for some λ∈R},
Nx = {B ∈ h : [B,A] ∈ qx all A ∈ qx} ,
c′x = {B ∈ h : [B,A] = 0 for all A ∈ qx}.
Thus Nx is the normalizer of qx in h and c′x is the centralizer of qx in h. Obvi-

ously qx ⊂ Nx and c′x ⊂ Nx. In the Riemannian situation the following holds.

Proposition 3.1. [3] If N is the Riemannian connection of (N, g) = G/H, then
for any X ∈ n \{0}, qx is a subalgebra of h given by qx = {A ∈ h : [A,X] = 0}
Proposition 3.2. [3] Let (N, g) be a Riemannian g.o. space. Then for each X ∈
n\{0}, there is at least one element A ∈ h such that X + A is a geodesic vector.
We always have A ∈ Nx.

Corollary 3.3. [3] Let X ∈ g\{0} be a geodesic vector and A ∈ h. Then the vector
X + A is geodesic if and only if [A,Xn] = 0

Proposition 3.4. [3] Let G/H be a Riemannian g.o. space. Then for each X ∈
n\{0}, there is an element B ∈ c′x such that X + B is a geodesic vector.

Proof. (from [3], based on an idea from [4]) Consider an ad (H) - invariant scalar
product 〈, 〉on h. Put Nx = qx + cx (the orthogonal decomposition with respect to
〈, 〉). We first prove that cx ⊂ c′x.

Let B ∈ cx and A ∈ qx. First, [B,A] ∈ qx because B ∈ Nx. Because the scalar
product 〈, 〉 is ad (H) - invariant, we get 〈[B,A], [B,A]〉 = 〈B, [A, [B,A]]〉.

The last expression is zero because B ∈ cx and [A, [B,A]] ∈ qx; hence [B,A] = 0.
Because A ∈ qx was arbitrary, we obtain B ∈ c′x as required.Now if X + A is a
geodesic vector, A ∈ Nx, we can write A = A1 + A2, where A1∈ qx, A2 ∈ cx.
According to Proposition 3.1. and Corollary 3.3., X + A2 is a geodesic vector, as
well. Now A2 ∈ c′x .

Proposition 3.5. [4] There exists an ad (H)-invariant map ξ : n −→ h such that
for any X ∈ n\{0} the vector X + ξ(X) is geodesic vector.

4. The six-dimensional case

By six-dimensional spaces we give an explicit expression for the ad (H)-invariant
nonlinear map ξ: n −→ h by which is described in the Szenthe-theorem. We begin
the investigation by a special case of the six-dimensional spaces, and then we extend
it to the general case.

The first counter-example of a g.o. space, which is in no way naturally reductive
comes from A. Kaplan [2].This is a six-dimensional Riemannian nilmanifold with a
two-dimensional center, one of the so called H-type groups. An H-type Lie algebra
is a 2-step nilpotent Lie algebra n endowed with an inner product 〈., .〉 such that
the following property holds: if Z is any element in the center z of n, and a is
the orthogonal complement of z, then the linear operator jz : a −→ a defined by
〈j(Z)X, Y 〉 = 〈Z, [X, Y ]〉 for X, Y ∈ a satisfies the identity [j(Z)]2 = −||Z||2ida.
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A generalized Heisenberg group (or an H-type group or the six-dimensional
Kaplan space) is a connected Lie group whose Lie algebra is an H-type algebra.It
is endowed with a left-invariant Riemannian metric.

Let be a = R4 = H , z = V 2 ⊂ so (4) = so(1)(3) + so(2)(3) and j : z −→so (a)
One can prove on the basis of [1], the only proper two-dimensional subspaces

of so (4) can lie in one of the ideals so (3),such that the associated nilmanifold is
g.o. space,but not naturally reductive.

In fact,R4 can be viewed as the quaternions and the two so (3) factors act as
left,respectively right, multiplication by pure quaternions.

so(1)(3) = λiR + λjR + λkR and
so(2)(3) = ρiR + ρjR + ρkR , where

λi =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 λj =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 λk =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0



ρi =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ρj =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ρk =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


Let be V 2 = λiR + λjR ⊂ so(1)(3), n = a + z = R4 + V 2. According to

Proposition 2.1 h = Der(n) ∩ so (n), so

δ =


0 α β γ
−α 0 λ µ
−β −λ 0 ν
−γ −µ −ν 0


Theorem 4.1. For the six-dimensional space there exists an ad (H)-invariant map
ξ : n −→ h such that for any X ∈ n\{0}X +ξ(X) is geodesic vector, i. e. the curve
exp (t(X + ξ(X))) · p is a geodesic.

Proof. (a) If X 6= 0 ∈ a, Z ∈ z
According to Lemma 2.2 the isotropy algebra of h is isomorphic to the subalgebra

of so (4) given by

{δ ∈ so (a) : [δ, j(z)] ⊂ j(z) and j−1 ◦ ad (δ) ◦ j ∈ so (z)}

=⇒ [δ, λi]∈λiR + λjR and [δ, λj ] ∈ λiR + λjR
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On the basis of these conditions µ = β and ν = −α =⇒ δ =


0 α β γ
−α 0 λ β
−β −λ 0 −α
−γ −β α 0



=⇒ h̃ =




0 α β γ
−α 0 λ β
−β −λ 0 −α
−γ −β α 0

 , (α, β, γ, λ) ∈ R4


i) The six-dimensional case: Since [δ, λi] = −(λ+γ)λj and [δ, λj ] = (λ+γ)λi

h =




0 α β γ 0 0
−α 0 λ β 0 0
−β −λ 0 −α 0 0
−γ −β α 0 0 0
0 0 0 0 0 γ + λ
0 0 0 0 −(γ + λ) 0

 , (α, β, γ, λ) ∈ R4


ii) The six-dimensional case in general:
According to the framework of the general theory of g.o. spaces by C. Gordon [G]

each scalar product is admissible. We suppose that λi and λj are not orthonormal
basis with respect to the admissible scalar product 〈., .〉.

Let E = 〈λi, λi〉 F = 〈λi, λj〉 G = 〈λj , λj〉 and the orthonormal basis
e1 = xλi + yλj and e2 = uλi + vλj =⇒ 〈e1, e2〉 = Exu + F (yu + xv) + Gyv

Since ad (δ)|V is skew-symmetric with respect to the scalar product 〈., .〉 =⇒
〈δ(xλi + yλj , uλi + vλjy〉 = −〈xλi + yλj , δ(uλi + vλj)〉

Hence we get the following solutions:
(1) (λ + γ)E = (λ + γ)G
(2) (λ + γ)F = 0

Then λ + γ = 0 =⇒ λ = −γ =⇒

h =




0 α β γ 0 0
−α 0 −γ β 0 0
−β γ 0 −α 0 0
−γ −β α 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (α, β, γ) ∈ R3


.

This is a subalgebra of the isotropy algebra of the Kaplan space or E = G and
F = 0,i.e. λi and λj are orthogonal basis, so 〈., .〉 = c · 〈., .〉∗, where c is a constant
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and 〈., .〉∗is the scalar product of the Kaplan-space. =⇒

h =




0 α β γ 0 0
−α 0 λ β 0 0
−β −λ 0 −α 0 0
−γ −β α 0 0 0
0 0 0 0 0 γ + λ
0 0 0 0 −(γ + λ) 0

 , (α, β, γ, λ) ∈ R4


is the isotropy algebra of all six-dimensional g.o. spaces.

According to Theorem 2.3 N is a g.o. manifold if and only if for each X∈ a and
Z∈ z, there exists a skew-symmetric derivation D of n such that D(Z) = 0 and
D(X) = j(Z)X.

From the condition D(Z) = 0 follows that λ = −γ, if Z 6= 0.
From the second condition D(X) = Z(X) we have an inhomogeneous equation–

system :

αx1 + βx2 + γx3 = −z1x1 − z2x2

−αx0 − γx2 + βx3 = z1x0 + z2x3

−βx0 + γx1 − αx3 = z2x0 − z1x3

−γx0 − βx1 + αx2 = −z2x1 + z1x2

Since we have supposed that X 6= 0 ∈ a, this system has the following unique
solution :

α =
−z1(x2

0 + x2
1 − x2

2 − x2
3)− 2z2(x1x2 + x0x3)

x2
0 + x2

1 + x2
2 + x2

3

β =
z2(x2

3 + x2
1 − x2

2 − x2
0)− 2z1(x1x2 − x0x3)

x2
0 + x2

1 + x2
2 + x2

3

γ =
2z2(x0x1 − x2x3)− 2z1(x0x2 + x1x3)

x2
0 + x2

1 + x2
2 + x2

3

(ii) If X = 0 and Z ∈ z using concepts of Szenthe, Kowalski and Vanhecke

c′z =




0 0 0 λ
0 0 λ 0
0 −λ 0 0
−λ 0 0 0

 , λ ∈ R


According to Proposition 3.3 there exists a C ∈ c′z such that Z + C is geodesic

vector.

For δ = 0 (λ = 0) Z +


0 0 0 λ
0 0 λ 0
0 −λ 0 0
−λ 0 0 0

 + qz leaves invariant exp (Z + δ),

in this case the geodesic will be an orbit of a one–parameter group.
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