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REPRESENTATION OF THE VARIATIONAL SEQUENCE IN
FIELD THEORY

MICHAEL KRBEK, JANA MUSILOVA, AND JANA KASPAROVA

ABSTRACT. The aim of this paper is to discuss some aspects of local and global
properties of classical concepts of calculus of variations in the r—th order field
theory on fibered manifolds within the framework of the variational sequence,
which is the quotient of the De Rham sequence with respect to its subse-
quence of contact differential forms. Such a discussion is, in general, based on
the concept of sheaves of differential forms. In the paper a globally defined
representation of the variational sequence by forms is constructed for its part
closely related to the standard concepts of the calculus of variations. The ex-
tended definition of the Euler-Lagrange form as a representative of the class of
(n+2)-forms is considered and the definition of the so called Helmholtz-Sonin
form as a representative of the class of (n 4 2)-forms is presented. The prop-
erties of corresponding terms in the variational sequence, considered as the
generalized Euler-Lagrange mapping and the Helmholtz-Sonin mapping, are
studied. There is a close relationship between elements of the quotient sheaves
(classes of forms) and the quotient mappings on one hand and the standard
objects of the calculus of variations, such as lagrangian, Euler—Lagrange form
and Helmholtz—Sonin expressions defining the so called Helmholtz—Sonin form,
on the other hand.

1. INTRODUCTION

One of the most important questions in the calculus of variations is the character-
ization of local and global properties of the Euler-Lagrange and Helmholtz—Sonin
mappings, especially their kernels and images. The general solution of this problem
on an r—jet prolongation of a given fibered manifold can give the answers concern-
ing the variationally trivial lagrangians and variational equations of motion in the
r—th order field theory or mechanics. The close relationship between the exterior
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derivative of a differential form and the Euler-Lagrange mapping in the classical
sense, formulated by Lepage and Dedecker, has been developed during last two
decades by many authors (Anderson, Betounes, Duchamp, Gotay, Krupka, Krup-
kové, Kuperschmidt, Olver, Pommaret, Saunders, Takens, Tulczyjew, Vinogradov
etc.) and it then led to the concept of the variational sequence on finite jet pro-
longations of fibered manifolds, introduced and systematically studied by Krupka
[6-8]. The variational sequence is constructed as the quotient of the well-known
De Rham exact sequence of spaces of differential forms with respect to its subse-
quence of certain spaces of contact forms. This subsequence is chosen in such a
way that the Euler-Lagrange and Helmholtz—Sonin mappings, considered in the
generalized concept, are contained in the corresponding quotient sequence of map-
pings. The theoretical background for the study of the variational sequence is,
among others, the theory of sheaves which was presented in details and elaborated
for the purposes of the variational sequence calculus by Krupka [9]. Some aspects
of the variational sequence were studied by some authors pertaining to Krupka’s
school: Stefanek [15] found a ”non- physical” local representation of the r—th or-
der variational sequence in mechanics. Musilovd [13] and Musilova and Krbek [14]
described the (global) ”physical” representation of the physically relevant part of
the r—th order variational sequences in mechanics, including the reconstruction of
classes of forms from their representatives. Kasparova [2—4] has been studying the
first order variational sequence in field theory and she found the global represen-
tatives of physically relevant classes of forms. The problem of variationally trivial
lagrangians was completely solved by Krupka and Musilové [10]. Some problems
concerning the variational sequence in field theory were recently discussed also by
Vitolo in [16] and by Francaviglia, Palese and Vitolo in [1].

In this paper we discuss some properties of the r—th order variational sequence
on fibered manifolds over n—dimensional base. We construct its representation for
classes of g—forms, 1 < g < n—+2, especially for the physically relevant part, i.e.
for classes of n—forms, (n + 1)—forms and (n + 2)—forms. Following the ideas of
Krupka [8] for mechanics, we give the generalized definition of the Euler-Lagrange
form and Helmholtz—Sonin form as well as the Euler-Lagrange and Helmholtz—
Sonin mapping. We show that our representatives are global for 1 < ¢ <n + 2.

2. BASIC NOTATIONS

Throughout the paper we use the following standard notation, used by Krupka
(see e.g. [8,11]): Y is a (n + m)—dimensional fibered manifold with the n—dimen-
stonal base X and projection w. For an arbitrary integer r > 0, J"Y is the r—jet
prolongation of Y, 7" and 7™* for r > s > 0 being the canonical projections of J"Y
on X and J®Y, respectively, N, = dimJ"Y = n + E;:o M; =n+ m(":”), where
M; = m(n+§'*1)_ Moreover, we denote P, = Z;;é M; +2n —1. By v and Jv
we denote a section of the fibered manifold Y (or section of 7) and its r—jet at x,
respectively. The mapping J"y : x — J"y(z) = JI~ is the r—jet prolongation of ~.
Lq(7) is the set of all sections of 7 defined on Q C X. Let 1 <o <m and (V,v),
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Y = (2%,y7), 1<i<n, be a fibered chart on Y. Then we denote (U, ¢) and (V",9")
the associated chart on X and associated fibered chart on J"Y, respectively. Here
U=mn(V),p=(2'),1<i<n, V" = (7.(7",0)71(‘/)’ YT = (xzvyaay;‘jla-~-7y§'71“.jr)7
1<ji,...,jr <n. The variables y7, . are completely symmetrical in all indices
contained in the multiindex J = (j1...jk). The integer k = |J| is the length of
the multiindez J. (For y” the corresponding multiindex is considered to be of zero
length.) Other kinds of multiindices used in the paper are of the form () = (jl.(.r.jk)’
0<|J|<r.

Let QpV be the ring of smooth functions on V". Denote by Q¢ V' the QgV —module
of smooth differential g—forms on V", Qg V' C QV, the submodule of contact
g—forms (for 1 < g < n) and strongly contact g—forms (for n+1 < ¢ < N,.),
and dQy_; .V C QpV the subset of exterior derivatives of contact (strongly con-
tact) (¢ — 1)—forms. Let O,V = dQy_; .V + Qp V. For 2 < ¢ < n it holds
dQg_q V. CQ [V, ie O3V =Q .V, and of course 01V = QiV. O3V is trivial
for ¢>P,. In addltlon we denote by w =dy — yJ,dat, 0<|J| <r— 1 contact 1-
forms, and by w; = (—=1)"tdat A. . Adzt " Ada T AL A2, wo = dxl AL Adz™
the most frequently used horizontal forms. It holds da® A w; = wy (without sum-
mation over i) and dw?, . | Awj, = -wf ;. Awo.

Any g—form ¢ € Qi V is generated by forms (dz*,w7,dy?), 1<i<n, 0<|J[ <
r—1, [I|=r. The notation wg and dyf means that wg = w7 . for [J|=Fk and
dy7 = dy}'fl...jr-

3. CONTACT FORMS

This section presents a brief review of definitions and basic properties of contact
and strongly contact forms on J"Y, adapted for practical purposes of our calcu-
lations. For the more detailed desription and proofs the reader is referred to the
fundamental papers of Krupka [11,12]. The forms

o o o 7
(1) (da, Wi Wy s dyg ), where o= dyf g — g dat

define the contact base of 1-forms on V". For a funct1on f € QpV we denote by
d; f its total derivative with respect to the variable z°,

of  of 0 8f -
= i = — < < =r.
de ot aya' Yy = .f + y[w O— |J| > |I| r

Lemma 1. Let W C Y be an open set, ¢ > 1 an integer, and o € ;W a g-
form. Let (V,v) be a fibered chart on'Y for which V.C W. Let p have the chart

expression

(2) o= Z A{,II% v ds o Yt Ady2 AL AdyTe Adz's+1 Adzs 2 AL Adz'

Osylsg41ts+2---1q
s=0

with coefficients antisymmetrical in all multiindices ((ill), ceey (£5)> ,0< || <
r, 1 <p <'s, antisymmetrical in all indices (is41,...,1y) and symmetrical in all
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indices within each multiindex I),. Then there exists the unique decomposition

(3) (7" th7) 0 = ho+ po = ho + pro+ -+ + pgo,
in which for every 1<k<gq it holds

_ Iy Ik o1 o2 ok Ght1 Tk+2 iq
PO = Colgy o insringonia W AWh A AwpE Adat Az AL A dat,
(4)

q
Il | Ik _ S\ ALl ... I ... Is Ok+1 o
00102 Oy ikt 1th42.-0qg (k)A<71<72 ok Osyls410s42...0q y1k+1ik+1 e Yrig
s=k

alt(ik+1ik+2 . iq).

(Note, that the summations are taken over all independent choices of indices in
each multiindex, e.g. (ji...jp) = J, |J| = p). The proof can be found in [11].
The term hp = pge is the horizontal or 0—contact component of the form p, the
terms pyp for 1 <k <gq are its k—contact components. A form ¢ € QyV is called
7" —horizontal if 771" = hp, or contact if ho = 0. Every ¢g—form for ¢ > n is
contact. A g—form g, n < ¢ < N is called strongly contact, if pg_n0 = 0. A form
o is called k—contact, if pso =0 for 0 < s <k — 1.

In our calculations we frequently use the (¢—n)—contact component of a form
o for n<g<N,. For k = g — n the equation (4) gives

_ Iy Iq—n Gg—ma1..-t o1 Ogqg—n .
(5) qung— Co'l e Uq_n,,’iq—n+1--~7;q€ q—n qwll AN .../\quin /\(,UO =
_ ph Iy—n ,,01 Oqg—n
= B(71 ...an% wy, AL /\wlqin A wo,
where 1-Jn 1<3j;,...,j, <n is the generalized Levi-Civita symbol.

The following lemma describes the local structure of contact forms. (For the
proof see [11,12].)

Lemma 2. Let W C Y be an open set and ¢ € ;W a g—form. Let (V,) be any
fibered chart on 'Y for which V- C W. Then

(a) for 1<q<n the form g is contact if and only if it can be expressed as
(6) 0=® WG for g=1, and g =wG AT +dV for 2<q<n, 0<|[J|<r—1,
where ®/ € QLV are some functions, ¥/ € Q_1V some (¢ — 1)—forms, and
€ Qr _,V is a contact (¢ — 1)—form which can be expressed as w9 A x, for some
Ve Vi tact (¢ —1)—f hich can b d as wf A x} f
(q —2)—forms x% € Qp LV, [I| =r—1.
(b) for n < q¢ < N, the form g is strongly contact if and only if it can be
expressed as

__,,01 Op Op+1 Op+s Jiodplpyr dpys
(7) o=wi A AW AdwPEEA AW PR A @ et

where Syl e Qr LV, 0< [ < -1, 1<1<p, || =r—1,
p+1 < j < p+s, and summation is made over such all p and s for which
pts>g—n+1l,p+2s<gq.
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4. VARIATIONAL SEQUENCE

For the case of field theory we follow in this section the general ideas of Krupka
[6] and basic concepts presented in [7,8] for mechanics. Let 2, ¢>0, be the direct
image of the sheaf of smooth g—forms over J"Y by the jet projection 70 (functions
are considered as 0—forms). Denote
(8)

Q. =kerpofor1 <qg<mn, Q =kerp, ,forqg>n and O =Q . +dQ_; .,

where py and p,_, are morphisms of sheaves induced by mappings py and pg—n,
assigning to a form o its horizontal and py—, contact component, respectively.
d€y_, . is the image sheaf of Q_; . by d. For every open set W C Y, (W is
the Abelian group of g—forms on W = (x°)~}(W) and Q W is the Abelian
group of contact and strongly contact ¢g—forms for 1<g<n and ¢ >n, respectively,
expressed locally by lemma 2. d€;_; W is the subgroup of (W given as {o €

q—1,c
QZW|Q =dn, ne QZ,CW}' Let us consider the sequence
(9) {0} 01—+ > 0, =06, > 0;,,— = 060p — {0},

with arrows (except the first one) given by exterior derivatives d. The following
lemma describes a basic property of this sequence. It can be proved in coordinates
directly.

Lemma 3. Let W C Y be an open set, and let o € ©;W be a form, 1 <q<N,.
Then there exists the unique decomposition ¢ = g1 + dga, where g1 € ) W and
02 € QZ—LCW'

Thus, the sequence (9) is an exact subsequence of the de Rham sequence
{0} = O = o = QL = Oy — Oy — o — O, — {0}
The quotient sequence

{0} = Ry — Qf — Q7/60] — -+ — Q) /O] — Q:L+1/®:l+1 - Q:L+2/®:L+2 -

(10) o O O], = Dy e O, — {0)

is called the variational sequence of the r—th order. It is, of course, also exact. We
denote quotient mappings as follows

(11) By Qy/04 3 [o] — Eg([o]) = [do] € Q411/O0541.
The mappings E;, and E] ,, generalize the classical concept of Euler-Lagrange
mapping and Helmholtz-Sonin mapping of calculus of variations, respectively. They

represent ”physically relevant” terms of the variational sequence.
Using the chart expressions of forms we can prove the following lemma:

Lemma 4. Let W C Y be an open set, and let ¢ € @ZHW be a form, 1<q<N,.
Let ¢ be (n"t1")—projectable, i.e. ¢ = (x"t17")*n for a form n € Q. Then 7 is an
element of O;W.
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(The proofs of lemmas 3 and 4 are based on technical coordinate calculations and
we do not present them here.)
Let us consider the following scheme:

{oy — et — ot — att/ertt — {0}
T T T
o — e — o — /e, — {0)
in which the first two ”"uparrows” represent the immersions by pullbacks and the
third one defines the quotient mapping

r+1L,r . Or /QT r+1 r+1
Qrttr . qr/er — Qirtt/ertt,

Using lemma 4 we can immediately see that the mapping Qg*“ is injective. The
(injective) mappings
(12) QY /0, — Q. /05, r<s
can be defined in a quite analogous way.

The study of global properties of the variational sequence is based on the fol-
lowing facts proved by Krupka [6,8]:

1. Each sheaf Q is fine.

2. The variational sequence (in the shortened notation denoted by {0} — Ry —

V) is an acyclic resolution od the constant sheaf Ry over Y.
3. For every q > 0 it holds H4(TI'(Ry,V)) = H1(Y,R), where

L'y,v): {0} =T'(Y,Ry) = I'(Y,Qp) = T'(Y,Q]) — --- = T(Y,Q}, ) — {0}

is the cochain complex of global sections and H%(I'(Ry,V)) denotes its g-th
cohomology group.

5. REPRESENTATION OF THE VARIATIONAL SEQUENCE

In this section we use the injectivity of mappings @y to discuss the problem of
the representation of the variational sequence by the appropriately chosen (exact)
sequence of mappings of spaces of forms. Let W be an open subset of Y. Two
q—forms g, n € QW belonging to the same class QpW/©;W are called equivalent.
Two g—forms o € QW and n € QZW are called equivalent in the generalized sense
if there exists an integer s > 7, t for which (7%7)*o— (7**)*n € ©fW. Any mapping

UBM QZW/@SW 3 [o] — ‘I’Z’TQQD =00 € QW
with go € [(7*7)*g] (i-e. ¢ is equivalent with gy in the generalized sense), is called
representation of QpW/©;W. Because of the injectivity of mappings Q7" (see
definition (12) and lemma 4) the representation mappings Oy are injective too.

This injectivity enables us to define the representation of the variational sequence
by forms as the lower row of the following diagram:

— /0, — /O —
1

S S
— Qq — Qqul —
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in which the upper row is the variational sequence, the ”downarrows” represent
the mappings ®7" and mappings of the lower row are defined by

(13) B —Q,, BT =07 0E o(®")"!, Ey=®" oK.

In the following we shall show that there exists such a representation of the varia-
tional sequence by forms (i.e. the integer s>r and mappings Eg”) for which E>"

assigns to every lagrangian of the r—th order its Euler-Lagrange form and Efl’frl,

r <t < s, assigns to every dynamical form on J'Y a form expressed locally by
means of Helmholtz-Sonin expressions. We shall concentrate our attention to the
case 1 < g <n+2, especially to the ”physically relevant” terms of the variational
sequence, i.e. g=n,n+1,n+2.

Theorem 1. Let W C Y be an open set, and let ¢>1 be an integer. Let (V1))
be a fibered chart on'Y for which V.C W.
(a) Let 1<q<n and let o € QW be a form. Then the mapping
(14) Q" QV/OLV 30— @7 ([0]) = (77" ) ho € QpV,  s>r+1
is the representation of Q;V/O,V.
(b) Let ¢ =n+1 and let o € Q, W be a form expressed in the fibered chart
(V,4) by the relation
(15) p1o = B w3 A wo,
in which coefficients B € Q{'V, 0<|J|<r, are given by the chart expres-
sion of p following eqgs. (2-5). Then the mapping
0y D V/0L 1V 30— @0 ([o)) =00 € 2,11V, s>2r+1

assigning to the class [g] the form

(16) 00 — (7TS’2T+1)* (Z(l)ldjl . dlegl"'jl> w? A wo

1=0

is the representation of Q;, | V/0O; V.

(c) Let ¢ = n+2 and let o € 0, ,W be a form expressed in the fibered chart
(V,4) by the relation

(17) p20 = B, WG Awi Awo,
in which coefficients BJE € Q{t'V, 0 < |J| < r, are given by the chart
expression of g following eqs. (2-5). Then the mapping
Do 0 0V/05 0V 30— @) 5([0]) = 00 € Q510V, s>2r+1

assigning to the class [g]| the form

(18) Qo =

2r J r . o )
:(Ws,2r+1)* > ZOI Z (_1)l(j_lp)dij+1 dipH B?V-Jpﬂpﬂ---lpﬂ ng...ij/\wy/\w%
J1= p=Uil=)—p
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sym(iy ...45), s>2r 4+ 1, is the representation of 0}, ,V/O] . V.

Proof: For the proof of theorem 1 the equivalence ®;"([g]) =0 < o0 € OV is to
be proved.

(a) Let 1<g<n. As it holds © = it is evident that ho = 0 < ¢ € ©}.

(b) Let g=n+1. Let (V,1) be a fibered chart on Y and let o € ©],,; V. Then g is of
the form ¢ = g1 +dga, where g1 € Q7 ,; .V and g2 € A, .V (see lemma 3). We can
immediately see that ®>7,([e1]) = 0). Thus, only the equation ®;"([dos]) = 0
needs proof. Taking into account equation (6) we have

00 =wi AV +d¥, 0<|J[<r—1

for some (n—1)—forms ¥/ and some contact (n—1)—form ¥ = w9 AxL, |I| =r—1,
x5 € Q;_,V. Then it holds

dos = d(WG A YY) = prdos = —wT; Ada' ARV —wG A hdP?.

Using the chart expressions of ¥/ in agreement with (3) and (4), i.e.

n—1

r+1,r\*q,J _ J\J1 Jy o1 leg} i41 In—1
(m ) = E (Po)ot - voyiven i AW A wq Ada® AL da™

o /o
=0

we obtain the coefficients B in the corresponding chart expression (15) for p;dos.
Putting them into (16) we can conclude, after some technical steps, that
@37, (doa)) =0.

Conversely, let @)% ([0]) = 0. Using lemma 4 we obtain again by coordinate
calculations the expected result o € O], V.

(¢) For ¢ =n+2 the proof is quite analogous with that presented in (b). Since it
involves tedious coordinate calculations we do not present it here.

Theorem 2 presented in the following section of the paper shows that the local ex-
pressions (16,18) for representatives of a classes of (n+1)—forms and (n+2)—forms
give globally defined forms. These forms are called the Fuler-Lagrange form and
Helmholtz-Sonin form, respectively. Following the relation (13) which defines the
representation of the variational sequence we can use theorem 1 for a form dp,
0 € QW or o € Q) W, for obtaining the chart expressions of so called Euler-
Lagrange and Helmholtz-Sonin mappings E:" and Ef;};l, respectively. The first
of them represent the generalization of the well-known ”classical” Euler-Lagrange
mapping of the calculus of variations which is closely related to the trivial vari-
ational problem. The second one is connected with the solution of the inverse
variational problem.
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6. GLOBAL PROPERTIES OF THE REPRESENTATION

The construction of the representative mappings ®" in the previous section for
1<q<n is given by the horizontalization h, and thus, it is global. For ¢=n+1 the
globality of the definition of the representatives of the type (16) is mentioned in
[6] with the reference to a proof using an integration method. For the 1—st order
variational sequence the globality of representatives (16) and (18) was proved in
[2,4], with the use of the integration of appropriately chosen forms. In this section
we follow the idea of the integration method to prove the correctness (globality) of
higher order representatives (16) and, as a new result, (18).

Theorem 2. Let (V,1) be a fibered chart on Y. Let 1<q<n+2 and g0 € QY be
a form. Then the class [o] is represented by eqs. (14), (16) and (16) globally, for
1<q<n, g=n+1 and g=n+2, respectively.

Proof: Because of globality of the horizontalization mapping h only the cases
g=n+1, n+2 need proof. Let (V1) be a fibered chart on Y such that V NV # 0
and let Q C m#(V NV) be a compact piece of manifold X.

Let g=n+1 and let o € ], ;W be a form with the chart expression given by eqs.
(2-5), (15), i.e.

n+1
(19) (7" 0 = B w5 Awo + Zpkg, summation over 0<|J|<r.
k=2

Let & be a m—vertical vector field such that supp& C 7~ 1(Q), and let £ = £ 630

and £ = € 62(, be its chart expressions in (V,%) and (V,1), respectively. Let us
define (for s>r, in general)

(20) mo= [ 7o (6T hico
Q
where v € T'q(7) is a section of 7. (The function 7q is independent of the choice of

s, of course.) Using the decomposition (19) and the well-known chart expression
of the s—th prolongation of £, s>1,

0
(21) JS§=§§(9TJU, §7 =& s =dj---d;; &7, 0<|J|<s,
J

we obtain

na = / I o (571 higreg = / T o (7Y i e epro =
Q Q

(22) /QJSV* o (r* ") (B - DE7) wo = /Q(B?DJ&")(J’““W) wo,
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where we have denoted by D the symbol d;, ...d;, for J = (ji...jx), 1<k <r.
Due to the properties of total derivative, the operator D is symmetrical in all
indices contained in multiindex J. Using recursively the relation

((fdjg) o T y)wo = ((d;(fg) — 9d;f) 0 J"17) wo =
= (di(fg) 0 I ') 6t wo — ((9d; ) 0 T 'y) wo =
= (di(fg) o J"y) da' Awj — ((9d;f) o J™ Y wo =

= JTHy (7T A((fg) A wy) — (9d; f)wo)
for functions f, g, Stokes theorem and the assumption concerning the support of &
we have finally

(23) e :/Q (5”'2(1)ldjl ---djLB?"‘j’) (2 19) wo.

=1

The same holds for the case of the representative obtained from the chart expression
of pin (V,v), i.e.

na = / (50 ’ Z(_l)lajl - .dleil--Jl) (J2T+1'7) wo.
Q2 =1

Taking into account the transformation between components of the vector field ¢
in charts (V,4) and (V,4) and the transformation relations for forms w? and wy,

o L, oy, (oo o
5 —§ ayy7 w = 8yyw ) ("jO_de‘t <axi>w07 d]f_ 8Tj dlf

we can see that the expression (16) for the representative fulfills the transformation
rules for a form. (The detailed transformation calculations for the 1—st order see
in [2].)

Let finally g=n-+2 and let o € Q},,,Y be a form, for which

n—+2
(24) a e = B(;]f wg ANwg ANwy + Zpkg,
k=3

with coefficients B/X given by (2-5). Let ¢ be another vector field which fulfills
the same conditions as £. We define

(25) ne = / J*y* o (x5 ) higreigrco.
Q
Then

no :/ JS’Y* o (7TS’T+1)*iJ1v+1§iJ'r'+1§p2Q — / Js,y*(ﬂ_s,r+l)* (2534}/{ Bgf) wo =
Q Q

- /Q (D€7) (2B25 - Dicc*) (J™ ) wo,
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with the operator D; previously defined as dj, ...d;,, J = (ji...Jjx). Applying
the procedure used for ¢ = n+1 in the first part of the proof to the n—form
(2BJE Dy (¥ wy) we have

o= [ 20V € DB DRe) ()

summation over |J|, |[K| <r. Calculating the expression D (B;X D (") step by
step we obtain

UQZ/Q 267 > (=) YT Dy ("D BIE | o (JP ) w,

|JI<r |K<r |1+ T2 |=]J]
summation over |J|, |K|<r.

ne =

(_1)j p%; (;)d” o dik+p<,/ . di)ﬂ_*_p.‘_1 o dl}«-,«—, B(ljk;lA,Azk‘-hiwl“Alk) (JS’Y)WO7
—J

M=

= fn (250 XT:

j=1k

Il
o

sym(iq,...ik+;). Rearranging the summations we finally get
(26) ne =

2r T . PR .
— 2/ <Z Z Z (71)7Z(]‘ik)di_j+1 '~~dik+l BO}V... kolk41-k41 5;£]gu> (J2TH’Y) Wo.
Q \j=0k=01l=j—k

Now, the argumentation leading to the conclusion that the representative (18) is
defined correctly (globally) is quite analogous to that presented in the first part of
the proof.

It remains to discuss the following problem: Find the criteria for recognizing the
representatives of classes of forms in the r—th order variational sequence and the
reconstruction of classes from their representatives. This problem is solved for the
physically relevant part of the variational sequence in mechanics (see [5] and [14]).
For the field theory the calculations are technically difficult and are not finished
up to now.

7. EXAMPLES

Finally, let us present two important examples.

Example 1. Let W C Y be an open set. Let A € Q) W be a lagrangian given in
a fibered chart (V,4), V. C W, by the expression

A=Luwy, LeRV.
Using theorem 1(b) we obtain immediately
2r,r - l oc o
(27) Ex =@ ([AN) = | D (-1)'d, g W7 Awo
1=0 J1--di
which is evidently the Euler-Lagrange form of the lagrangian .



158 MICHAEL KRBEK, JANA MUSILOVA, AND JANA KASPAROVA

More generallylet o € Q"W be a form and [g] its class represented by the
horizontal form A, = ®7717([g]). A, has the chart expression

)\Q = hQ = EQ wo, ﬁg € QS+1‘/,
where L, is affine in variables y7, ;. Using lemma 4 and theorem 1(b) we obtain
immediately
O ([de]) = ST ([dA]) = &,
where &), is determined by the function £, following the equation (27) for s=2r+1
instead of 2r.

Example 2. Let W C Y be an open set. Let £ € QW be a dynamical form
given in the fibered chart (V,4), V' C W, by the expression

E=c,w? Awy, €5 € QV.
Then

o= dE = Oes,

g v wg Aw” Awp.
<|JI<r
On the other hand, in general, we have
ng:BUJ,f(wg/\w;(/\wo, Bgf—&-BlﬁJ:O.
Thus,
1 0e4
20y

== (52)
ay alt(ov)

other coefficients BYX being zero. Using theorem 1(c) we obtain

(28) He = /5" (1dE]) =

BY = _BJY = J=01... k), 1<k<r,

2r
1 € . Oe
_= E: v _(—1) g _
2 <5yq - Yy, i,

i1...%5

- ! Ogq v
— E (—1)! (j) dijyy oo dy By wi i, ANw” Awo,
(31

I=j+1 7]

which is the Helmholtz-Sonin form of the dynamical form &£.
More generally, let o € Q7 ;W be a form and [g] its class represented by the
dynamical form

=07 (o) = (eg)ow” Awo,  (eg)0 € Q57FV,
given by (16). Using lemma 4 and theorem 1(c) we can obtain

© 1o ([de]) = 23757 ([AE,]) = He,, 522041,
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These results are in agreement with those of Krupka (see [6]) and Kagparova ([4]
for the 1—st order variational sequence).

REFERENCES

[1] M. Francaviglia, M. Palese, R. Vitolo: Second order variations in variational
sequences. In: Coll. on Diff. Geometry. Proc. Conf., Debrecen, Hungary, July
2000.

[2] J. Kasparovd: Variational sequences in field theory. Ph. D. Thesis. Mathemat-
ical Institute, Silesian University, Opava, 2000, pp.71.

[3] J. Kasparova: Representation of the first order variational sequence in field
theory. In: Differential Geometry and its Applications. Proc. Conf. (D. Krupka,
I. Kolar and J. Slovédk, Editors.) Brno, Czech Republic, August 1998. Masaryk
University, Brno, 1999, 493-502.

[4] J. Kasparova: On some global representants of the 1-st order variational se-
quence. Preprint Series in Global Analysis GA 4/2000. Silesian University, Opava,
2000, pp. 9.

[5] M. Krbek: Variational sequence in mechanics and field theory. Diploma thesis.
Faculty of Science, Masaryk University, Brno 1998.

[6] D. Krupka: Variational sequences on finite order jet spaces. In: Differential
Geometry and its Applications, Proc. Conf. (J. Janyska and D. Krupka, Editors.)
Brno, Czechoslovakia, 1989. World Scientific, Singapore, 1990, 236-254.

[7] D. Krupka: Lectures on Variational Sequences. Open Education and Sciences,
Opava, Czech republic, 1995.

[8] D. Krupka: Variational sequences in mechanics. Calc. Var. 5 (1997), 558-583.

[9] D. Krupka: The Geometry of Lagrange structures II. Elementary Sheaf theory.
Preprint Series in Global Analysis GA 2/1998. Silesian University, Opava, 1998,
pp- 58.

[10] D. Krupka, J. Musilové: Trivial lagrangians in field theory. Diff. Geom. Appl.
9 (1998), 293-305.

[11] D. Krupka: The Geometry of Lagrange Structures. Preprint Series in Global
Analysis GA 7/1997. Silesian Univeristy, Opava, 1997, pp. 82.

[12] D. Krupka: The contact ideal. Diff. Geom. appl. 5 (1995), 257-276.

[13] J. Musilové: Variational sequence in higher order mechanics. In: Differential
geometry and its Applications, Proc. Conf. (D. Krupka, I. Kol4r and J. Slovék,
Editors.) Brno, Czech Republic, August 1995. Masaryk University, Brno, 1996,
611-624.

[14] J. Musilovd, M. Krbek: A note to the representation of the variational sequence
in mechanics. In: Differential Geometry and its Applications. Proc. Conf. (D.



160 MICHAEL KRBEK, JANA MUSILOVA, AND JANA KASPAROVA

Krupka, I. Koldf and J. Slovék, Editors.) Brno, Czech Republic, August 1998.
Masaryk University, Brno, 1999, 511-523.

[15] J. Steféanek: A representation of the variational sequence in higher order me-
chanics. In: Differential Geometry and its Applications, Proc. Conf. (D. Krupka,
I. Koldr and J. Slovék, Editors.) Brno, Czech Republic, August 1995. Masaryk
University, Brno, 1996, 469-478.

[16] R. Vitolo: On different geometric formulations of lagrangian formalism. Diff.
Geom. Appl. 10 (1999), 225-255.

FACULTY OF SCIENCE, MASARYK UNIVERSITY, BRNO KOTLARSKA 2, 611 37 BrNO, CzECH
REPUBLIC
E-mail address: krbek@physics.muni.cz

FACULTY OF SCIENCE, MASARYK UNIVERSITY, BRNO KOTLARSKA 2, 611 37 BrRNO, CZECH
REPUBLIC
E-mail address: janam@physics.muni.cz

MATHEMATICAL INSTITUTE, SILESIAN UNIVERSITY, OPAVA, BEZRUCOVO NAM. 13, 746 01
Opava, CZECH REPUBLIC
E-mail address: jana.kasparova@math.slu.cz



