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REPRESENTATION OF THE VARIATIONAL SEQUENCE IN
FIELD THEORY

MICHAEL KRBEK, JANA MUSILOVÁ, AND JANA KAŠPAROVÁ

Abstract. The aim of this paper is to discuss some aspects of local and global

properties of classical concepts of calculus of variations in the r−th order field
theory on fibered manifolds within the framework of the variational sequence,

which is the quotient of the De Rham sequence with respect to its subse-

quence of contact differential forms. Such a discussion is, in general, based on
the concept of sheaves of differential forms. In the paper a globally defined

representation of the variational sequence by forms is constructed for its part

closely related to the standard concepts of the calculus of variations. The ex-
tended definition of the Euler-Lagrange form as a representative of the class of

(n+2)-forms is considered and the definition of the so called Helmholtz-Sonin

form as a representative of the class of (n + 2)-forms is presented. The prop-
erties of corresponding terms in the variational sequence, considered as the

generalized Euler-Lagrange mapping and the Helmholtz-Sonin mapping, are
studied. There is a close relationship between elements of the quotient sheaves

(classes of forms) and the quotient mappings on one hand and the standard

objects of the calculus of variations, such as lagrangian, Euler–Lagrange form
and Helmholtz–Sonin expressions defining the so called Helmholtz–Sonin form,

on the other hand.

1. Introduction

One of the most important questions in the calculus of variations is the character-
ization of local and global properties of the Euler–Lagrange and Helmholtz–Sonin
mappings, especially their kernels and images. The general solution of this problem
on an r−jet prolongation of a given fibered manifold can give the answers concern-
ing the variationally trivial lagrangians and variational equations of motion in the
r−th order field theory or mechanics. The close relationship between the exterior
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derivative of a differential form and the Euler–Lagrange mapping in the classical
sense, formulated by Lepage and Dedecker, has been developed during last two
decades by many authors (Anderson, Betounes, Duchamp, Gotay, Krupka, Krup-
ková, Kuperschmidt, Olver, Pommaret, Saunders, Takens, Tulczyjew, Vinogradov
etc.) and it then led to the concept of the variational sequence on finite jet pro-
longations of fibered manifolds, introduced and systematically studied by Krupka
[6–8]. The variational sequence is constructed as the quotient of the well-known
De Rham exact sequence of spaces of differential forms with respect to its subse-
quence of certain spaces of contact forms. This subsequence is chosen in such a
way that the Euler–Lagrange and Helmholtz–Sonin mappings, considered in the
generalized concept, are contained in the corresponding quotient sequence of map-
pings. The theoretical background for the study of the variational sequence is,
among others, the theory of sheaves which was presented in details and elaborated
for the purposes of the variational sequence calculus by Krupka [9]. Some aspects
of the variational sequence were studied by some authors pertaining to Krupka’s
school: Štefánek [15] found a ”non- physical” local representation of the r−th or-
der variational sequence in mechanics. Musilová [13] and Musilová and Krbek [14]
described the (global) ”physical” representation of the physically relevant part of
the r−th order variational sequences in mechanics, including the reconstruction of
classes of forms from their representatives. Kašparová [2–4] has been studying the
first order variational sequence in field theory and she found the global represen-
tatives of physically relevant classes of forms. The problem of variationally trivial
lagrangians was completely solved by Krupka and Musilová [10]. Some problems
concerning the variational sequence in field theory were recently discussed also by
Vitolo in [16] and by Francaviglia, Palese and Vitolo in [1].

In this paper we discuss some properties of the r−th order variational sequence
on fibered manifolds over n–dimensional base. We construct its representation for
classes of q−forms, 1 ≤ q ≤ n+2, especially for the physically relevant part, i.e.
for classes of n−forms, (n + 1)−forms and (n + 2)−forms. Following the ideas of
Krupka [8] for mechanics, we give the generalized definition of the Euler–Lagrange
form and Helmholtz–Sonin form as well as the Euler–Lagrange and Helmholtz–
Sonin mapping. We show that our representatives are global for 1 ≤ q ≤ n+ 2.

2. Basic notations

Throughout the paper we use the following standard notation, used by Krupka
(see e.g. [8,11]): Y is a (n+m)−dimensional fibered manifold with the n−dimen-
sional base X and projection π. For an arbitrary integer r ≥ 0, JrY is the r−jet
prolongation of Y , πr and πr,s for r ≥ s ≥ 0 being the canonical projections of JrY
on X and JsY , respectively, Nr = dim JrY = n+

∑r
j=0Mj = n+m

(
n+r
n

)
, where

Mj = m
(
n+j−1

j

)
. Moreover, we denote Pr =

∑r−1
j=0 Mj + 2n − 1. By γ and Jr

xγ

we denote a section of the fibered manifold Y (or section of π) and its r−jet at x,
respectively. The mapping Jrγ : x→ Jrγ(x) = Jr

xγ is the r−jet prolongation of γ.
ΓΩ(π) is the set of all sections of π defined on Ω ⊂ X. Let 1 ≤ σ ≤ m and (V, ψ),
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ψ = (xi, yσ), 1≤ i≤n, be a fibered chart on Y . Then we denote (U,ϕ) and (V r, ψr)
the associated chart on X and associated fibered chart on JrY , respectively. Here
U = π(V ), ϕ = (xi), 1≤ i≤ n, V r = (πr,0)−1(V ), ψr = (xi, yσ, yσ

j1
, . . . , yσ

j1...jr
),

1≤ j1, . . . , jr ≤ n. The variables yσ
j1...jk

are completely symmetrical in all indices
contained in the multiindex J = (j1 . . . jk). The integer k = |J | is the length of
the multiindex J . (For yσ the corresponding multiindex is considered to be of zero
length.) Other kinds of multiindices used in the paper are of the form

(
σ
J

)
=
(

σ
j1...jk

)
,

0≤|J |≤r.
Let Ωr

0V be the ring of smooth functions on V r. Denote by Ωr
qV the Ωr

0V−module
of smooth differential q−forms on V r, Ωr

q,cV ⊂ Ωr
qV , the submodule of contact

q−forms (for 1 ≤ q ≤ n) and strongly contact q−forms (for n+ 1 ≤ q ≤ Nr),
and dΩr

q−1,cV ⊂ Ωr
qV the subset of exterior derivatives of contact (strongly con-

tact) (q − 1)−forms. Let Θr
qV = dΩr

q−1,cV + Ωr
q,cV . For 2 ≤ q ≤ n it holds

dΩr
q−1,cV ⊂ Ωr

q,cV , i.e. Θr
qV = Ωr

q,cV , and of course, Θr
1V = Ωr

1V . Θr
qV is trivial

for q>Pr. In addition we denote by ωσ
J = dyσ

J − yσ
Jidx

i, 0≤|J | ≤r−1, contact 1–
forms, and by ωi = (−1)i−1dx1∧ . . .∧dxi−1∧dxi+1∧ . . .∧dxn, ω0 = dx1∧ . . .∧dxn

the most frequently used horizontal forms. It holds dxi ∧ ωi = ω0 (without sum-
mation over i) and dωσ

j1...jk−1
∧ ωjk

= −ωσ
j1...jk

∧ ω0.
Any q−form % ∈ Ωr

qV is generated by forms (dxi, ωσ
J ,dy

σ
I ), 1≤ i≤n, 0≤ |J | ≤

r−1, |I|= r. The notation ωσ
J and dyσ

I means that ωσ
J = ωσ

j1...jk
for |J |= k and

dyσ
I = dyσ

j1...jr
.

3. Contact forms

This section presents a brief review of definitions and basic properties of contact
and strongly contact forms on JrY , adapted for practical purposes of our calcu-
lations. For the more detailed desription and proofs the reader is referred to the
fundamental papers of Krupka [11,12]. The forms

(1) (dxi, ωσ
j1 , . . . , ω

σ
j1...jr−1

,dyσ
j1...jr

), where ωσ
j1...jk

= dyσ
j1...jk

− yσ
j1...jki dxi,

define the contact base of 1-forms on V r. For a function f ∈ Ωr
0V we denote by

dif its total derivative with respect to the variable xi,

dif =
∂f

∂xi
+

∂f

∂yσ
J

yσ
Ji = d′if +

∂f

∂yσ
I

yσ
Ii, 0≤|J |≤r, |I| = r.

Lemma 1. Let W ⊂ Y be an open set, q ≥ 1 an integer, and % ∈ Ωr
qW a q-

form. Let (V, ψ) be a fibered chart on Y for which V ⊂ W . Let % have the chart
expression

(2) % =

q∑
s=0

AI1I2
σ1σ2 · · ·

Is
σs, is+1is+2...iq

dyσ1
I1
∧dyσ2

I2
∧ . . .∧dyσs

Is
∧dxis+1 ∧dxis+2 ∧ . . .∧dxiq

with coefficients antisymmetrical in all multiindices
((

I1
σ1

)
, . . . ,

(
Is

σs

))
, 0 ≤ |Ip| ≤

r, 1 ≤ p ≤ s, antisymmetrical in all indices (is+1, . . . , iq) and symmetrical in all
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indices within each multiindex Ip. Then there exists the unique decomposition

(3) (πr+1,r)∗% = h%+ p% = h%+ p1%+ · · ·+ pq%,

in which for every 1≤k≤q it holds

pk% = CI1I2
σ1σ2

· · · Ik
σk, ik+1ik+2...iq

ωσ1
I1
∧ ωσ2

I2
∧ . . . ∧ ωσk

Ik
∧ dxik+1 ∧ dxik+2 ∧ . . . ∧ dxiq ,

(4)

CI1I2
σ1σ2

· · · Ik
σk, ik+1ik+2...iq

=
q∑

s=k

(
s
k

)
AI1I2

σ1σ2
· · · Ik

σk
· · · Is

σs, is+1is+2...iq
y

σk+1
Ik+1ik+1

. . . yσs

Isis
,

alt(ik+1ik+2 . . . iq).

(Note, that the summations are taken over all independent choices of indices in
each multiindex, e.g. (j1 . . . jp) = J , |J | = p). The proof can be found in [11].
The term h% = p0% is the horizontal or 0−contact component of the form %, the
terms pk% for 1≤ k≤ q are its k−contact components. A form % ∈ Ωr

qV is called
πr−horizontal if πr+1,r% = h%, or contact if h% = 0. Every q−form for q > n is
contact. A q−form %, n < q ≤ N is called strongly contact, if pq−n% = 0. A form
% is called k−contact, if ps% = 0 for 0 ≤ s ≤ k − 1.

In our calculations we frequently use the (q−n)−contact component of a form
% for n<q≤Nr. For k = q − n the equation (4) gives

(5) pq−n% = CI1
σ1
· · · Iq−n

σq−n, iq−n+1...iq
εiq−n+1...iq ωσ1

I1
∧ . . . ∧ ωσq−n

Iq−n
∧ ω0 =

= BI1
σ1
· · ·Iq−n

σq−n
ωσ1

I1
∧ . . . ∧ ωσq−n

Iq−n
∧ ω0,

where εj1...jn , 1≤j1, . . . , jn≤n is the generalized Levi-Civita symbol.
The following lemma describes the local structure of contact forms. (For the

proof see [11,12].)

Lemma 2. Let W ⊂ Y be an open set and % ∈ Ωr
qW a q−form. Let (V, ψ) be any

fibered chart on Y for which V ⊂W . Then
(a) for 1≤q≤n the form % is contact if and only if it can be expressed as

(6) % = ΦJ
σ ω

σ
J for q = 1, and % = ωσ

J ∧ΨJ
σ + dΨ for 2≤q≤n, 0≤|J |≤r − 1,

where ΦJ
σ ∈ Ωr

0V are some functions, ΨJ
σ ∈ Ωr

q−1V some (q − 1)−forms, and

Ψ ∈ Ωr
q−1V is a contact (q − 1)−form which can be expressed as ωσ

I ∧ χI
σ for some

(q − 2)−forms χI
σ ∈ Ωr

q−2V, |I| = r − 1.
(b) for n < q ≤ Nr the form % is strongly contact if and only if it can be

expressed as

(7) % = ωσ1
J1
∧ . . . ∧ ωσp

Jp
∧ dωσp+1

Ip+1
∧ . . . ∧ dωσp+s

Ip+s
∧ ΦJ1...JpIp+1...Ip+s

σ1...σpσp+1...σp+s
,

where ΦJ1...JpIp+1...Ip+s
σ1...σpσp+1...σp+s ∈ Ωr

q−p−2sV , 0 ≤ |Jl| ≤ r − 1, 1 ≤ l ≤ p, |Ij | = r − 1,
p + 1 ≤ j ≤ p + s, and summation is made over such all p and s for which
p+ s ≥ q − n+ 1, p+ 2s ≤ q.
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4. Variational sequence

For the case of field theory we follow in this section the general ideas of Krupka
[6] and basic concepts presented in [7,8] for mechanics. Let Ωr

q, q≥0, be the direct
image of the sheaf of smooth q−forms over JrY by the jet projection πr,0 (functions
are considered as 0−forms). Denote
(8)
Ωr

q,c = ker p0 for 1 ≤ q ≤ n, Ωr
q,c = ker pq−n for q > n and Θr

q = Ωr
q,c + dΩr

q−1,c,

where p0 and pq−n are morphisms of sheaves induced by mappings p0 and pq−n,
assigning to a form % its horizontal and pq−n contact component, respectively.
dΩr

q−1,c is the image sheaf of Ωr
q−1,c by d. For every open set W ⊂ Y , Ωr

qW is
the Abelian group of q−forms on W r = (πr,0)−1(W ) and Ωr

q,cW is the Abelian
group of contact and strongly contact q−forms for 1≤q≤n and q>n, respectively,
expressed locally by lemma 2. dΩr

q−1,cW is the subgroup of Ωr
qW given as {% ∈

Ωr
qW |% = dη, η ∈ Ωr

q,cW}. Let us consider the sequence

(9) {0} → Θr
1 → · · · → Θr

n → Θr
n+1 → Θr

n+2 → · · · → Θr
Pr
→ {0},

with arrows (except the first one) given by exterior derivatives d. The following
lemma describes a basic property of this sequence. It can be proved in coordinates
directly.

Lemma 3. Let W ⊂ Y be an open set, and let % ∈ Θr
qW be a form, 1≤ q≤Nr.

Then there exists the unique decomposition % = %1 + d%2, where %1 ∈ Ωr
q,cW and

%2 ∈ Ωr
q−1,cW .

Thus, the sequence (9) is an exact subsequence of the de Rham sequence

{0} → Ωr
1 → · · · → Ωr

n → Ωr
n+1 → Ωr

n+2 → · · · → Ωr
Nr

→ {0}.
The quotient sequence

{0} → RY → Ωr
0 → Ωr

1/Θ
r
1 → · · · → Ωr

n/Θ
r
n → Ωr

n+1/Θ
r
n+1 → Ωr

n+2/Θ
r
n+2 →

(10) → · · · → Ωr
Pr
/Θr

Pr
→ Ωr

Pr+1 → · · · → Ωr
Nr

→ {0}
is called the variational sequence of the r−th order. It is, of course, also exact. We
denote quotient mappings as follows

(11) Er
q : Ωr

q/Θ
r
q 3 [%] −→ Er

q ([%]) = [d%] ∈ Ωr
q+1/Θ

r
q+1.

The mappings Er
n and Er

n+1 generalize the classical concept of Euler-Lagrange
mapping and Helmholtz-Sonin mapping of calculus of variations, respectively. They
represent ”physically relevant” terms of the variational sequence.

Using the chart expressions of forms we can prove the following lemma:

Lemma 4. Let W ⊂ Y be an open set, and let % ∈ Θr+1
q W be a form, 1≤q≤Nr.

Let % be (πr+1,r)−projectable, i.e. % = (πr+1,r)∗η for a form η ∈ Ωr
q. Then η is an

element of Θr
qW .
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(The proofs of lemmas 3 and 4 are based on technical coordinate calculations and
we do not present them here.)

Let us consider the following scheme:

{0} −→ Θr+1
q −→ Ωr+1

q −→ Ωr+1
q /Θr+1

q −→ {0}
↑ ↑ ↑

{0} −→ Θr
q −→ Ωr

q −→ Ωr
q/Θ

r
q −→ {0}

in which the first two ”uparrows” represent the immersions by pullbacks and the
third one defines the quotient mapping

Qr+1,r
q : Ωr

q/Θ
r
q −→ Ωr+1

q /Θr+1
q .

Using lemma 4 we can immediately see that the mapping Qr+1,r
q is injective. The

(injective) mappings

(12) Qs,r
q : Ωr

q/Θ
r
q −→ Ωs

q/Θ
s
q, r < s

can be defined in a quite analogous way.
The study of global properties of the variational sequence is based on the fol-

lowing facts proved by Krupka [6,8]:
1. Each sheaf Ωr

q is fine.
2. The variational sequence (in the shortened notation denoted by {0} → RY →
V) is an acyclic resolution od the constant sheaf RY over Y .

3. For every q ≥ 0 it holds Hq(Γ(RY ,V)) = Hq(Y,R), where

Γ(Y,V) : {0} → Γ(Y,RY ) → Γ(Y,Ωr
0) → Γ(Y,Ωr

1) → · · · → Γ(Y,Ωr
Nr

) → {0}
is the cochain complex of global sections and Hq(Γ(RY ,V)) denotes its q-th
cohomology group.

5. Representation of the variational sequence

In this section we use the injectivity of mappings Qs,r
q to discuss the problem of

the representation of the variational sequence by the appropriately chosen (exact)
sequence of mappings of spaces of forms. Let W be an open subset of Y . Two
q−forms %, η ∈ Ωr

qW belonging to the same class Ωr
qW/Θ

r
qW are called equivalent.

Two q−forms % ∈ Ωr
qW and η ∈ Ωt

qW are called equivalent in the generalized sense
if there exists an integer s ≥ r, t for which (πs,r)∗%−(πs,t)∗η ∈ Θs

qW . Any mapping

Φs,r
q : Ωr

qW/Θ
r
qW 3 [%] −→ Φs,r

q ([%]) = %0 ∈ Ωs
qW

with %0 ∈ [(πs,r)∗%] (i.e. % is equivalent with %0 in the generalized sense), is called
representation of Ωr

qW/Θ
r
qW . Because of the injectivity of mappings Qs,r

q (see
definition (12) and lemma 4) the representation mappings Φs,r

q are injective too.
This injectivity enables us to define the representation of the variational sequence

by forms as the lower row of the following diagram:

· · · −→ Ωr
q/Θ

r
q −→ Ωr

q+1/Θ
r
q+1 −→ · · ·

↓ ↓
· · · −→ Ωs

q −→ Ωs
q+1 −→ · · ·
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in which the upper row is the variational sequence, the ”downarrows” represent
the mappings Φs,r

q and mappings of the lower row are defined by

(13) Es,r
q : Ωs

q −→ Ωs
q+1, Es,r

q = Φs,r
q+1 ◦ Er

q ◦ (Φs,r
q )−1, Es,r

0 = Φs,r
1 ◦ Er

0 .

In the following we shall show that there exists such a representation of the varia-
tional sequence by forms (i.e. the integer s≥r and mappings Es,r

q ) for which Es,r
n

assigns to every lagrangian of the r−th order its Euler-Lagrange form and Es,t
n+1,

r ≤ t ≤ s, assigns to every dynamical form on J tY a form expressed locally by
means of Helmholtz-Sonin expressions. We shall concentrate our attention to the
case 1≤ q ≤ n+2, especially to the ”physically relevant” terms of the variational
sequence, i.e. q=n, n+1, n+2.

Theorem 1. Let W ⊂ Y be an open set, and let q≥ 1 be an integer. Let (V, ψ)
be a fibered chart on Y for which V ⊂W .

(a) Let 1≤q≤n and let % ∈ Ωr
qW be a form. Then the mapping

(14) Φs,r
q : Ωr

qV/Θ
r
qV 3 % −→ Φs,r

q ([%]) = (πs,r)∗h% ∈ Ωs
qV, s≥r + 1

is the representation of Ωr
qV/Θ

r
qV .

(b) Let q = n + 1 and let % ∈ Ωr
n+1W be a form expressed in the fibered chart

(V, ψ) by the relation

(15) p1% = BJ
σ ω

σ
J ∧ ω0,

in which coefficients BJ
σ ∈ Ωr+1

0 V , 0≤|J |≤r, are given by the chart expres-
sion of % following eqs. (2-5). Then the mapping

Φs,r
n+1 : Ωr

n+1V/Θ
r
n+1V 3 % −→ Φs,r

n+1([%]) = %0 ∈ Ωs
n+1V, s≥2r + 1

assigning to the class [%] the form

(16) %0 = (πs,2r+1)∗
(

r∑
l=0

(−1)ldj1 . . .djl
Bj1...jl

σ

)
ωσ ∧ ω0

is the representation of Ωr
n+1V/Θ

r
n+1V .

(c) Let q = n + 2 and let % ∈ Ωr
n+2W be a form expressed in the fibered chart

(V, ψ) by the relation

(17) p2% = BJK
σν ωσ

J ∧ ων
K ∧ ω0,

in which coefficients BJK
σν ∈ Ωr+1

0 V , 0 ≤ |J | ≤ r, are given by the chart
expression of % following eqs. (2-5). Then the mapping

Φs,r
n+2 : Ωr

n+2V/Θ
r
n+2V 3 % −→ Φs,r

n+2([%]) = %0 ∈ Ωs
n+2V, s≥2r + 1

assigning to the class [%] the form

(18) %0 =

=(πs,2r+1)∗
2r∑

j=0

[
j∑

p=0

r∑
l=j−p

(−1)l
(

l
j−p

)
dij+1 . . .dip+l

B
i1...ip,ip+1...ip+l
σν

]
ωσ

i1...ij
∧ων∧ω0,
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sym(i1 . . . ij), s≥2r + 1, is the representation of Ωr
n+2V/Θ

r
n+2V .

Proof: For the proof of theorem 1 the equivalence Φs,r
q ([%]) = 0 ⇔ % ∈ Θr

qV is to
be proved.

(a) Let 1≤q≤n. As it holds Θr
q = Ωr

q it is evident that h% = 0 ⇔ % ∈ Θr
q.

(b) Let q=n+1. Let (V, ψ) be a fibered chart on Y and let % ∈ Θr
n+1V . Then % is of

the form % = %1+d%2, where %1 ∈ Ωr
n+1,cV and %2 ∈ dΩr

n,cV (see lemma 3). We can
immediately see that Φs,r

n+1([%1]) = 0). Thus, only the equation Φs,r
n+1([d%2]) = 0

needs proof. Taking into account equation (6) we have

%2 = ωσ
J ∧ΨJ

σ + dΨ, 0 ≤ |J | ≤ r − 1

for some (n−1)−forms ΨJ
σ and some contact (n−1)−form Ψ = ωσ

I ∧χI
σ, |I| = r−1,

χI
σ ∈ Ωr

q−2V . Then it holds

d%2 = d(ωσ
J ∧ΨJ

σ) ⇒ p1d%2 = −ωσ
Ji ∧ dxi ∧ hΨJ

σ − ωσ
J ∧ hdΨJ

σ .

Using the chart expressions of ΨJ
σ in agreement with (3) and (4), i.e.

(πr+1,r)∗ΨJ
σ =

n−1∑
l=0

(P J
σ )J1

σ1
. . .Jl

σl,il+1...in−1
∧ ωσ1

J1
∧ . . . ωσl

Jl
∧ dxil+1 ∧ . . .dxin−1 ,

we obtain the coefficients BJ
σ in the corresponding chart expression (15) for p1d%2.

Putting them into (16) we can conclude, after some technical steps, that
Φs,r

n+1([d%2])=0.
Conversely, let Φs,r

n+1([%]) = 0. Using lemma 4 we obtain again by coordinate
calculations the expected result % ∈ Θr

n+1V .

(c) For q=n+2 the proof is quite analogous with that presented in (b). Since it
involves tedious coordinate calculations we do not present it here.

Theorem 2 presented in the following section of the paper shows that the local ex-
pressions (16,18) for representatives of a classes of (n+1)−forms and (n+2)−forms
give globally defined forms. These forms are called the Euler-Lagrange form and
Helmholtz-Sonin form, respectively. Following the relation (13) which defines the
representation of the variational sequence we can use theorem 1 for a form d%,
% ∈ Ωr

nW or % ∈ Ωr
n+1W , for obtaining the chart expressions of so called Euler-

Lagrange and Helmholtz-Sonin mappings Es,r
n and Es,r

n+1, respectively. The first
of them represent the generalization of the well-known ”classical” Euler-Lagrange
mapping of the calculus of variations which is closely related to the trivial vari-
ational problem. The second one is connected with the solution of the inverse
variational problem.
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6. Global properties of the representation

The construction of the representative mappings Φs,r
q in the previous section for

1≤q≤n is given by the horizontalization h, and thus, it is global. For q=n+1 the
globality of the definition of the representatives of the type (16) is mentioned in
[6] with the reference to a proof using an integration method. For the 1−st order
variational sequence the globality of representatives (16) and (18) was proved in
[2,4], with the use of the integration of appropriately chosen forms. In this section
we follow the idea of the integration method to prove the correctness (globality) of
higher order representatives (16) and, as a new result, (18).

Theorem 2. Let (V, ψ) be a fibered chart on Y . Let 1≤q≤n+2 and % ∈ Ωr
qY be

a form. Then the class [%] is represented by eqs. (14), (16) and (16) globally, for
1≤q≤n, q=n+1 and q=n+2, respectively.

Proof: Because of globality of the horizontalization mapping h only the cases
q=n+1, n+2 need proof. Let (V , ψ) be a fibered chart on Y such that V ∩ V 6= ∅
and let Ω ⊂ π(V ∩ V ) be a compact piece of manifold X.

Let q=n+1 and let % ∈ Ωr
n+1W be a form with the chart expression given by eqs.

(2-5), (15), i.e.

(19) (πr+1,r)∗% = BJ
σ ω

σ
J ∧ ω0 +

n+1∑
k=2

pk%, summation over 0≤|J |≤r.

Let ξ be a π−vertical vector field such that supp ξ ⊂ π−1(Ω), and let ξ = ξσ ∂
∂yσ

and ξ = ξ
σ ∂

∂yσ be its chart expressions in (V, ψ) and (V , ψ), respectively. Let us
define (for s≥r, in general)

(20) ηΩ =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗hiJrξ%,

where γ ∈ ΓΩ(π) is a section of π. (The function ηΩ is independent of the choice of
s, of course.) Using the decomposition (19) and the well-known chart expression
of the s−th prolongation of ξ, s≥1,

(21) Jsξ = ξσ
J

∂

∂yσ
J

, ξσ
J = ξσ

j1...jk
= djk

. . .dj1 ξ
σ, 0≤|J |≤s,

we obtain

ηΩ =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗hiJrξ% =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗iJr+1ξp1% =

(22)
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗
(
BJ

σ ·DJξ
σ
)
ω0 =

∫
Ω

(BJ
σ ·DJξ

σ)(Jr+1γ)ω0,
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where we have denoted by DJ the symbol dj1 . . .djk
for J = (j1 . . . jk), 1≤k ≤ r.

Due to the properties of total derivative, the operator DJ is symmetrical in all
indices contained in multiindex J . Using recursively the relation

((fdjg) ◦ Jr+1γ)ω0 =
(
(dj(fg)− gdjf) ◦ Jr+1γ

)
ω0 =

=
(
di(fg) ◦ Jr+1γ

)
δi
j ω0 −

(
(gdjf) ◦ Jr+1γ

)
ω0 =

=
(
di(fg) ◦ Jr+1γ

)
dxi ∧ ωj − ((gdjf) ◦ Jr+1γ)ω0 =

= Jr+1γ∗
(
(πr+1,r)∗d((fg) ∧ ωj)− (gdjf)ω0

)
for functions f, g, Stokes theorem and the assumption concerning the support of ξ
we have finally

(23) ηΩ =
∫

Ω

(
ξσ ·

r∑
l=1

(−1)ldj1 . . .djl
Bj1...jl

σ

)
(J2r+1γ)ω0.

The same holds for the case of the representative obtained from the chart expression
of % in (V , ψ), i.e.

ηΩ =
∫

Ω

(
ξ

σ ·
r∑

l=1

(−1)ldj1 . . .djl
B

j1...jl

σ

)
(J2r+1γ)ω0.

Taking into account the transformation between components of the vector field ξ
in charts (V, ψ) and (V , ψ) and the transformation relations for forms ωσ and ω0,

ξ
σ

= ξν ∂y
σ

∂yν
, ωσ =

∂yσ

∂yν
ων , ω0 = det

(
∂xj

∂xi

)
ω0, djf =

∂xi

∂xj
dif

we can see that the expression (16) for the representative fulfills the transformation
rules for a form. (The detailed transformation calculations for the 1−st order see
in [2].)

Let finally q=n+2 and let % ∈ Ωr
n+2Y be a form, for which

(24) πr+1,r% = BJK
σν ωσ

J ∧ ων
K ∧ ω0 +

n+2∑
k=3

pk%,

with coefficients BJK
σν given by (2-5). Let ζ be another vector field which fulfills

the same conditions as ξ. We define

(25) ηΩ =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗hiJrξiJrζ%.

Then

ηΩ =
∫

Ω

Jsγ∗ ◦ (πs,r+1)∗iJr+1ξiJr+1ζp2% =
∫

Ω

Jsγ∗(πs,r+1)∗
(
2ξσ

J ζ
ν
K BJK

σν

)
ω0 =

=
∫

Ω

(DJξ
σ)
(
2BJK

σν ·DKζ
ν
)
(Jr+1γ)ω0,
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with the operator DJ previously defined as dj1 . . .djk
, J = (j1 . . . jk). Applying

the procedure used for q = n+1 in the first part of the proof to the n−form
(2BJK

σν DKζ
ν ω0) we have

ηΩ =
∫

Ω

2(−1)|J|
(
ξσDJ(BJK

σν ·DKζ
ν)
)
(J2r+1γ)ω0,

summation over |J |, |K| ≤ r. Calculating the expression DJ

(
BJK

σν DKζ
ν
)

step by
step we obtain

ηΩ =
∫

Ω

2ξσ
∑
|J|≤r

∑
|K|≤r

(−1)|J|
∑

|J1|+|J2|=|J|

DK+J1ζ
ν DJ2B

JK
σν

 ◦ (J2r+1γ)ω0,

summation over |J |, |K|≤r.
ηΩ =

=
∫
Ω

(
2ξσ

r∑
j=1

r∑
k=0

(−1)j ∑
p+l=j

(
j
p

)
di1 . . . dik+pζν · dik+p+1 . . . dik+j B

ik+1...ik+j ,i1...ik
σν

)
(Jsγ)ω0,

sym(i1, . . . ik+j). Rearranging the summations we finally get

(26) ηΩ =

= 2

∫
Ω

(
2r∑

j=0

r∑
k=0

r∑
l=j−k

(−1)−l
(

l
j−k

)
dij+1 . . . dik+l B

i1...ik,ik+1...ik+l
σν · ξσ

i1...ij
ζν

)
(J2r+1γ) ω0.

Now, the argumentation leading to the conclusion that the representative (18) is
defined correctly (globally) is quite analogous to that presented in the first part of
the proof.

It remains to discuss the following problem: Find the criteria for recognizing the
representatives of classes of forms in the r−th order variational sequence and the
reconstruction of classes from their representatives. This problem is solved for the
physically relevant part of the variational sequence in mechanics (see [5] and [14]).
For the field theory the calculations are technically difficult and are not finished
up to now.

7. Examples

Finally, let us present two important examples.

Example 1. Let W ⊂ Y be an open set. Let λ ∈ Ωr
nW be a lagrangian given in

a fibered chart (V, ψ), V ⊂W , by the expression

λ = Lω0, L ∈ Ωr
0V.

Using theorem 1(b) we obtain immediately

(27) Eλ = Φ2r,r
n+1([dλ]) =

(
r∑

l=0

(−1)ldj1 . . .djl

∂L
∂yσ

j1...jl

)
ωσ ∧ ω0

which is evidently the Euler-Lagrange form of the lagrangian λ.
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More generally,let % ∈ Ωr
nW be a form and [%] its class represented by the

horizontal form λ% = Φr+1,r
n ([%]). λ% has the chart expression

λ% = h% = L% ω0, L% ∈ Ωr+1
0 V,

where L% is affine in variables yσ
r+1. Using lemma 4 and theorem 1(b) we obtain

immediately
Φ2r+1,r

n+1 ([d%]) = Φ2r+1,r+1
n+1 ([dλ%]) = Eλ% ,

where Eλ% is determined by the function L% following the equation (27) for s=2r+1
instead of 2r.

Example 2. Let W ⊂ Y be an open set. Let E ∈ Ωr
n+1W be a dynamical form

given in the fibered chart (V, ψ), V ⊂W , by the expression

E = εσ ω
σ ∧ ω0, εσ ∈ Ωr

0V.

Then

% = dE =
∑

0≤|J|≤r

∂εν

∂yσ
J

ωσ
J ∧ ων ∧ ω0.

On the other hand, in general, we have

p2% = BJK
σν ω

σ
J ∧ ων

K ∧ ω0, BJK
σν +BKJ

νσ = 0.

Thus,

B0J
σν = −BJ0

νσ = −1
2
∂εσ

∂yν
J

, J = (j1 . . . jk), 1≤k≤r,

B00
σν = −B00

νσ =
(
∂εν

∂yσ

)
alt(σν)

,

other coefficients BJK
σν being zero. Using theorem 1(c) we obtain

(28) HE = Φ2r+1,r
n+1 ([dE ]) =

=
1
2

 2r∑
j=0

(
εν

∂yσ
i1...ij

− (−1)j ∂εσ

∂yν
i1...ij

−

−
r∑

l=j+1

(−1)l

(
l

j

)
dij+1 . . .dil

∂εσ

∂yν
i1...il

 ωσ
i1...ij

∧ ων ∧ ω0,

which is the Helmholtz-Sonin form of the dynamical form E .
More generally, let % ∈ Ωr

n+1W be a form and [%] its class represented by the
dynamical form

E% = Φ2r+1,r
n+1 ([%]) = (ε%)σω

σ ∧ ω0, (ε%)σ ∈ Ω2r+1
0 V,

given by (16). Using lemma 4 and theorem 1(c) we can obtain

Φs,r
n+2([d%]) = Φs,2r+1

n+2 ([dE%]) = HE% , s≥2r+1.
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These results are in agreement with those of Krupka (see [6]) and Kašparová ([4]
for the 1−st order variational sequence).
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[4] J. Kašparová: On some global representants of the 1-st order variational se-
quence. Preprint Series in Global Analysis GA 4/2000. Silesian University, Opava,
2000, pp. 9.
[5] M. Krbek: Variational sequence in mechanics and field theory. Diploma thesis.
Faculty of Science, Masaryk University, Brno 1998.

[6] D. Krupka: Variational sequences on finite order jet spaces. In: Differential
Geometry and its Applications, Proc. Conf. (J. Janyška and D. Krupka, Editors.)
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Republic

E-mail address: janam@physics.muni.cz

Mathematical Institute, Silesian University, Opava, Bezručovo nám. 13, 746 01
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