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ALMOST COMPLEX SUBMANIFOLDS
OF QUATERNIONIC MANIFOLDS

D.V. ALEKSEEVSKY AND S. MARCHIAFAVA

Abstract. It is a report on some recent results concerning the almost com-

plex submanifolds of a quaternionic, in particular quaternionic Kähler, mani-
fold. Some extensions of these results to submanifolds of a quaternionic Kähler

manifold with torsion (QKT manifold) are considered.

1. Introduction

We report on some recent results concerning the submanifolds of special type,
in particular the almost complex submanifolds, of a quaternionic Kähler manifold
and we point out that some of this results extend to quaternionic manifolds. Also
we report on the classification of Kähler manifolds with parallel cubic line bundle,
which were defined in [5] and whose interest is related to the consideration of
maximal Kähler submanifolds of a quaternionic Kähler manifold.

The classification of almost complex submanifolds of known quaternionic spaces
is far to be completed. In fact, the almost complex submanifolds of a non symmetric
Alekseevsky space, [8, 9], were not studied at all.

On the other hand the classification of the immersions of Kähler manifolds with
parallel cubic line bundle into a quaternionic Kähler manifold different from the
quaternionic projective space HPn is still an open problem.

We take this opportunity to point out the interest to start to study the almost
quaternionic and almost complex submanifolds of a quaternion Kähler manifold
with torsion, [13]. We prove also some results which extend to such manifolds
those valid for special submanifolds of quaternionic Kähler manifolds.

Finally, as a starting point to study complex submanifolds of a hypercomplex
manifold (M4n,H = (Jα)), we prove that any integrable complex structure J
compatible with H is parallel with respect to the Obata connection.
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2. Almost quaternionic and almost complex submanifolds of an
almost quaternionic manifold (M̃4n, Q)

Let M̃ ≡ M̃4n be a 4n-dimensional manifold. We recall the basic notions of
quaternionic geometry, see [3].

An almost hypercomplex structure H = (Jα), α = 1, 2, 3, on M̃ is a triple of
anticommuting almost complex structures with J1J2 = J3.

An almost quaternionic structure Q on M̃ is a rank-3 subbundle Q→ M̃ of
the bundle EndTM̃ → M̃ which is locally generated by an almost hypercomplex
structure H = (J1, J2, J3), that is locally Qx = RJ1|x + RJ2|x + RJ3|x. The pair
(M̃,Q) is called an almost quaternionic manifold and H = (J1, J2, J3) is called
a local basis of Q .

The twistor bundle Z(M̃) → M̃ of the almost quaternionic manifold (M̃4n, Q)
is the S2-bundle whose fiber Z(M̃)x at x ∈ M̃ consists of all complex structures
subordinated to the quaternionic structure Qx, i.e.

Z(M̃)x = {J ∈ Qx | J2 = −Id}

A (local) section J : U ⊂ M̃ → Q is called a compatible almost complex
structure on U ⊂ M̃ .

Let (M̃4n, Q) be an almost quaternionic manifold.
It is natural to consider the following classes of special submanifolds of (M̃4n, Q).

Definition 2.1. A submanifold M4k ⊂ M̃4n is called an almost quaternionic
submanifold if its tangent spaces are Q-invariant, that is

∀x ∈M4k,∀J ∈ Qx one has JTxM
4k = TxM

4k

An almost quaternionic submanifold M4k carries an almost quaternionic struc-
ture Q′ induced by Q which consists of the restrictions to the fibers of TM of the
endomorphisms of Q.

Definition 2.2. LetM2m ⊂ M̃4n be a submanifold and J an almost complex struc-
ture on M2m. (M2m, J) is called an almost complex submanifold of (M̃4n, Q)
if for every x ∈ M2m, there exists J̃ ∈ Qx such that J̃|TxM2m = Jx, that is J is
the restriction to TM of a compatible almost complex structure of M̃4n. If J is an
(integrable) complex structure, then (M2m, J) is called a complex submanifold
of M̃4n.

3. Quaternionic submanifolds of a quaternionic manifold (M̃4n, Q)

Let Q be an almost quaternionic structure on M̃ ≡ M̃4n. Then Q is called a
quaternionic structure and (M̃,Q) a quaternionic manifold if there exists a
torsion-free connection ∇̃ on TM̃ preserving the subbundle Q (such a ∇̃ is called
a quaternionic connection and if it exists it is not unique).
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The following result was proved in [2], see also [17].

Theorem 3.1. Let M4k be an almost quaternionic submanifold of the quaternionic
manifold (M̃4n, Q). Then (M4k, Q′ = Q|TM) is a quaternionic manifold. More-
over it is totally geodesic with respect to any quaternionic connection ∇̃ of (M̃4n, Q)
and ∇̃|TM is a quaternionic connection.

Proof. It follows from the fact that the second fundamental form h of an
almost quaternionic submanifold M with respect to any Q-invariant decomposition
TxM̃ = TxM + T⊥x M satisfies the identities

h(JαX,Y ) = Jαh(X,Y ), ∀X,Y ∈ TxM, α = 1, 2, 3,

and hence vanishes.
In the case of a quaternionic Kähler manifold (M̃4n, Q, g̃) the theorem was

proved by A. Gray [11], D.V. Alekseevsky [1].
Due to this result, an almost quaternionic submanifold (M,Q′ = Q|TM) of a

quaternionic manifold (M̃,Q) is called a quaternionic submanifold.

Remark 3.2. Locally any quaternionic submanifold can be considered as a complex
manifold. In fact, locally a quaternionic manifold always admits a compatible
(integrable) complex structure, see [18], pag. 125, and also [6].

Remarkable examples of quaternionic manifolds are the quaternionic Kähler
manifolds. We recall that a quaternionic Kähler manifold (M̃4n, Q, g̃) is a
quaternionic manifold (M̃4n, Q) with a given Riemannian metric g̃ which is Her-
mitian with respect to Q, i.e. all endomorphisms of Q are skew-symmetric, and
whose Levi-Civita connection ∇̃ = ∇g̃ preserves Q.

Main known examples of quaternionic Kähler manifolds are the so called Wolf
spaces, which are symmetric with positive scalar curvature: with the exception of
few exotic spaces they are

HPn =
Sp(n+ 1) · Sp(1)
Sp(n) · Sp(1)

, Gr2(Cn+2) =
SU(n+ 2)

S(U(n)× U(2))
,

G̃r4(Rn+4) =
SO(n+ 4)

SO(n)× SO(4)
.

Other examples are the symmetric duals of Wolf spaces and, more generally,
the homogeneous quaternionic Kähler manifolds with a transitive solvable group
of motions, [9].

We recall that a classification of quaternionic submanifolds of symmetric quater-
nionic Kähler manifolds was obtained by Tasaki [20]. For n = 2 see also [14].

4. Almost complex submanifolds of a quaternionic manifold (M̃4n, Q)

Let (M̃4n, Q) be a quaternionic manifold and ∇̃ a quaternionic connection on
(M̃4n, Q). For any local basis H = (Jα) of Q one has

(4.1) ∇̃Jα = ωγ ⊗ Jβ − ωβ ⊗ Jγ
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where (α, β, γ) is a cyclic permutation of 1,2,3 and ωα are local 1-forms.
In general, the locally defined almost complex structures Jα are not integrable.

The Nijenhuis tensor of Jα is given by

(4.2) 4NJα
= Jβ∂(ψα ⊗ Id− (ψα ◦ Jα)⊗ Jα)

where ψα := (ωγ ◦ Jα − ωβ), and ∂ indicates the Spencer operator of alternation,
∂(ψ ⊗ Id)(X,Y ) = ψ(X)Y − ψ(Y )X.

Let (M2m, J) be an almost complex submanifold. We will assume that on an
open neighbourhood of M2m in M̃4n there is given a local basis H = (J1, J2, J3)
such that J = J1|TM on M . (Note that locally this assumption can always be
made.) We will call H a basis of Q adapted to M . We denote by ψ = ψ1|TM =
(ω3 ◦ J1 − ω2)|TM the restriction of 1-form ψ1 to M .

For any x ∈ M2m we put Kψ
x = Ker(ψx) ∩ Ker(ψx ◦ J) ⊂ TxM and we denote

by T xM the maximal Qx-invariant subspace of TxM , that is

T xM = TxM ∩ J2TxM.

Theorem 4.1. Let (M2m, J) be an almost complex submanifold of a quaternionic
manifold (M̃4n, Q). Then

(1) for any x ∈M
(4.3) 4NJx = J2∂(ψx ⊗ Id− (ψx ◦ J)⊗ J)

and hence NJ |x = 0 if and only if ψx = 0. In particular, J is integrable if
and only if ψ ≡ 0.

(2) If ψx 6= 0, then either T̄xM = Kψ
x or T̄xM = TxM . In the first case dimM =

4k + 2 and in the second case dimM = 4k.

Proof. Since the restriction NJ1 |TM to M of the Nijenhuis tensor of the almost
complex structure J1 coincides with the Nijenhuis tensor NJ of J = J1|TM , we
have the following formula

4NJ = J2∂(ψ ⊗ Id− (ψ ◦ J)⊗ J).

It implies (1) and shows that NJ(X,Y ) ∈ TxM ∩ J2TxM = T̄xM for X,Y ∈ TxM .
Assume now that ψx 6= 0. Then we can choose a vector Z ∈ TxM such that ψ(Z) =
1, ψ(JZ) = 0 . We have a direct sum decomposition TxM = Kψ

x ⊕ span{Z, JZ}.
For Y ∈ Kψ

x we get

4NJ(Z, Y ) = J2(ψ(Z)Y − ψ(JZ)JY ) = J2Y ∈ T̄xM
from which it follows J2K

ψ
x ⊂ T̄xM and hence Kψ

x ⊂ T̄xM . If T̄xM is a proper
subspace of TxM , then T̄xM = Kψ

x .

Corollary 4.2. Let (M2m, J) be an almost complex, but not complex submanifold
of the quaternionic manifold (M̃4n, Q).

i) If m is even, then the open submanifold M ′ = {ψ 6= 0} of M is a quater-
nionic (totally geodesic) submanifold of M̃ . Moreover, M is a quaternionic
submanifold of M̃ if M ′ is a dense subset of M .
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ii) If m is odd, then at any point x ∈ M ′ the maximal quaternionic subspace
T̄xM = Kψ

x has codimension 2 in TxM .

Corollary 4.3. Let (M2m, J) be an almost complex submanifold of the quater-
nionic manifold (M̃4n, Q). Then J is integrable if

(a) codim(T xM) > 2 ∀x ∈M
(b) (M,J) is analytic and ∃x ∈M | codim(T xM) > 2.

Recall that a quaternionic Kähler manifold is Einstein. Denote by ν = K
4n(n+2) ,

whereK is the scalar curvature, the reduced scalar curvature of such a manifold.

Theorem 4.4. (see [4, 5]) Let (M̃4n, Q, g̃) be a complete quaternionic Kähler man-
ifold with ν > 0. Then any analytic almost complex submanifold (M4k, J) with
complete induced metric g is a Hermitian submanifold i.e. the complex structure J
is integrable.

Proof. Assume that the almost complex structure J on M4k is not integrable.
Then by Corollary 4.2, M4k is a totally geodesic complete quaternionic Kähler
submanifold of positive scalar curvature with an almost complex structure . By a
result from [7] , a complete quaternionic Kähler manifold (M4k, Q′, g) with positive
scalar curvature admits no globally defined compatible almost complex structure.
This contradiction proves the Theorem.

5. Kähler submanifolds of a quaternionic Kähler manifold (M̃4n, Q, g̃)

Let now report on some results concerning Kähler submanifolds of a quaternionic
Kähler manifold (M̃4n, Q, g̃).

We assume ∇̃ = ∇g̃. We recall that for any given local basis H = (Jα) of Q the
1-forms ωα, α = 1, 2, 3, defined by the 4.1 verify the identities

(5.1) dωα + ωβ ∧ ωγ = −νFα
where Fα = g̃ ◦ Jα, α = 1, 2, 3, are Kähler forms. Moreover

(5.2) dFα − Fβ ∧ ωγ + ωβ ∧ Fγ = 0

In the sequel the local basis H = (Jα) will be always assumed to be adapted to
the considered almost complex submanifolds.

The following three theorems were proved in [4, 5].

Theorem 5.1. ([5]) Let (M2m, J, g = g̃|TM ) be an almost Kähler submanifold of
a quaternionic Kähler manifold (M̃4n, Q, g̃). Then it is Kähler if m 6= 3.

Proof. The proof bases on the identity

dF1 − F2 ∧ ω3 + ω2 ∧ F3 = 0

valid on M , see 5.2, where H = (Jα) is a basis of Q adapted to M .
Problem. It could be interesting to state conditions under which this theorem is
still valid by assuming that (M̃4n, Q, g̃) is a quaternionic Hermitian, not necessarily
Kähler, manifold.
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Theorem 5.2. ([4, 5]) The almost Hermitian submanifold (M2m, J, g),m > 1, of
a quaternionic Kähler manifold (M̃4n, Q, g̃) with ν 6= 0 is a Kähler submanifold if
and only if one of the following equivalent conditions holds:
k1) ω2|TxM = ω3|TxM = 0 , ∀x ∈M2m

k2) (M2m, J, g) is totally complex, i.e.

J2TxM⊥TxM , x ∈M

Proof. Let (M2m, J, g) be an almost Hermitian submanifold of M̃ . Using 4.1 we
get

(∇̃XJ1)Y = (∇XJ)Y + h(X, JY )− J1h(X,Y )

= ω3(X)J2Y − ω2(X)J3Y , X, Y ∈ TM
Taking the orthogonal projection on TxM we conclude that

(∇XJ)Y = 0 ⇐⇒
[
ω3(X)J2Y − ω2(X)J3Y

]T = 0

where
[ ]T means the tangent part. It is clear that any one of the conditions

k1) or k2) implies ∇J|x = 0∀x ∈ M , that is (M,J, g) is Kähler. To prove that
the conditions k1), k2) are also necessary for (M,J) to be Kähler, we first show
that at a point x ∈ M where ∇J|x = 0 at least one of them must hold: in fact,

from the identities (∇XJ)Y =
[
ω3(X)J2Y − ω2(X)J3Y

]T = 0 , (∇XJ)(JY ) =

−
[
ω3(X)J3Y + ω2(X)J2Y

]T = 0 ∀X,Y ∈ TxM one gets[
ω2

2(X) + ω2
3(X)

][
J2Y

]T = 0 , ∀X,Y ∈ TxM
and the claim follows immediately. Now we assume that (M,J, g) is Kähler and
prove that both k1) and k2) must hold on M .

1) Suppose that k1) does not hold at x ∈ M . Then k2) holds on an open
neighbourhood Ux of x in M and the structure equation 5.2 for α = 2, 3 gives
(ω3 ∧ F1)TxM = (ω2 ∧ F1)TxM = 0 which imply (since dimTxM > 2) ω3|TxM =
ω2|TxM = 0, by contradicting the assumption.

2) On the other hand, assume that k2) does not hold at x ∈M . Hence k1) holds
on an open neighbourhood Vx of x and the structure equation 5.1 for α = 2, 3 gives
νF2|TxM

= νF3|TxM
= 0. Since ν 6= 0 these give a contradiction.

K. Tsukada [21] proved that k2) implies k1), also for ν = 0.
M. Takeuchi [19] classified the maximal totally geodesic Kähler submanifolds

of a symmetric quaternionic Kähler manifold. For the aforenamed Wolf spaces of
positive scalar curvature they reduce to the following ones (which can be easily
described in classical terms):

CPn ↪→ HPn , CP p × CP q ↪→ Gr2(Cp+q+2) , Gr2(Rn+2) ↪→ Gr2(Cn+2)

Gr2(Cn+2) ↪→ G̃r4(Cn+4) , (Qp(C)×Qq(C))/Z2 ↪→ G̃r4(Rp+q+4)

where Qp(C) = SO(p+2)
SO(p)×SO(2) is the complex hyperquadric of dimension p.

K. Tsukada [21] classified all parallel Kähler immersions in HPn.
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We quote also the following theorem, see [5].

Theorem 5.3. Let (M̃4n, Q, g̃) be a quaternionic Kähler manifold with ν 6= 0.
Assume that for an almost complex submanifold (M2m, J) of (M̃4n, Q) the 2nd
fundamental form h satisfies the identity

h(X, JY ) = h(JX, Y ) = J1h(X,Y )

Then (M2m, J, g), g = g̃|M , it is either a Kähler submanifold or a quaternionic
submanifold.

The application of this result to the case h = 0, i.e. M2m totally geodesic, is
evident.

6. Maximal Kähler submanifolds (M2n, J, g) of a quaternionic Kähler

manifold (M̃4n, Q, g̃)

A particularly interesting case is that one of a maximal Kähler submanifold
(M2n, J, g) of a quaternionic Kähler manifold (M̃4n, Q, g̃).

Let H = (J1, J2, J3) be an almost hypercomplex structure adapted to M . Then

∇̃XJ1 = 0 , ∇̃XJ2 = ω(X)J3 , ∇̃XJ3 = −ω(X)J2 ∀X ∈ TM
and

(6.1) dω = −νF
where F = g ◦ J is the Kähler form of (g, J) on M .

By means of J2 we can identify the normal bundle T⊥M with the
tangent bundle TM :

ϕ = J2|T⊥M : T⊥x M → TxM
ξ 7→ J2ξ

∀x ∈M

Then the second fundamental form h of M is identified with the tensor field C ∈
Γ(TM ⊗ S2T ∗M) on M given by

C = J2 ◦ h
We called C the shape tensor of the submanifold (M2n, J). The following

properties hold:
(1) CX ∈ Endsym(TM) , X ∈ TM

(2) {CX , J} := CX ◦ J + J ◦ CX = 0

(in particular, TraceC. :=
∑
2n

CEi
Ei = 0 for any orthonormal basis (Ei)).

(3) The tensors gC, gC ◦ J defined by

gC(X,Y, Z) = g(CXY,Z) , (gC ◦ J)(X,Y, Z) = gC(JX, Y, Z)

are symmetric, i.e. gC, gC ◦ J ∈ S3T ∗M .

Moreover
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(4) ∇XC = J2∇′h+ω(X)C ◦J where ∇′ is the connection induced on the bundle
T⊥M ⊗ S2T ∗M .

From this last identity it is clear that M2m is parallel, i.e. ∇′h = 0, if and only
if the following identity holds:

(5) ∇XC = ω(X)C ◦ J
In this case, by taking into account the (6.1), one has the identity

(6) (RXY · C)Z = −νF (X,Y )CZ
Let define by

SJ = {A ∈ EndTM , {A, J} = 0 , g(AX,Y ) = g(X,AY )}

the bundle of symmetric endomorphisms of TM which anticommute with J and
by

S
(1)
J = {A ∈ Hom(TM,SJ) = T ∗M ⊗ SJ , AXY = AYX}

its first prolongation.
Then the validity of both (1),(2) can be expressed by saying that C is a section

of S(1)
J

Remark 6.1. In fact it must be taken into account that the tensor field C of a
parallel Kähler submanifold depends on the choice of J2, which could be not globally
defined, and hence it is determined up to a transformation of the form C ′ = sin θC+
cos θJ ◦ C .

7. Kähler manifolds with parallel cubic line bundle

From previous results it is clear that independently from any immersion, it is in-
teresting to take in consideration a Kähler manifold (M2m, J, g) (locally) admitting
a tensor field C ∈ Γ(TM ⊗ S2T ∗M) for which the (1),(2),(3) and (6) hold.

To define the precise notion of such a manifold it is convenient first to translate
in the complexified context the basic results stated for a maximal parallel Kähler
submanifold (M2n, J, g) of a quaternionic Kähler manifold (M̃4n, Q, g̃).

Consider the decompositions

TCM = T (10)M + T (01)M , T ∗CM = T ∗(10)M + T ∗(01)M

Denote by S(1)C
J the complexification of the bundle S(1)

J and by g ◦ S(1)C
J the asso-

ciated subbundle of the bundle S3(T ∗M)C (the bundle of cubic forms).
It can be proved that

g ◦ S(1)C
J = S3T ∗(10)M + S3T ∗(01)M

Hence the following result follows by using the decomposition

gC = q + q ∈ S3T ∗(10)M + S3T ∗(01)M
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Theorem 7.1. Let (M2n, J) be a parallel Kähler submanifold of a quaternionic
Kähler manifold M̃4n with ν 6= 0. If it is not totally geodesic then on M there is
a canonically defined parallel complex line bundle L of the bundle S3(T ∗(10)M) of
holomorphic cubic forms such that the curvature of the connection ∇L induced by
the Levi-Civita connection ∇ has the curvature form

(7.1) RL = iνF

where F = g ◦ J is the Kähler form of M

Definition 7.2. A parallel subbundle L ⊂ S3(T ∗(10)M) with the curvature form
(7.1) on a Kähler manifold M is called a parallel cubic line bundle of type ν.

8. Characterization of Kähler manifolds with parallel cubic line
bundle

Let M be a complete simply connected Kähler manifold with the de Rham
decomposition

M1 ×M2 × · · · ×Mp

into product of the flat Kähler manifold M0 and the irreducible Kähler manifolds
Mi, i = 1, . . . , p.

Assume that M admits a parallel cubic line bundle L of type ν 6= 0.
Then there is no flat factor M0 and p ≤ 3.
Moreover the following proposition holds.

Proposition 8.1. Under the above hypothesis, if M is reducible either

M = M2
ν ×M2

ν ×M2
ν

where M2
ν (= CP 1 or CH1) is a 2-dimensional manifold of constant curvature ν,

or

M = M1 ×M2
ν

where M1 is a complete simply connected reducible Kähler-Einstein manifold with

RicM1 = ν
m

2
g(1) (2m = dimM1)

such that

(S2V ∗)h′1 6= 0

where h′1 = [h1, h1] is the commutator of the holonomy Lie algebra h1 of M1 at a
point x ∈ M1, V = T

(10)
x M1 and W h denotes the subspace of h-invariant vectors

of a vector space W .
Conversely, any manifold M of these types has a parallel cubic line bundle.

Concerning the irreducible case we have the following proposition.
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Proposition 8.2. A complete simply connected irreducible Kähler manifold M2n

with holonomy Lie algebra h at a point x admits a parallel cubic line bundle of type
ν if and only if it is Kähler-Einstein with

RicM =
ν

3
ng

and

(S3V ∗)h′ 6= 0

where V = T
(10)
x M is the holomorphic tangent space with the natural action of the

Lie algebra h′ = [h, h].

Previous propositions reduce the classification of Kähler manifolds with parallel
cubic line bundle to the determination of the irreducible holonomy Lie algebras h of
a Kähler manifold such that the representation of h′1 = [h1, h1] on the holomorphic
tangent space V = T

(10)
x M has a non trivial invariant quadratic or cubic form, i.e.

such that

S2(V ∗)h′ 6= 0 or S3(V ∗)h′ 6= 0

Such a study, by help of tables in [16], led to the following classification, [5].

List of simply connected Kähler manifolds M2n

with parallel cubic line bundle L of type ν > 0

Case of reducible M2n

M2n =
SOn+1

SO2 · SOn−1
× P , M4 = P × P ′ , M6 = P × P ′ × P ′′ ,

M8 =
Sp2

U2
× P (where P, P ′, P ′′ ∼= CP 1)

Case of irreducible M2n

M2 = P , M12 =
Sp3

U3
, M18 =

SU6

S(U3 × U3)
, M30 =

SO12

U6
,

M54 =
E7

T 1 · E6

They are all symmetric.
For ν < 0 the manifold M2n is one of the dual symmetric spaces.
For ν > 0 they were obtained by K. Tsukada as parallel submanifolds of HPn,

[21].
The problem to find other immersions is still open.
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9. QKT manifolds (M̃4n, Q, g̃, ∇̃)

Recently a certain interest on quaternionic Kähler manifolds with torsion arose
mainly from the point of view of theoretical physics, see [12], [13].

We recall that a quaternionic Kähler manifold with torsion (briefly QKT
manifold) (M̃4n, Q, g̃, ∇̃) is a 4n-dimensional quaternionic Hermitian manifold
endowed with a QKT linear connection ∇̃: this means that ∇̃ preserves the
quaternionic structure Q, as well the Q-Hermitian metric g̃, and moreover the
covariant torsion tensor T̂ = g◦T̃ (which is totally skew-symmetric) has (1,2)+(2,1)
type with respect to all almost complex structures in Q, that is

(9.1) T̃X − T̃JXJ + JT̃JX + JT̃XJ = 0 ∀X ∈ TM , ∀J ∈ Q

where T̃X := T̃ (X, ·).
Then, see [13],

(9.2) ∇̃ = ∇g̃ +
1
2
T̃

Of course, T̃ = 0 if and only if (M̃4n, Q, g̃) is a quaternionic Kähler manifold.
In any case (M̃4n, Q) is a quaternionic manifold. For this result and the most

basic properties of QKT manifolds we send to [13]. We only remark that the
following identities hold.

Let H = (Jα) be a local basis of Q.
Then the condition that ∇̃ preserves Q gives

(9.3) ∇̃Jα = ωγ ⊗ Jβ − ωβ ⊗ Jγ

and hence
∇g̃XJα = ωγ(X)Jβ − ωβ(X)Jγ −

1
2
[T̃X , Jα]

from which

(9.4) dFα = ωγ ∧ Fβ − ωβ ∧ Fγ + JαT̂

where Fα = g(Jα·, ·) and JαT̂ = −T̂ (Jα·, Jα·, Jα·), α = 1, 2, 3. Moreover

d(JαT̂ ) = ρβ ∧ Fγ − ργ ∧ Fβ − ωβ ∧ (Jγ T̂ ) + ωγ ∧ (JβT̂ )

where
ρα = dωα + ωβ ∧ ωγ .

In the following we prove some results on special submanifolds of M̃4n.

10. Q-invariant submanifolds of a QKT manifold (M̃4n, Q, g̃, ∇̃)

Let M4k ⊂ M̃4n be an almost quaternionic submanifold. By Lemma and proof
of proposition 8 at page 31 of [2], we know that it is a totally geodesic submanifold
with respect to ∇̃,

∇̃XY ∈ Γ(TM) ∀X,Y ∈ Γ(TM)
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As a consequence (or also from the 9.4), we deduce that the restriction of T̃ to
TM4k takes values in TM4k and the following result holds true.

Theorem 10.1. Let M4k be an almost quaternionic submanifold of the QKT man-
ifold M̃4n. Then

1) (M4k, Q′ = Q|TM , g = g̃|TM ,∇′ = ∇̃|TM ) is a QKT manifold;
2) (M4k, g) is a totally geodesic submanifold of (M̃4n, g̃).

11. Almost complex submanifolds of a QKT manifold

Let (M̃4k, Q, g̃, ∇̃) be a QKT manifold.
Let (M2m, J) be an almost complex submanifold of (M̃4n, Q) and H = (Jα) a

local basis of Q adapted to M2m.

Remark 11.1. As in section 4, denote by ψ the restriction of the 1-form ω3 ◦J1−ω2

to TM . Then, even if ∇̃ is not a quaternionic connection, the statements (1), (2)
of Theorem 4.1 and his Corollaries continue to hold. In fact one still has

4NJx = J2∂(ψx ⊗ Id− (ψx ◦ J)⊗ J) ,

see 4.2, since 9.1 holds.

We now prove some generalizations of the results of section 5.

Theorem 11.2. a) If the almost Hermitian submanifold (M2m, J, g = g̃|TM ) of
the QKT manifold (M̃4n, Q, g̃, ∇̃) is a totally complex submanifold , then

1) J is integrable
2) ∇gXJ − (∇gJXJ)J = 0 ∀X ∈ TM ;
3) h(X, JY )− Jh(X,Y ) + h(JX, Y ) + Jh(JX, JY ) = 0 ∀X,Y ∈ TM .

where h is the 2nd fundamental form of M2m.
On the other hand:

b) if (M2m, J, g = g̃|TM ) is a Kähler submanifold of the QKT manifold
(M̃4n, Q, g̃, ∇̃), then the following identity holds:

h(X, JY )− Jh(X,Y ) + h(JX, Y ) + Jh(JX, JY ) = 0 ∀X,Y ∈ TM .

Proof. On the almost Hermitian submanifold (M2m, J, g = g̃|TM ) of the QKT
manifold (M̃4n, Q, g̃, ∇̃), for any X,Y ∈ TxM , by 9.2, one has

(∇gXJ)Y + h(X, JY )− Jh(X,Y ) = ω3(X)J2Y − ω2(X)J3X

− 1
2 [T̃ (X, JY )− JT̃ (X,Y )]

By substracting from this identity that one obtained by substituting X,Y with
JX, JY one obtains the identity
(11.1)

(∇gXJ)Y − (∇gJXJ)JY+ h(X, JY )− Jh(X,Y ) + h(JX, Y ) + Jh(JX, JY ) =
[ω3(X) + ω2(JX)]J2Y − [ω2(X)− ω3(JX)]J3Y
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since

T̃ (X, JY )− JT̃ (X,Y ) + T̃ (JX, Y ) + JT̃ (JX, JY ) = 0 .

By considering the tangent part and the part in the orthogonal TM⊥ of the identity
11.1 we get the following consequences.

a) If the submanifold is totally complex the identity 11.1, by considering the
tangential and the normal part respectively, is equivalent to the identities

(∇gXJ)Y − (∇gJXJ)JY = 0 ,

and

h(X, JY )− Jh(X,Y )+ h(JX, Y ) + Jh(JX, JY ) =
[ω3(X) + ω2(JX)]J2Y − [ω2(X)− ω3(JX)]J3Y

But the first one implies that

4NJ(X,Y ) = (∇gJXJ)Y − (∇gJY J)X − (∇gY J)(JX) + (∇gXJ)(JY ) = 0

that is J is integrable. Hence, by previous remark, ω2 − ω3 ◦ J = 0 on M and we
can conclude that the identity 3) holds.

On the other hand:
b) if we assume that the almost Hermitian submanifold is Kähler then ∇gJ = 0,

of course, and (ω2−ω3 ◦J)|TM = (ω3 +ω2 ◦J)|TM = 0 since J is integrable. Hence
11.1 becomes

h(X, JY )− Jh(X,Y ) + h(JX, Y ) + Jh(JX, JY ) = 0 ∀X,Y ∈ TM

and the statement b) is also proved.

12. (Integrable) complex structures J which are compatible with a
hypercomplex structure H = (Jα)

Let H = (J1, J2, J3) be a hypercomplex structure on a manifold M4n, that is
NJα = 0, ∀α = 1, 2, 3.

Let J =
∑
α aαJα,

∑
α a

2
α = 1 be an almost complex structure compatible

with H. Then the following identities hold:

4NJ(X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X, Y ]

=
∑

α

[aγ(JγX · aα) + aβ(JβX · aα) + aα(JαX · aα) − aβ(X · aγ) + aγ(X · aβ)]JαY

−
∑

α

[aγ(JγY · aα) + aβ(JβY · aα) + aα(JαY · aα) − aβ(Y · aγ) + aγ(Y · aβ)]JαX

+
∑
α,ρ

aαaρ([JαX, JβY ] − Jα[X, JβY ] − Jα[JβX, Y ]) − [X, Y ]
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that is
4NJ(X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X, Y ]

=
∑

α

[aγ(JγX · aα) + aβ(JβX · aα) + aα(JαX · aα) − aβ(X · aγ) + aγ(X · aβ)]JαY

−
∑

α

[aγ(JγY · aα) + aβ(JβY · aα) + aα(JαY · aα) − aβ(Y · aγ) + aγ(Y · aβ)]JαX

+
∑

α

a2
α([JαX, JαY ] − Jα[X, JαY ] − Jα[JαX, Y ] − [X, Y ])

+
∑
α 6=ρ

aαaρ([JαX, JρX] − Jα[X, JρY ] − Jα[JρX, Y ])

where (α, β, γ) is a circular permutation of (1, 2, 3).
By assumption, the Jα are integrable, that is

4NJα
(X,Y ) = [JαX, JαY ]− Jα[X, JαY ]− Jα[JαX,Y ]− [X,Y ] = 0 α = 1, 2, 3 .

This implies (see [3], Lemma 3.2)

[JαX, JρX]− Jα[X, JρY ]− Jα[JρX,Y ]+

+ [JρX, JαX]− Jρ[X, JαY ]− Jρ[JαX,Y ] = 0 ∀ α, ρ .
Hence

4NJ(X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X, Y ]

=
∑

α

[aγ(JγX · aα) + aβ(JβX · aα) + aα(JαX · aα) − aβ(X · aγ) + aγ(X · aβ)]JαY

−
∑

α

[aγ(JγY · aα) + aβ(JβY · aα) + aα(JαY · aα) − aβ(Y · aγ) + aγ(Y · aβ)]JαX

=
∑

α

[(JX) · aα − aβ(X · aγ) + aγ(X · aβ)]JαY

−
∑

α

[(JY ) · aα) − aβ(Y · aγ) + aγ(Y · aβ)]JαX .

It follows that J is integrable if and only if

(JX) · aα = aβ(X · aγ)− aγ(X · aβ) α = 1, 2, 3 .

By combining this with the other identity

−X · aα = aβ(JX · aγ)− aγ(JX · aβ) α = 1, 2, 3

one finds
−X · aα = aβ(JX · aγ)− aγ(JX · aβ)

= aβ [aα(X · aβ)− aβ(X · aα)]− aγ [aγ(X · aα)− aα(X · aγ)]
= aβaα(X · aβ)− [a2

β(X · aα) + a2
γ(X · aα)] + aγaα(X · aγ)

= −a2
α(X · aα) + a2

α(X · aα)

that is
X · aα = 0 , α = 1, 2, 3 .
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Hence

Theorem 12.1. The only complex structures J which are compatible with a hy-
percomplex structure H = (Jα) on a manifold M4n are linear combination of Jα
with constant coefficients.

In other words, a complex structure J is compatible with the hypercomplex struc-
ture H if and only if it is parallel with respect to the Obata connection ∇H .
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