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ON F-PLANAR MAPPINGS ONTO RIEMANNIAN SPACES

JOSEF MIKEŠ, VĚRA MALÍČKOVÁ, AND OLGA POKORNÁ

Abstract. In this paper we consider F -planar mappings from affine-connec-

ted spaces onto (pseudo-) Riemannian spaces. We found the equations of

these mappings in the form of the system of Cauchy equations under some
very general conditions. These results generalize the results obtained for geo-

detic, holomorphically projective and special F -planar mappings of Riemann-
ian and Kählerian spaces, by N.S. Sinyukov, J. Mikeš, V.V. Domashev, I.N.
Kurbatova, V.E. Berezovsky, M. Shiha. We continue the investigations of the

F -planar mappings for covariantly constant structures.

1. Introduction

This paper is concerned with certain questions of F -planar mapping from affine-
connected spaces onto (pseudo-) Riemannian spaces. The analysis is carried out in
tensor form, locally in a class of sufficiently smooth real functions.

Let us consider the space An with an affine connection without torsion equipped
with a coordinate system x in which, the affine connection Γh

ij(x), the affinor struc-
ture Fh

i (x) is defined.
A curve L: xh = xh(t) is said to be F-planar (J. Mikeš, N.S. Sinykov [13], [11])

if, under the parallel translation along it, the tangent vector λh def= dxh/dt lies in
the tangent 2-plane formed by the tangent vector λh and its conjugate Fh

αλ
α, i.e.

∇tλ
h ≡ dλh/dt− Γh

αβλ
αλβ = ρ1λ

h + ρ2F
h
αλ

α,

where ρ1 and ρ2 are functions of the parameter t.
F -planar curves generalize, in a natural way, geodesic, analytically planar ([14],

[17], [18], [19], [20]), and quasigeodesic curves ([15]).
Let in the spaces An and Ān, together with the objects of affine connections Γh

ij

and Γ̄h
ij , the affinor structures Fh

i and F̄h
i be defined.

A diffeomorfism γ: An→ Ān is said to be an F-planar mapping [13] if, under
this mapping, any F -planar curve An passes into the F̄ -planar curve Ān.
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Under the condition Rank ‖Fh
i − ρδh

i ‖ > 1 the mapping of An onto Ān is F -
planar if and only if the conditions

(a) Γ̄h
ij(x) =Γh

ij(x) + δh
i ψj + δh

j ψi + Fh
i ϕj + Fh

j ϕi;

(b) F̄h
i (x) =αFh

i (x) + βδh
i ,

(1)

holds ([13], [8], [11]), where ψi(x), ϕi(x) are covectors, α(x), β(x) are functions in
the coordinate system x which is general with respect to the mapping.
F -planar mappings generalize geodesic (if ϕi ≡ 0 or Fh

i = αδh
i ), quasigeodesic,

holomorphically projective, planar, and almost geodesic of the type of π2 mappings
([1], [11], [14], [15], [17], [18], [20]).

If space An with affine connection admits an F -planar mapping onto a Riemann-
ian space V̄n, then equation (1a) are equivalent to the equation

ḡij,k = 2ψkḡij + ψ(iḡj)k + ϕkF̄(ij) + ϕ(iF̄j)k , (2)

where ψi(x), ϕi(x) are covectors, α(x), β(x) are functions, F̄ij
def= ḡiαF

α
j , and ḡij

is the metric tensor of V̄n. Here and in what follows comma denotes the covariant
derivative in An and (i j) denotes a symmetrization of indices.

The necessity of condition (2) follows from (1a) and from investigation of covari-
ant derivative of the metric tensor ḡij of the space An with the affine connections
and its sufficiency follows from the complementary investigation of this derivative.

2. Fundamental equation of F-planar mapping in Cauchy form

In the space An equations (2) form a system of differential equations with co-
variant derivative relative to the components of the unknown tensors ḡij , ψi and ϕi.
Under the condition |ḡij | 6= 0 the solution of (2) generate a Riemannian space V̄n

with the metric tensor ḡij , on which the space An admits an F -planar mapping,
where the structure F̄h

i in Vn is (non-uniquely) defined by formulas (1b) .
We shall prove that the general solution of the system (2) in the given space An

depends on a finite number of parameters. ¿From this follows that from equations
(2) we can find a fundamental system describing the F -planar mappings in the
Cauchy form. It holds

Theorem 1. Let An be a space with affine connection and let be defined an affi-
nor Fh

i (x) such that Rank ‖Fh
i − ρδh

i ‖ > 5. Then An admits an F-planar mapping
onto a Riemannian space V̄n if and only if the system of differential equations of
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the Cauchy type:

(a) ḡij,k =2ψkḡij + ψ(iḡj)k + ϕkF̄(ij) + ϕ(iF̄j)k;

(b) ψi,j =αḡij + βF̄ij+
1

Q
ij

(ḡ, ψ, ϕ);

(c) ϕi,j =βḡij + γF̄ij+
2

Q
ij

(ḡ, ψ, ϕ);

(d) α,i =
3

Q
i
(ḡ, ψ, ϕ, α, β, γ);

(e) β,i =
4

Q
i
(ḡ, ψ, ϕ, α, β, γ);

(f) γ,i =
5

Q
i
(ḡ, ψ, ϕ, α, β, γ);

(3)

has a solution in An for the unknown tensors ḡij(x) (ḡij = ḡji, ‖ḡij‖ 6= 0), covec-
tors ψi(x), ϕi(x) and functions α(x), β(x), γ(x).

Here
σ

Q (σ = 1, 5) are tensors which are expressed as the functions of the shown
arguments, and also of the objects defined in An, i.e. affine connection and affinor
Fh

i .

Proof. Let An be a space with any affine connection and let be there define
affinor Fh

i (x) following relation satisfying

Rank ‖Fh
i − ρδh

i ‖ > 5, (4)

where ρ is a function. Let space An admits of an F -planar mappings onto a
Riemannian space V̄n. Then in An the equation (2) holds.

We shall investigate the integrability conditions of these equations. Let them
differentiate covariantly by xl and then alternate by indices k and l. With respect
to Ricci identity and equations (2) we find the following:

2ψ[kl]ḡij + ψilḡjk + ψjlḡik − ψikḡjl − ψjkḡil+

+ϕ[kl]F̄(ij) + ϕilF̄jk + ϕjlF̄ik − ϕikF̄jl − ϕjkF̄il =
6

Q
ijkl

(ḡ, ψ, ϕ),
(5)

where [kl] is the alternation by k and l without division, ψij
def= ψi,j ; ϕij

def= ϕi,j .

The tensor
6

Q has a form analogical to previous tensors
σ

Q , where σ = 1, 5. Its
concrete form is the following:

6

Q
def= ḡiαQ

α
jkl + ḡjαQ

α
ikl,
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where

Qh
ikl

def= Rh
ikl + Fh

αF
α
l ϕiϕk − Fh

αF
α
k ϕiϕl + Fh

i,[kϕl] − Fh
[k,l]ϕi +

+δh
k (ψiψl + ψαF

α
i ϕl + ψαF

α
l ϕi) + Fh

k (ϕαF
α
i ϕl + ϕαF

α
l ϕi)−

−δh
l (ψiψk + ψαF

α
i ϕk − ψαF

α
k ϕi)− Fh

l (ϕαF
α
i ϕk + ϕαF

α
k ϕi) +

and Rh
ijk is the Riemannian tensor.

We shall investigate the homogeneous equation in the form

2
∗
ψ

[kl]
ḡij+

∗
ψ

il
ḡjk+

∗
ψ

jl
ḡik−

∗
ψ

ik
ḡjl−

∗
ψ

jk
ḡil+

+
∗
ϕ

[kl]
F̄(ij)+

∗
ϕ

il
F̄jk+

∗
ϕ

jl
F̄ik−

∗
ϕ

ik
F̄jl−

∗
ϕ

jk
F̄il = 0.

(6)

with unknowns
∗
ψ

ij
and

∗
ϕ

ij
. We shall prove that this equation has, by the condition

(4), the solution in the form

(a)
∗
ψ

ij
= αḡij + βF̄ij ; (b)

∗
ϕ

ij
= βḡij + γF̄ij , (7)

where α, β, γ are numbers.
a) Let us assume that there exists a vector εh such that the vectors εα ∗

ϕ
αi

,
εαḡαi and εαF̄αi are linearly independent.

Then there exists a vector ηi such that holds

εαηβ ∗
ϕ

αβ
= 1, εαηβ ḡαβ = 0, εαηβF̄αβ = 0.

Contracting (6) with εiεjηl we see that the vector εαF̄αi is a linear combination of
the following vectors

ηα
∗
ψ

[kα]
, ηα ∗

ϕ
[kα]

, εαḡkα.

After the contraction (6) with εjηl and the elimination of vector εαF̄αi with
εjηl, we see that Rank ‖F̄ij − αgij‖ ≤ 5, which is a contradiction with (4).

Therefore the vectors εα ∗
ϕ

αi
, εαḡαi and εαF̄αi are linearly dependent for any

vector εh. It follows from this fact that for any εh the equation
∗
ϕ

[i

α
δj
βF

k]
γ εαεβεγ = 0

holds, where
∗
ϕ

h

i

def= ḡhα ∗
ϕ

αi
. This condition is equivalent to

∗
ϕ

[i

(α
δj
βF

k]
γ) = 0, (8)

where [ijk] and (αβγ) denote the alternation and the symmetrisation by mentioned
indices, respectively.

Since Fh
i 6= αδh

i , there exists a vector εi such that εi and ξi def= εαF i
α are lineary

independent. Contracting (8) with εαεβεγ , we see that the vector εα ∗
ϕ

i

α
is a linear

combination of the vectors εi and ξ. Then, after the contraction, (8) with εβεγ we
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obtain that
∗
ϕ

i

α
= βδi

α + γF i
α + aαε

i + bαξ
i, where aα, bα are covectors and β, γ are

functions. Under the assumption that aα or bα is non-zero, after the substitution
of

∗
ϕ

i

α
into (8) we get a contradiction with (4).

Hence
∗
ϕ

i

α
= βδi

α + γF i
α. From this formulas (7b) follow easily.

b) Analogously, let us suppose the existence of a vector εh such that the vec-

tors εα
∗
ψ

αi
, εαḡαi and εαF̄αi are linearly independent. However, this assumption

is in contradiction with (4) and the regularity of the metric tensor ḡij . That is

why the vectors εα
∗
ψ

αi
, εαḡαi and εαF̄αi are linearly dependent for any vector εh.

¿From this follows that
∗
ψ

ij
= αḡij + β̄F̄ij , where α, β̄ are numbers. Substituting

this relation and (7b) into (6), we see that β̄ = β.
In this way we proved that the general solution of the homogeneous system of

equations (6) is of the form (7). Therefore the conditions (5) imply the equa-
tions (3b) and (3c).

Further we shall investigate the integrability conditions of equations (3b). Dif-
ferentiating the equations (3b) covariantly by xk and then alternating by j and k,
by the Ricci identity and (3a, b, c), we obtain

ḡijα,k − ḡikα,j + F̄ijβ,k − F̄ikβ,j =
7

Q
ijk

(ḡ, ψ, ϕ, α, β, γ). (9)

The homogeneous equation

ḡij
∗
α

k
− ḡik

∗
α

j
+ F̄ij

∗
β

k
− F̄ik

∗
β

j
= 0

with unknowns
∗
α

i
and

∗
β

i
has only trivial solution

∗
α

i
= 0,

∗
β

i
= 0 if the conditions

(4) are satisfied. That is why the equations (3d, e) follow from the condition (9).
Similarly, the last equation (3f) of the system (3) can be obtained using the

integrability conditions of equations (3c).
Evidently, the system (3) is closed with respect to unknown tensors ḡij , ψi, ϕi,

α, β, γ. The Theorem 1 is proved.

We know from the theory of differential equations that the initial value prob-
lem (3) with initial conditions

ḡij(xo) =
o
ḡ
ij

; ψi(xo) =
o

ψ
i
; ϕi(xo) =

o
ϕ

i
; α(xo) =

o
α; β(xo) =

o

β; γ(xo) =
o
γ,

has at most one solution. As the tensor ḡij is symmetric, the general solution of
this system depends on

r ≤ 1
2n(n+ 5) + 3

real parameters.
¿From this the following theorem follows.

Theorem 2. Let An be a space with affine connection, where an affinor Fh
i (x)

is defined such that Rank ‖Fh
i − ρδh

i ‖ > 5. The set of all Riemannian spaces V̄n,
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for which An admits F-planar mappings, depends on at most 1
2n(n + 5) + 3 real

parameters.

This theorem was proved in v [7] under more restrictive conditions:
Rank ‖Fh

i − ρδh
i ‖ > 18. By a detailed analysis of the proof we can see in both

theorems 1 and 2 that the condition Rank ‖Fh
i − ρδh

i ‖ > 5 can be substituted by
the assumptions n > 8 and Rank ‖Fh

i − ρδh
i ‖ > 4.

Theorems 1 and 2 generalize similar results obtained by N.S. Sinyukov [17]
for geodesic mappings of Riemannian spaces, J. Mikeš and V.E. Berezovski [12]
for geodesic mappings of spaces with affine connection onto Riemannian spaces,
V.V. Domashev and J. Mikeš [2], [6], for holomorphically projective mappings of
Kählerian spaces, I.N. Kurbatova [5] for holomorphically projective mappings of
hyperbolic Kählerian spaces, K- and H-spaces and M. Shiha [16] for holomorphi-
cally projective mappings of m-parabolic Kählerian spaces (see [17], [10], [11]).

3. F-planar mappings with covariantly constant conditions of
affinor structures F

As we said before, F -planar mappings generalize a whole series of previously
studied mappings.We list below some conditions under which the F -planar mapping
will be one of the mappings studied earlier by authors.

Let us recall that an affinor Fh
i is said to be an e-structure if the relation [17],

[18]
Fh

αF
α
i = e δh

i , where e = ±1, 0, (10)
is satisfied.

The affinor
∗
Fh

i is equivalent to e-structure if there exist an e-structure Fh
i and

numbers α, β such that
∗
Fh

i = αFh
i + βδh

i . (11)
holds.

We have a following theorem.

Theorem 3. Let a diffeomorphism An→ Ān be a non-affine F-planar mapping.
If the structures Fh

i and F̄h
i are covariantly constant and Rank ‖F̄h

i − ρδh
i ‖ ≥ 4,

then this mapping is semigeodesic of type π2(e) and the structures are covariantly
constant equivalent e-structures.

Proof. Let An admits non-affine F -planar mapping onto Ān, and the structures
Fh

i and F̄h
i are covariantly constant in An and Ān, respectively, and Rank ‖F̄h

i −
ρδh

i ‖ ≥ 4. Then the formulas (1) hold.
We express covariant derivative Fh

i in the space Ān: Fh
i|j ≡ ∂jF

h
i + Γ̄h

αjF
α
i −

Γ̄α
ijF

h
α , where ∂i

def= ∂/∂xi. Using formula (1a) we obtain:

Fh
i|j = Fh

i,j + Fα
i ψαδ

h
j + (Fα

i ϕα − ψi)Fh
j − ϕiF

h
αF

α
j , (12)

where ”,” and ”|” are covariant differentiate in An and Ān, respectively.
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We differentiate formulas (1b) in Ān covariantly. As we have assumed Fh
i,j = 0

and F̄h
i|j = 0, by substitution (12) we obtain

∂jaF
h
i + ∂jbδ

h
i + a(Fα

i ψαδ
h
j + (Fα

i ϕα − ψi)Fh
j − ϕiF

h
αF

α
j ) = 0. (13)

By ∂ja 6= 0 we come to contradiction with Rank ‖F̄h
i −ρδh

i ‖ ≥ 4. Thus a ≡ const.
Analogously, for n > 3 formulas (13) imply that b ≡ const.

Since a 6= 0, formula (13) can be simplified:

Fα
i ψαδ

h
j + (Fα

i ϕα − ψi)Fh
j − ϕiF

h
αF

α
j = 0. (14)

The mapping f : An→ Ānis not affine and hence ψi 6= 0 or ϕi 6= 0. If ϕi = 0,
then for ψi 6= 0 it follows from (14) that Fh

i = ρδh
i , which is a contradiction. So

we have ϕi 6= 0. Than from the relation (14) we obtain

Fh
αF

α
i = αδh

i + βFh
i , (15)

where α, β are functions.
We can show that α, β are constants by covariant derivations of the relations

(15) in An . Then we can easily see that we can choose numbers c a d such that

for affinor structure
∗
Fh

i
def= cFh

i + dδh
i holds

∗
Fh

α

∗
Fα

i = eδh
i , where e = ±1, 0. This

means that the affinor Fh
i is eqvivalent to e-structure.

Since in our case a and b in (1b) are constant, we can prove analogously that
the structure F̄h

i is also equivalent to e-structure. Moreover, both structures Fh
i

and F̄h
i are simultaneously covariantly constant in An and in Ān.

It follows from the facts mentioned above that in formulas (1) the original struc-
tures can be substitute by equivalent covariantly constant e-structures. That is why
for F -planar mapping f : An → Ān the formulas (1a), Fh

i,j = 0 and Fh
αF

α
i = eδh

i are
satisfied. These conditions show that the mapping f is almost geodesic mapping
of type π2(e) in the sence of N.S. Sinyukov [17], [18]. The proof of Theorem 3 is
now complete.

A.Z. Petrov investigated quasigeodesic mappings of 4-dimensional
pseudo-Riemannian spaces V4 → V̄4, which are in fact special F -planar mappings,
under the condition of preserving the structure F̄h

i ≡ Fh
i and the skew-symmetry

of tensors Fα
i gαj and F̄α

i ḡαj , where gij and ḡij are metric tensors of V4 and V̄4.
The following result holds:

Theorem 4. Let a diffeomorphism of Riemannian spaces f : Vn→ V̄n be a non-
affine F-planar mapping. If Rank ‖Fh

i − ρδh
i ‖ ≥ 4, Fα

i gαj and F̄α
i ḡαj are skew-

symmetric and covariantly constant in Vn and V̄n, then Vn and V̄n are Kähler
spaces and this mapping is holomorphically-projective.

Proof. Let f : Vn → V̄n be non-affine F -planar mapping, Rank ‖Fh
i −ρδh

i ‖ ≥ 4,
and F̄α

i ḡαj be skew-symmetric and covariantly constant in Vn and V̄n, respectively.
By Theorem 3, the affinor structures are connected by the formula (1b) with

a, b constant and we have Fh
αF

α
i = αδh

i + βFh
i , α, β are constant.
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As Fα
i gαj + Fα

j gαi = 0 holds, contracting this relation with F j
k , we obtain

gαβF
α
i F

β
j + αgik + βFα

k gαi = 0.

Alternating this expression, we see that βFα
k gαi = 0, which implies β = 0. This

means that Fh
αF

α
i = αδh

i . Analogously we can see that F̄h
α F̄

α
i = ᾱδh

i holds, too.
Substituting (1b), we easily obtain 2abFh

i = δh
i (ᾱ − αa2 − b2). Hence b = 0,

ᾱ = αa2, a 6= 0.
If ᾱ = α = 0 then Vn and V̄n are parabolic Kählerian spaces (see [10], [16]) and

f : Vn → V̄n is a holomorphically projective mapping.
Let us suppose ᾱ 6= 0 and α 6= 0. If we put e = signα ≡ sign ᾱ and

∗
F

h

i

def=
1√
|α|

Fh
i and

∗
F̄

h

i

def=
1√
|ᾱ|

F̄h
i ,

then
∗
F h

i and
∗
F̄ h

i are Kählerian structures and Vn and V̄n are Kählerian spaces
(”classical” Kählerian for e = −1 and hyperbolic Kählerian for e = 1). It is easy
to see that the mapping f : Vn → V̄n is holomorphically projective (see [10], [17],
[18], [20]).

Further, we studied holomorphically projective mappings of almost Hermitian
spaces. Results for this type of spaces are interesting from the point of view of
their classification (Gray-Hervella [4]).

References

[1] V.A. Dobrovolsky, Almost projective mappings of gravitational fields. Degenerated case, In:
Gravitation and Theory of relativity [in Russian], Vol. 8, Kazan. State Univ., Kazan, 1971,

65–91.
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