Steps in Differential Geometry, Proceedings of the Colloquium
on Differential Geometry, 25-30 July, 2000, Debrecen, Hungary

ON F-PLANAR MAPPINGS ONTO RIEMANNIAN SPACES

JOSEF MIKES, VERA MALICKOVA, AND OLGA POKORNA

ABSTRACT. In this paper we consider F-planar mappings from affine-connec-
ted spaces onto (pseudo-) Riemannian spaces. We found the equations of
these mappings in the form of the system of Cauchy equations under some
very general conditions. These results generalize the results obtained for geo-
detic, holomorphically projective and special F-planar mappings of Riemann-
ian and Ké&hlerian spaces, by N.S. Sinyukov, J. Mikes, V.V. Domashev, I.N.
Kurbatova, V.E. Berezovsky, M. Shiha. We continue the investigations of the
F-planar mappings for covariantly constant structures.

1. INTRODUCTION

This paper is concerned with certain questions of F-planar mapping from affine-
connected spaces onto (pseudo-) Riemannian spaces. The analysis is carried out in
tensor form, locally in a class of sufficiently smooth real functions.

Let us consider the space A,, with an affine connection without torsion equipped
with a coordinate system z in which, the affine connection F?j(xL the affinor struc-
ture F*(z) is defined.

A curve L: z" = z"(¢) is said to be F-planar (J. Mikes, N.S. Sinykov [13], [11])

if, under the parallel translation along it, the tangent vector A % dzh /dt lies in
the tangent 2-plane formed by the tangent vector A" and its conjugate F\%, i.e.

VA = dMfdt — TR AN = py A + pa FEN,

where p; and ps are functions of the parameter ¢.

F-planar curves generalize, in a natural way, geodesic, analytically planar ([14],
[17], [18], [19], [20]), and quasigeodesic curves ([15]).

Let in the spaces A,, and A,,, together with the objects of affine connections Fé‘j
and f‘?j, the affinor structures F* and F}* be defined.

A diffeomorfism v: A, — A, is said to be an F-planar mapping [13] if, under
this mapping, any F-planar curve A,, passes into the F-planar curve A,,.
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Under the condition Rank ||F* — pd”|| > 1 the mapping of A,, onto A, is F-
planar if and only if the conditions

(a) Ti(z) =) +08; + 05y + Flloj + Fllos;

(1)
(b) Fl'(z) =aF](z)+ B,

holds ([13], [8], [11]), where 9;(x), @;(z) are covectors, a(x), 5(z) are functions in
the coordinate system x which is general with respect to the mapping.

F-planar mappings generalize geodesic (if ¢; = 0 or Fih = cu?zh)7 quasigeodesic,
holomorphically projective, planar, and almost geodesic of the type of mo mappings
(], [11], (4], [15], (171, 18], [20).

If space A,, with affine connection admits an F-planar mapping onto a Riemann-
ian space V,,, then equation (1a) are equivalent to the equation

Gijk = 2kGij + VGie + exFlg) + 0 Fjn (2)

where 1;(z), ;(z) are covectors, a(z), B(x) are functions, Fj; Lef gia F*, and g;;

is the metric tensor of V,,. Here and in what follows comma denotes the covariant
derivative in A, and (ij) denotes a symmetrization of indices.

The necessity of condition (2) follows from (1a) and from investigation of covari-
ant derivative of the metric tensor g;; of the space A,, with the affine connections
and its sufficiency follows from the complementary investigation of this derivative.

2. FUNDAMENTAL EQUATION OF F-PLANAR MAPPING IN CAUCHY FORM

In the space A,, equations (2) form a system of differential equations with co-
variant derivative relative to the components of the unknown tensors g;;, 1; and ¢;.
Under the condition |g;;| # 0 the solution of (2) generate a Riemannian space V;,
with the metric tensor g;;, on which the space A, admits an F-planar mapping,
where the structure F* in V,, is (non-uniquely) defined by formulas (1b) .

We shall prove that the general solution of the system (2) in the given space A,
depends on a finite number of parameters. ;From this follows that from equations
(2) we can find a fundamental system describing the F-planar mappings in the
Cauchy form. It holds

Theorem 1. Let A, be a space with affine connection and let be defined an affi-
nor F}'(z) such that Rank |F]' — pé!'|| > 5. Then A, admits an F-planar mapping
onto a Riemannian space V,, if and only if the system of differential equations of
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the Cauchy type:
(@) Gijk  =2UxGij + Vudpk + euFug + eaFje
_ 1
(b) Wi;  =agi+ BFi;+ Q. (3, ¢, ¢);
— 7 2 —
(©) wij =09 +vF;+ Q9,9 ¢);
3 —
(d) a;  =Q,g:%, 0, B,7);

éi(§7¢7 @, a, B,7);

/\
o
&
@
<

I

) 7 =g2i(§7¢7<p,a,ﬁm);

has a solution in A, for the unknown tensors gi;(x) (gij = Gji, |19i;]| # 0), covec-
tors ¥;(x), @i(x) and functions a(x), B(z), y(z).
o _
Here Q (o = 1,5) are tensors which are expressed as the functions of the shown
arquments, and also of the objects defined in A,, i.e. affine connection and affinor

El.

Proof. Let A, be a space with any affine connection and let be there define
affinor F*(x) following relation satisfying

Rank |} — pol| > 5, (4)

where p is a function. Let space A, admits of an F-planar mappings onto a
Riemannian space V,,. Then in A,, the equation (2) holds.

We shall investigate the integrability conditions of these equations. Let them
differentiate covariantly by x! and then alternate by indices k and I. With respect
to Ricci identity and equations (2) we find the following:

2V 9ij + Vadik + YiGie — Vg — Yikgat+
_ _ _ _ _ 6 (5)
+ewn Fig) + pulje + ek — vk — ol =Q,;,,(9,, ¢),

where [kl] is the alternation by %k and [ without division, ¥;; o Vi g5 Pij e @i j-

6 o
The tensor ) has a form analogical to previous tensors ), where o = 1,5. Its
concrete form is the following:

6 def _ o o
Q = GiaQ5k + Gja Qi
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where

def
Qv = Rl + FUF pupr, — FIF @ipr + Fi}j[k@l] - F[’llc,l]% +

61 (Wit + YaF o0 + Yo i) + F(eaF o1 + 0aF o) —

—(in, + Vo For — Vo FL i) — F(paFL ok + paFlo:) +

and R?j & is the Riemannian tensor.
We shall investigate the homogeneous equation in the form

* *

2Py 9t Vugiet 9= ¥, 95— ¥y 9at

* — * = * = * = * — (6)
+ Oy Fant euLint o Fin— oy = ¢, Fu = 0.

with unknowns ’L/Jij and LZU We shall prove that this equation has, by the condition
(4), the solution in the form

(a) ¥, =agi + BFi;  (b) ¢, = 09ij + vFy, (7)
where «, (3, v are numbers.
a) Let us assume that there exists a vector e such that the vectors &* Zéai,
€%Gas and e*F,; are linearly independent.
Then there exists a vector n’ such that holds
gy gzaﬁ =1, €*1%Gap =0, 9PF,5=0.

Contracting (6) with ’e/n! we see that the vector e*F,,; is a linear combination of
the following vectors

* % B
,,704 w[ka]v ﬂa ('O[ka]’ Eagka'
After the contraction (6) with e77' and the elimination of vector e*F,; with
ein', we see that Rank || F;; — ag;;|| < 5, which is a contradiction with (4).
Therefore the vectors € Jém,, £%Gqi and £ F,; are linearly dependent for any

vector e”. Tt follows from this fact that for any " the equation $z5éFflf]£a65£'y =0

déf ghoz

holds, where :5? gzm,. This condition is equivalent to

* [i ik
gp(a(sjﬁF’)’)] =0, (8)
where [ijk] and (a3v) denote the alternation and the symmetrisation by mentioned
indices, respectively.
Since FJ* # a8, there exists a vector &' such that e’ and &° ©f o " are lineary

independent. Contracting (8) with e*¢7, we see that the vector % :5; is a linear
combination of the vectors % and £. Then, after the contraction, (8) with e%¢7 we
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obtain that :5; = B6L +VF! + ane’ + b &, where aq, b, are covectors and f3, 7y are
functions. Under the assumption that a, or b, is non-zero, after the substitution
of é; into (8) we get a contradiction with (4).

Hence gZ; = 36, + yF!. From this formulas (7b) follow easily.

b) Analogously, let us suppose the existence of a vector £ such that the vec-

tors e* 1 ., €%ga; and e*F,; are linearly independent. However, this assumption
is in contradiction with (4) and the regularity of the metric tensor g;;. That is

why the vectors e® ¢ _., £%ga; and e*F,; are linearly dependent for any vector £”.

;From this follows that wij = agi; + ﬁ_Fm where «, 3 are numbers. Substituting

this relation and (7b) into (6), we see that 3 = 3.

In this way we proved that the general solution of the homogeneous system of
equations (6) is of the form (7). Therefore the conditions (5) imply the equa-
tions (3b) and (3c).

Further we shall investigate the integrability conditions of equations (3b). Dif-
ferentiating the equations (3b) covariantly by z* and then alternating by j and k,
by the Ricci identity and (3a, b, c), we obtain

_ _ 7
gizak — gk + FigBr — FinB5 = Q. (9,9, 0,0, 8,7). (9)

The homogeneous equation
_ * _ * _ * _ *
9ij @y, — Gik 0 + Fij B, — Fik ﬂj =0

* *
with unknowns &i and (3, has only trivial solution &i =0, 8, = 0 if the conditions
(4) are satisfied. That is why the equations (3d, e) follow from the condition (9).

Similarly, the last equation (3f) of the system (3) can be obtained using the
integrability conditions of equations (3c).

Evidently, the system (3) is closed with respect to unknown tensors g;;, v:, ¢,
«, B3, 7. The Theorem 1 is proved.

We know from the theory of differential equations that the initial value prob-
lem (3) with initial conditions

o o o
Gij(wo) :gij§ ¥i(2o) =9;; ¢i(Zo) :S%iQ o(z,) =& Blzo) =B; v(20) =5,
has at most one solution. As the tensor g;; is symmetric, the general solution of
this system depends on
r<in(n+5)+3
real parameters.
(From this the following theorem follows.

Theorem 2. Let A, be a space with affine connection, where an affinor F'(z)

is defined such that Rank |[F* — p6P|| > 5. The set of all Riemannian spaces V,,,
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for which A, admits F-planar mappings, depends on at most %n(n +5) 4+ 3 real
parameters.

This theorem was proved in v [7] under more restrictive conditions:
Rank ||E* — péP|| > 18. By a detailed analysis of the proof we can see in both
theorems 1 and 2 that the condition Rank ||F* — pd?|| > 5 can be substituted by
the assumptions n > 8 and Rank ||F}* — psl|| > 4.

Theorems 1 and 2 generalize similar results obtained by N.S. Sinyukov [17]
for geodesic mappings of Riemannian spaces, J. Mikes and V.E. Berezovski [12]
for geodesic mappings of spaces with affine connection onto Riemannian spaces,
V.V. Domashev and J. Mikes [2], [6], for holomorphically projective mappings of
Kéhlerian spaces, I.N. Kurbatova [5] for holomorphically projective mappings of
hyperbolic Kéhlerian spaces, K- and H-spaces and M. Shiha [16] for holomorphi-
cally projective mappings of m-parabolic K&hlerian spaces (see [17], [10], [11]).

3. F-PLANAR MAPPINGS WITH COVARIANTLY CONSTANT CONDITIONS OF
AFFINOR STRUCTURES F'

As we said before, F-planar mappings generalize a whole series of previously
studied mappings. We list below some conditions under which the F-planar mapping
will be one of the mappings studied earlier by authors.

Let us recall that an affinor F" is said to be an e-structure if the relation [17],
18]

F'FY =edl  where e=+1,0, (10)
is satisfied. .

The affinor F? is equivalent to e-structure if there exist an e-structure FJ* and

numbers «, 3 such that

F = aF! + goh. (11)
holds.
We have a following theorem.

Theorem 3. Let a diffeomorphism A,— A, be a non-affine F-planar mapping.
If the structures F!* and F!* are covariantly constant and Rank ||F — psh|| > 4,
then this mapping is semigeodesic of type ma(e) and the structures are covariantly
constant equivalent e-structures.

Proof. Let A,, admits non-affine F-planar mapping onto A,,, and the structures
F! and F! are covariantly constant in A,, and A,,, respectively, and Rank ||F* —
pSl|| > 4. Then the formulas (1) hold.

We express covariant derivative FJ in the space A,: Fl' = 0;F! + f‘ZjFio‘ —

ilj
[§ Fl, where 9; def d/0z*. Using formula (1a) we obtain:

FZ}\IJ = Fi},Lj + Ffz/)aéf' + (F'pa — wi)th - @iFo}[LFf‘ ) (12)

where 7,7 and ”|” are covariant differentiate in A,, and A,,, respectively.
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We differentiate formulas (1b) in A, covariantly. As we have assumed Flh] =0
and Filllj = 0, by substitution (12) we obtain

djaF) + 906 + a(F o) + (Ffpa — i) FJ — o FLF) = 0. (13)

By 8;a # 0 we come to contradiction with Rank || F/*—pd!|| > 4. Thus a = const.
Analogously, for n > 3 formulas (13) imply that b = const.
Since a # 0, formula (13) can be simplified:

Ffpadl + (Fpo — i) FJ — @i FLFY = 0. (14)

The mapping f: A,— A,is not affine and hence 1; # 0 or ¢; # 0. If p; = 0,
then for v; # 0 it follows from (14) that F* = pd”, which is a contradiction. So

7

we have ¢; # 0. Than from the relation (14) we obtain
FI'F = adl + BE), (15)

where «, 3 are functions.
We can show that «, 3 are constants by covariant derivations of the relations
(15) in A,, . Then we can easily see that we can choose numbers ¢ a d such that

for affinor structure ;7'? e cF! + dé! holds ;“Z Jt“f‘ = edl', where e = £1,0. This
means that the affinor F" is eqvivalent to e-structure.

Since in our case a and b in (1b) are constant, we can prove analogously that
the structure F”* is also equivalent to e-structure. Moreover, both structures F"
and F‘:‘ are simultaneously covariantly constant in A, and in A,,.

It follows from the facts mentioned above that in formulas (1) the original struc-
tures can be substitute by equivalent covariantly constant e-structures. That is why
for F-planar mapping f: A, — A, the formulas (1a), FlhJ =0and F'F® = ed! are
satisfied. These conditions show that the mapping f is almost geodesic mapping
of type ma(e) in the sence of N.S. Sinyukov [17], [18]. The proof of Theorem 3 is
now complete.

A.Z. Petrov investigated quasigeodesic ~mappings of 4-dimensional
pseudo-Riemannian spaces V; — Vj, which are in fact special F-planar mappings,
under the condition of preserving the structure F‘[‘ = Fih and the skew-symmetry
of tensors F*g,; and ngaj, where g;; and g;; are metric tensors of V4 and V.

The following result holds:

Theorem 4. Let a diffeomorphism of Riemannian spaces f: V,— V, be a non-
affine F-planar mapping. If Rank |El" — po|| > 4, FPga; and Ffg.; are skew-
symmetric and covariantly constant in V,, and V,, then V,, and V,, are Kdhler
spaces and this mapping is holomorphically-projective.

Proof. Let f: V,, — V,, be non-affine F-planar mapping, Rank || E/* —pd” | > 4,
and Fi“ Jaj be skew-symmetric and covariantly constant in V;, and V,,, respectively.

By Theorem 3, the affinor structures are connected by the formula (1b) with
a,b constant and we have FAF® = adl + BF!, a, 3 are constant.
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As Ff*gaj + F}'gai = 0 holds, contracting this relation with F 7, we obtain

9asFLF] + agix + BFL gai = 0.

Alternating this expression, we see that SF{*gs; = 0, which implies 8 = 0. This
means that F'F® = ad. Analogously we can see that F'F® = ad! holds, too.

Substituting (1b), we easily obtain 2ab F* = §!(a — aa® — b?). Hence b = 0,
a=aa? a#0.

If @ = o = 0 then V,, and V,, are parabolic Kihlerian spaces (see [10], [16]) and
f: Vi, — V, is a holomorphically projective mapping.

Let us suppose @ # 0 and « # 0. If we put e = signa = signa and

Z:;hd:ef 1 Ehdet 1 —p

. . L = F"
P et T N T

then F! and F! are Kihlerian structures and V,, and V,, are Kihlerian spaces

(?classical” Kéhlerian for e = —1 and hyperbolic Kahlerian for e = 1). It is easy
to see that the mapping f: V,, — V,, is holomorphically projective (see [10], [17],
(18], [20]).

Further, we studied holomorphically projective mappings of almost Hermitian
spaces. Results for this type of spaces are interesting from the point of view of
their classification (Gray-Hervella [4]).
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