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SECOND ORDER VARIATIONS IN VARIATIONAL SEQUENCES

MAURO FRANCAVIGLIA AND MARCELLA PALESE

Abstract. In this note we provide a geometrical characterization of the sec-

ond order variation of a generalized Lagrangian in the framework of variational

sequences.
We define the variational vertical derivative as an operator on the sheaves

of the variational sequence and stress its link with the classical concept of vari-
ation. The main result is the intrinsic formulation of a theorem which states
the relation between the variational vertical derivative of the Euler–Lagrange

morphism of a generalized Lagrangian and the Euler–Lagrange morphism of

the variational vertical derivative of the Lagrangian itself.

1. Introduction

Our framework is the calculus of variations on finite order jets of a fibered man-
ifold. More precisely, we consider the geometrical formulation of this framework in
terms of variational sequences introduced by Krupka [12, 13]. As it is well known,
in this formulation the variational sequence is defined as a quotient of the de Rham
sequence on a finite order jet of a fibered manifold with respect to an intrinsically
defined subsequence, the “contact” subsequence. Standard objects of the calculus
of variations can be interpreted as sheaf sections and morphisms in the variational
sequence, which turns out to be an exact resolution of the constant sheaf IR over
the relevant fibered manifold.

We provide a geometrical characterization of the second order variation (see
e.g. [1, 2, 3, 4, 6, 18]) of a Lagrangian in the framework of finite order varia-
tional sequences. We introduce the notion of iterated variation of a section as an
i–parameter ‘deformation’ of the section by means of vertical flows and thus define
the i–th variation of a morphism which is very simply related with the iterated
Lie derivative of the morphism itself. Relying on previous results of us [5] on the
representation of the Lie derivative operator in the variational sequence we can
then define an operator on the quotient sheaves of the sequence, the variational
vertical derivative. We stress some linearity properties of this operator and show
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that it is a functor on the category of variational sequences. Making use of suitable
representations of the variational vertical derivative we relate the second order vari-
ation of a generalized Lagrangian with the variational Lie derivative of generalized
Euler–Lagrange operators associated with the Lagrangian itself.

The Lagrangian characterization of the second variation of a Lagrangian in the
framework of jet bundles has been considered in [2, 3, 4, 6]. In particular, in [2, 3, 4]
it was shown how to recast (up to divergencies) the system formed by the Euler–
Lagrange equations together with the Jacobi equations for a given Lagrangian as
the Euler Lagrange equations for a ‘deformed’ Lagrangian.

As an outcome of the intrinsic representation of the second order variation of a
generalized Lagrangian, the above mentioned invariant decomposition of the second
variation is here provided at any jet order and geometrically interpreted as a simple
and direct application of the representation of the variational Lie derivative of
variational morphisms provided in [5] together with a suitable version of a global
decomposition formula of vertical morphisms due to Kolář [7, 9]. A new geometric
object, the generalized Jacobi morphism, is finally represented in the variational
sequence.

2. Variational sequences on jets of fibered manifolds

Our framework is a fibered manifold π : Y → X, with dim X = n and dim Y =
n+m (see e.g. [17]).

For r ≥ 0 we are concerned with the r–jet space JrY ; in particular, we set J0Y ≡
Y . We recall the natural fiberings πr

s : JrY → JsY , r ≥ s, πr : JrY → X, and,
among these, the affine fiberings πr

r−1. We denote by V Y the vector subbundle
of the tangent bundle TY of vectors on Y which are vertical with respect to the
fibering π.

Charts on Y adapted to π are denoted by (xλ, yi). Greek indices λ, µ, . . . run
from 1 to n and they label base coordinates, while Latin indices i, j, . . . run from 1
to m and label fibre coordinates, unless otherwise specified. We denote by (∂λ, ∂i)
and (dλ, di) the local bases of vector fields and 1–forms on Y induced by an adapted
chart, respectively.

We denote multi–indices of dimension n by boldface Greek letters such as α =
(α1, . . . , αn), with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of notation, we denote with
λ the multi–index such that αµ = 0, if µ 6= λ, αµ = 1, if µ = λ. We also set
|α| :=α1 + · · ·+ αn and α! :=α1! . . . αn!. The charts induced on JrY are denoted
by (xλ, yi

α), with 0 ≤ |α| ≤ r; in particular, we set yi
0 ≡ yi. The local vector fields

and forms of JrY induced by the above coordinates are denoted by (∂α
i ) and (di

α),
respectively.

For r ≥ 1, we consider the natural complementary fibered morphisms over the
affine fibering JrY → Jr−1Y induced by contact maps on jet spaces

D : JrY ×
X
TX → TJr−1Y , ϑ : JrY ×

Jr−1Y
TJr−1Y → V Jr−1Y ,
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with coordinate expressions, for 0 ≤ |α| ≤ r − 1, given by

D = dλ⊗Dλ = dλ⊗(∂λ + yj
α+λ∂

α
j ) , ϑ = ϑj

α⊗∂α
j = (dj

α − yj
α+λd

λ)⊗∂α
j .

We have the following natural fibered splitting

JrY ×
Jr−1Y

T ∗Jr−1Y =
(
JrY ×

Jr−1Y
T ∗X

)
⊕

∗
Cr−1[Y ] ,(1)

where
∗
Cr−1[Y ] := imϑ∗r and the canonical isomorphism

∗
Cr−1[Y ] ' JrY ×

Jr−1Y

V ∗Jr−1Y holds true (see [12, 13, 15, 17]).
The above splitting induces also a decomposition of the exterior differential on

Y , (πr+1
r )∗◦ d = dH + dV , where dH and dV are called the horizontal and vertical

differential , respectively. The action of dH and dV on functions and 1–forms on
JrY uniquely characterizes dH and dV (see, e.g., [17, 21] for more details).

If f : JrY → IR is a function, then we set Dλf :=Dλf , Dα+λf :=DλDαf ,
where the operator Dλ is the standard formal derivative.

A projectable vector field on Y is defined to be a pair (Ξ, ξ), where Ξ : Y →
TY and ξ : X → TX are vector fields and Ξ is a fibered morphism over ξ. A
projectable vector field (Ξ, ξ) can be conveniently prolonged to a projectable vector
field (jrΞ, ξ), whose coordinate expression can be found e.g. in [5] and [11, 15, 17].
A vertical vector field on Y is a projectable vector field on Y such that ξ = 0.

i. For r ≥ 0, we consider the standard sheaves
p

Λr of p–forms on JrY .

ii. For 0 ≤ s ≤ r, we consider the sheaves
p

H(r,s) and
p

Hr of horizontal forms,

i.e. of local fibered morphisms over πr
s and πr of the type α : JrY →

p
∧T ∗JsY and

β : JrY →
p
∧T ∗X, respectively.

iii. For 0 ≤ s < r, we consider the subsheaf
p

C(r,s) ⊂
p

H(r,s) of contact forms, i.e.

of sections α ∈
p

H(r,s) with values into
p
∧(

∗
Cs[Y ]). There is a distinguished subsheaf

p

Cr ⊂
p

C(r+1,r) of local fibered morphisms α ∈
p

C(r+1,r) such that α =
p
∧ imϑ∗r+1[Y ]◦α̃,

where α̃ is a section of the fibration Jr+1Y ×
JrY

p
∧V ∗JrY → Jr+1Y which projects

down onto JrY .
According to [21], the fibered splitting (1) yields naturally the sheaf splitting

p

H(r+1,r) =
⊕p

t=0

p−t

C (r+1,r) ∧
t

Hr+1, which restricts to the inclusion
p

Λr ⊂
⊕p

t=0
p−t

C r∧
t

Hh
r+1, where

p

Hh
r+1 := h(

p

Λr) for 0 < p ≤ n and h is defined to be the restriction

to
p

Λr of the projection of the above splitting onto the non–trivial summand with
the highest value of t. We define also the map v := id−h.
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Let α ∈
1

Cr ∧
n

Hh
r+1. Then there is a unique pair of sheaf morphisms

Eα ∈
1

C(2r,0) ∧
n

Hh
2r+1 , Fα ∈

1

C(2r,r) ∧
n

Hh
2r+1 ,(2)

such that (π2r+1
r+1 )∗α = Eα − Fα, and Fα is locally of the form Fα = dHpα, with

pα ∈
1

C(2r−1,r−1) ∧
n−1

H 2r (see e.g. [9, 11, 21]).

Recall (see [21]) that if β ∈
1

Cs ∧
1

C(s,0) ∧
n

Hs, then, there is a unique H̃β ∈
1

C(2s,s)⊗
1

C(2s,0) ∧
n

H2s such that, for all Ξ : Y → V Y , Eβ̂ = C1
1

(
j2sΞ⊗H̃β

)
, where

β̂ := jsΞ β, C1
1 stands for tensor contraction and denotes inner product. Then

there is a unique pair of sheaf morphisms

Hβ ∈
1

C(2s,s) ∧
1

C(2s,0) ∧
n

H2s , Gβ ∈
2

C(2s,s) ∧
n

H2s ,(3)

such that π2s
s

∗
β = Hβ−Gβ andHβ = 1

2 A(H̃β), where A stands for antisymmetrisa-

tion. Moreover, Gβ is locally of the type Gβ = dHqβ , where qβ ∈
2

C2s−1 ∧
n−1

H 2s−1,
hence [β] = [Hβ ]. Coordinate expressions of the morphisms Eα and Hβ can be
found in [21].

2.1. Variational sequences. We recall now the theory of variational sequences
on finite order jet spaces, as it was developed by Krupka in [12]. By an abuse of

notation, denote by d kerh the sheaf generated by the presheaf d kerh. Set
∗
Θr :=

kerh + d kerh. The following diagram is commutative and its rows and columns
are exact:

0 0 0 0 0 0

0 - 0
?

- 0
?

-
1

Θr

?
d-

2

Θr

?
d- . . .

d-
I

Θr

?
d- 0

?
- . . .- 0

0 - IR
?

-
0

Λr

?
d-

1

Λr

?
d-

2

Λr

?
d- . . .

d-
I

Λr

?
d-

I+1

Λ r

?
d- . . .

d- 0

0 - IR
?

-
0

Λr

?
E0-

1

Λr/
1

Θr

?
E1-

2

Λr/
2

Θr

?
E2- . . .

EI−1-
I

Λr/
I

Θr

?
EI-

I+1

Λ r

?
d- . . .

d- 0

0
?

0
?

0
?

0
?

0
?

0
?

Definition 2.1. The bottom row of the above diagram is called the r–th order
variational sequence associated with the fibered manifold Y → X.
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The quotient sheaves in the variational sequence can be conveniently represented
as follows [21].

Let k ≤ n. Then, the sheaf morphism h yields the natural isomorphism

Ik :
k

Λr/
k

Θr →
k

Hh
r+1 :=

k

Vr : [α] 7→ h(α) .

Let k > n. Then, the projection h induces a natural sheaf isomorphism

Ik :
(

k

Λr/
k

Θr

)
→

(
k−n

C r ∧
n

Hh
r+1

) /
h(d kerh) :=

k

Vr : [α] 7→ [h(α)] .

We remark that a section λ ∈
n

Vr is just a Lagrangian of order (r + 1) of the

standard literature. Furthermore, En(λ) ∈
n+1

V r coincides with the standard higher
order Euler–Lagrange morphism E(λ) associated with λ.

Making use of the above sheaf isomorphisms and of decomposition formulae (2)
and (3), in [5] we proved that the Lie derivative operator with respect to the r-
th order prolongation jrΞ of a projectable vector field (Ξ, ξ) can be conveniently
represented on the quotient sheaves of the variational sequence in terms of an
operator, the variational Lie derivative LjrΞ, as follows:

if 0 ≤ p ≤ n− 1 and µ ∈
p

Vr, then

LjrΞµ = ξ dHµ+ jr+2ΞV dV µ+ dH(ξ µ) ;(4)

if p = n and λ ∈
n

Vr, then

LjrΞλ = ΞV E(λ) + dH(jrΞV pdV λ + ξ λ) ;(5)

if p = n+ 1 and η ∈
n+1

V r, then

LjrΞη = E(jrΞV η) + H̃dη(j2r+1ΞV ) .(6)

3. Variations

We shall here introduce variations of a morphism as multiparameter deforma-
tions showing that this is equivalent to take iterated variational Lie derivatives
with respect to vertical vector fields.

We define the i–th variation of a section and introduce the i–th variation of a
morphism of the kind α : JrY →

k
∧T ∗JrY along the section σ in terms of the

pull–back by means of the r–th prolongation of the i–th variation of a section
σ : X → Y .

Definition 3.1. Let σ : X → Y be a section and i any integer. An i–th
variation of σ is a smooth section Γi : I × X → Y , 0 ∈ I ⊂ IRi, such that
Γi(0) = σ.
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In other words, Γi is a i–parameter smooth deformation of σ.
Let Ξ1, . . . ,Ξi be vertical vector fields on Y and let Γi(t1, . . . , ti) be an i–th

variation of the section σ such that

∂Γi

∂t1
(t1, 0, . . . , 0)

∣∣
t1=0

= Ξ1 ◦ σ ,

∂Γi

∂t2
(t1, t2, 0, . . . , 0)

∣∣
t2=0

= Ξ2 ◦ Γi(t1, 0, . . . , 0) ,
. . . ,

∂Γi

∂ti
(t1, t2, . . . , ti−1, ti)

∣∣
ti=0

= Ξi ◦ Γi(t1, t2, . . . , ti−1, 0) .

In this case we say that Γi is generated by the i–tuple (Ξ1, . . . ,Ξi).
We have thus the following characterization of Γi as the variation of σ by means

of vertical flows.

Proposition 3.2. Let ψk
tk

, with 1 ≤ k ≤ i, be the flows generated by the vertical
vector fields Ξk. Then for the Γi generated by (Ξ1, . . . ,Ξi) we have:

Γi(t1, . . . , ti) = ψi
ti
◦ . . . ◦ ψ1

t1 ◦ σ .(7)

Definition 3.3. Vertical vector fields on any fiber bundle which ‘deform’ sec-
tions as above are called variation vector fields.

3.1. Variations of morphisms and Lie derivative. We shall define the vari-

ation of a generic fibered morphism of the kind α : JrY →
k
∧T ∗JrY along the

section σ.

Definition 3.4. Let α : JrY →
k
∧T ∗JrY and let Γi be an i–th variation of the

section σ. We define the i–th variation of the morphism α to be

δiα :=
∂i

∂t1 . . . ∂ti

∣∣
t1,...,ti=0

(α ◦ jrΓi(t1, . . . , ti)) .(8)

If just one variation Γ1, generated by a single vector field Ξ1, is involved we write
for simplicity δ instead of δ1. The following Lemma states the relation between the
i–th variation of a morphism and its iterated Lie derivative.

Lemma 3.5. Let α : JrY →
k
∧T ∗JrY and LjrΞk

be the Lie derivative operator
with respect to jrΞk.

Let Γi be the i–th variation of the section σ by means of the variation vector
fields Ξ1, . . . ,Ξi on Y . Then we have

δiα = (jrσ)∗LjrΞ1 . . . LjrΞi
α .(9)
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Proof. By applying Definition 3.4 and Proposition 3.2 we have

δiα =
∂i

∂t1 . . . ∂ti

∣∣
t1...ti=0

[(jr(ψi
ti
◦ . . . ◦ ψ1

t1 ◦ σ))∗α] =

∂i

∂t1 . . . ∂ti

∣∣
t1...ti=0

[(jrσ)∗ ◦ (jrψ1
t1)

∗ ◦ . . . ◦ (jrψi
ti

)∗α] =

(jrσ)∗
∂i

∂t1 . . . ∂ti

∣∣
t1...ti=0

[(jrψ1
t1)

∗ ◦ . . . ◦ (jrψi
ti

)∗]α =

(jrσ)∗[
∂

∂t1
(jrψ1

t1)
∗∣∣

t1=0
◦ . . . ◦ ∂

∂ti
(jrψi

ti
)∗

∣∣
ti=0

]α =

(jrσ)∗LjrΞ1 . . . LjrΞi
α ,

where ψk
tk

are the vertical flows respectively generated by Ξk, for k = 1, . . . , i.
QED

From now on, we will restrict to the case of the second order variation of a

morphism λ ∈
n

Λr. Higher order variations will be deeply investigated elsewhere.

In the following Lemma we show that the first order variation δ1λ := δλ of λ is
simply related to the vertical differential of λ.

Lemma 3.6. Let σ be a section of Y , Ξ a variation vector field on Y and

λ ∈
n

Λr. Then we have

δλ = jrσ
∗(jrΞ dV λ) .(10)

Proof. In fact we have

δλ = jrσ
∗LjrΞλ = jrσ

∗(Ξ E(λ) + dH(jrΞ pdV λ)) =
jrσ

∗(Ξ E(λ) + (jrΞ dHpdV λ)) = jrσ
∗(jrΞ dV λ) ,

since Ξ dH = dHΞ , for any vertical vector field Ξ on Y . QED

For notational convenience, in the sequel we shall denote with a superimposed
bar all objects defined on a vertical prolongation V Y and with two bars those
defined on the iterated vertical prolongation V (V Y ); e.g. Ξ̄ will denote a variational
vector field on V Y and δ̄ the variation operator on V Y .

By iterating this result we can characterize the second order variation of λ as
follows.

Proposition 3.7. Let λ ∈ (
n

Λr)Y and σ be a section of Y → X. Let Ξ1, Ξ2

be two variation vector fields on Y generating a second order variation Γ2 of σ,
and let Ξ̄2 be a variation vector field on V Y , which projects down onto Ξ2 and
generates a first order variation Γ̄ of σ. Moreover, let d̄, Ē and p̄ be the exterior
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differential, the Euler–Lagrange morphism and the momentum morphism on V Y ,
respectively. Then we have

δ2λ = Ξ̄2 Ē(δλ) + d̄H(jrΞ̄2 p̄d̄V δλ)(11)

= δ̄(Ξ1 E(λ) + dH(jrΞ1 pdV λ)) .(12)
Proof. We apply the above Lemma and the fact that dHδ = δdH , which follows

directly from the analogous naturality property of the Lie derivative operator.

QED

Remark 3.8. Owing to the linearity properties of dV λ, by an abuse of notation,
we can think of the operator δ as a linear morphism with respect to the vector
bundle structure JrV Y → Y of the kind

δ : JrY ×
Y
JrV Y →

n
∧T ∗X .(13)

This property can be obviously iterated for each integer i, so that one can analo-
gously define an i–linear morphism δi.

4. Variational vertical derivatives

In this Section we restrict our attention to morphisms which are sections of
sheaves in the variational sequence. We define the i–th order variational vertical
derivative of morphisms, by showing that the i–th variation operator passes to the
quotient in the variational sequence.

Lemma 4.1. Let α ∈ (
n

Vr)Y . We have

[δiα] = δ̂i[α] ,

where we set δ̂i :=LΞi
. . .LΞ1 .

Proof. In fact, we have

[δiα] = [LΞi
. . . LΞ1α] = LΞi

. . .LΞ1 [α] := δ̂i[α] ,

since δi, as well as LΞi
(see [5]), preserve the contact structure. QED

Definition 4.2. We call the operator δ̂i the i–th variational vertical derivative
operator.

Theorem 4.3. The functor δ̂ is defined on the category of variational sequences
and sends the sequence associated with the fibration Y → X into the sequence
associated with the fibration V Y → X.

Proof. It follows from Proposition 3.7, Equation (11), Remark 3.8 and Lemma
4.1. QED

The above can be summarized in the following diagram.



SECOND ORDER VARIATIONS IN VARIATIONAL SEQUENCES 127

0 - . . . . . .
dH - (

n

Vr)Y
En- (

n+1

V r)Y
En+1- En+1(

n+1

V r)Y
En+2- 0

0 - . . . . . .
d̄H- (

n

Vr)V Y

δ̂
?

Ēn- (
n+1

V r)V Y

δ̂ ?
Ēn+1- Ēn+1(

n+1

V r)V Y

δ̂ ?
Ēn+2- 0

0 - . . . . . .
¯̄dH- (

n

Vr)V (V Y )

¯̂
δ

? ¯̄En- (
n+1

V r)V (V Y )

¯̂
δ ?

¯̄En+1- ¯̄En+1(
n+1

V r)V (V Y )

¯̂
δ ?

¯̄En+2- 0

This enables us to represent variations of morphisms in the variational sequence.
Here we shall investigate in detail the case of the second order variation of mor-
phisms in the variational sequence. We show that classical results concerning the
second variation can be restated in a very simple way in terms of variational Lie
derivatives and global decomposition formulae.

To this aim, let us consider how the representations (5) and (6) of the variational
Lie derivative specialize in the case of variation vector fields.

Lemma 4.4. Let Ξ1, Ξ2 be two variation vector fields on Y and Ξ̄2 be a varia-
tion vector field on V Y , which projects down onto Ξ2. Let Ē and p̄ be, respectively,
the Euler–Lagrange morphism and the momentum morphism associated with the
Lagrangian δ̂λ. Then we have

LjrΞ1λ = Ξ1 E(λ) + dH(jrΞ1 pdV λ) ;(14)

LjrΞ̄2
LjrΞ1λ = Ξ̄2 Ē(δ̂λ) + d̄H [jrΞ̄2 p̄d̄V (δ̂λ) − δ̂(jrΞ1 pdV λ)] .(15)

Proof. It follows from Equation (5) and Lemma 4.1. QED

The above Lemma together with Proposition 3.7 and Equation (11) gives us the
following characterization of the second order variation of a generalized Lagrangian
in the variational sequence.

Proposition 4.5. Let λ ∈ (
n

Vr)Y , δ̂λ ∈ (
n

Vr)V Y . We have

δ̂2λ = Ē(Ξ̄2 δ̂λ) + H̃dδ̂λ(Ξ̄2) ,(16)

where H̃dδ̂λ is the unique morphism belonging to
1

C(2r,r) ⊗
1

C(2r,0) ∧
n

H2r such that,
for all Ξ1 : Y → V Y , EjrΞ dδ̂λ = C1

1 (j2rΞ1⊗H̃dδ̂λ), and C1
1 stands for tensor

contraction.
Proof. In fact we have

δ̂2λ = LjrΞ̄2
δ̂λ ,(17)
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so that the assertion follows from a straightforward application of the representation
provided by Equation (6). QED

This result provides an equivalent intrinsic interpretation of the second variation
of the action functional evaluated in [4], equation (2.14), by just setting Ξ̄2 = ρ
and Ξ1 = η.

The following is an application of an abstract result due to Kolář [10], concerning
a global decomposition formula for vertical morphisms.

Lemma 4.6. Let µ̂ : JsY →
∗
Ck[V Y ]∧

p
∧T ∗X, with 0 ≤ p ≤ n and let d̄H µ̂ = 0.

Then we have µ̂ = Eµ̂ + Fµ̂, where

Eµ̂ : J2s+kV Y →
∗
C0[V Y ] ∧

p
∧T ∗X ,(18)

and locally, Fµ̂ = d̄HMµ̂, with Mµ̂ : J2s+k−1V Y →
∗
Ck−1[V Y ] ∧

p−1
∧ T ∗X.

Proof. Following e.g. [9, 10, 21], the global morphisms Eµ̂ and DHMµ̂ can be
evaluated by means of a backwards procedure. Hereafter the canonical isomorphism
JrV Y ' V JrY is obviously understood. QED

Now, it is very easy to see from Remark 3.8 and by means of a simple calculation
that the following holds true.

Lemma 4.7. Let χ(λ) := H̃dδ̂λ. We have χ(λ) : J2rY →
∗
Cr[V Y ] ∧ (

n
∧T ∗X)

and d̄Hχ(λ) = 0.

Thus, as a straightforward application of Lemma 4.6, we obtain our main result
which consists in a suitable geometrical interpretation of the second variation of a
generalized Lagrangian and provides a new characterization of the Jacobi morphism
in the framework of variational sequences.

Theorem 4.8. Let χ(λ) be as in the above Lemma. Then we have

χ(λ) = Eχ(λ) + Fχ(λ) ,

where

Eχ(λ) : J4rY →
∗
C0[V Y ] ∧ (

n
∧T ∗X) ,(19)

and locally, Fχ(λ) = d̄HMχ(λ), with Mχ(λ) : J4r−1Y →
∗
Cr−1[V Y ] ∧

n−1
∧ T ∗X.

Remark 4.9. If the coordinate expression of χ(λ) is given by

χ(λ) = χα
i ϑi

α ∧ ω ,



SECOND ORDER VARIATIONS IN VARIATIONAL SEQUENCES 129

where ϑi
α are contact forms on JkV Y , the corresponding coordinate expressions

of Eχ(λ) and Mχ(λ) are respectively given by

Eχ(λ) = Eiϑ
i ∧ ω ,

Mχ(λ) = Mα+λ
i ϑi

α ∧ ωλ .

We have, in particular

Eχ(λ) = (−1)|β|Dβχ
β
i ϑi ∧ ω ,

with 0 ≤ |β| ≤ k.

Definition 4.10. We call the morphism J (λ) :=Eχ(λ) the generalized Jacobi
morphism associated with the Lagrangian λ.

Again, this result can be compared with equation (2.19) of [4].
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Opava, Czech Republic

E-mail address: francaviglia@dm.unito.it, palese@dm.unito.it


