SYMMETRY ALGEBRA FOR CONTROL SYSTEMS

A. SAMOKHIN

Abstract

A description of the full symmetry algebra for a general nonlinear system of ordinary differential equations is given in terms of its general solution and differential constants. The full symmetry algebra of a system is a module over the ring of its differential constants; the module is generated by partial derivatives of the general solution by the independent constants. Special solutions, such as an envelope of a family of solutions, are described naturally in this context. These results are extended to control systems; in such case, differential constants become operators on controls. Examples are provided.

1. Introduction

The study of symmetries of ordinary differential equation (ODE) was initiated by Sophus Lie [1] and has a long history, see [2] for details. The latest results were obtained in [4] and [5].

To find symmetries for a particular equation still remains a hard task. This publication deals, however, with another problem. We give a full description of the symmetry algebra of a system of ODE in a nondegenerate situation using the general solution whose (local) existence is guaranteed by classical theorems. For a linear system of ODEs this result was obtained in [3] and it was recently generalized to the normal form scalar ODEs in [5].

Given a general solution, our description of the symmetry algebra is effective and explicit: the full symmetry algebra of a system is a module over the ring of its differential constants; the module is generated by partial derivatives of the general solution by the independent constants. Special solutions, such as an envelope of a family of solutions, are described naturally in this context. The interconnection between differential invariants, symmetries and a general solution is quite transparent in the case of ODEs and may be used as a model aplicable in other situations.

We give two such applications below. First, we describe the symmetries of a boundary/initial value problem for a one-dimensional wave equation. The second, main application deals with symmetries of a control system. In both cases, differential invariants become nonlocal ones.

[^0]
2. FULL SYMMETRY ALGEBRA FOR A GENERAL NONLINEAR ORDINARY DIFFERENTIAL EQUATION AND A SYSTEM OF EQUATIONS

2.1. General solution and differential constants. We begin with trivialities to introduce notation.

Let \mathcal{E} denote a general scalar ordinary differential equation of nth order:

$$
\begin{equation*}
y^{(n)}-F\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0 . \tag{1}
\end{equation*}
$$

Its general solution (or a general integral) is of the form

$$
\begin{equation*}
\Phi\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0 . \tag{2}
\end{equation*}
$$

When (2) is solved with respect to y, we get

$$
\begin{equation*}
y=f\left(x, c_{1}, \ldots, c_{n}\right) \tag{3}
\end{equation*}
$$

almost any solution of (1) is obtained from (3) by a proper choice of constants c_{i}. (The solution that is not produced by the general one is called a special solution. Such solutions are discussed below.)

Remark 1. The existence of a general solution of (1) is by no means guaranteed. Yet if F is continuously differentiable, the classical theorem on a differentiable dependence of a solution of ODE on initial data guaranties an existence of a local form of (2) in a neighborhood of a chosen solution. In this local form the initial datum $y^{(k)}\left(x_{0}\right)$ is taken as a differential constant $c_{k}, k=0, \ldots, n-1$. Below we deal mostly with a global general solution, but it is always possible to make a correspondent local statement.

Differentiating (3) by x, we obtain the following system of n independent equations

$$
\left\{\begin{array}{l}
y=f\left(x, c_{1}, \ldots, c_{n}\right) \tag{4}\\
y^{\prime}=f^{\prime}\left(x, c_{1}, \ldots, c_{n}\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
y^{(n-1)}=f^{(n-1)}\left(x, c_{1}, \ldots, c_{n}\right)
\end{array}\right.
$$

One can obtain an expression (not necessary explicit) for c_{i} solving (4). Thus

$$
\begin{equation*}
c_{i}=c_{i}\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right), \quad i=1, \ldots, n . \tag{5}
\end{equation*}
$$

In this way, all c_{i} are differential constants of order less than n. In other words, they are differential operators of order $n-1$, or functions on the jet space $J^{n-1}(\mathbb{R})$.

In the case of a system of m differential equations,

$$
\begin{equation*}
\mathbf{y}^{(n)}-\mathbf{F}\left(x, \mathbf{y}, \mathbf{y}^{\prime}, \ldots, \mathbf{y}^{(n-1)}\right)=0 \tag{6}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right), \mathbf{F}=\left(F_{1}, \ldots, F_{m}\right)$, the general solution is of the form

$$
\begin{equation*}
\mathbf{y}=\mathbf{f}\left(x, c_{1}, \ldots, c_{m n}\right) . \tag{7}
\end{equation*}
$$

2.2. Full symmetry algebra. By definition of a solution, if in the right-hand side of (3) $f\left(x, y, c_{1}, \ldots, c_{n}\right)$ is substituted for y in (1), we obtain the identity

$$
\begin{equation*}
f^{(n)}-F\left(x, f, f^{\prime}, \ldots, f^{(n-1)}\right) \equiv 0 \tag{8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\partial}{\partial c_{i}}\left(f^{(n)}-F\left(x, f, f^{\prime}, \ldots, f^{(n-1)}\right)\right)=0 \tag{9}
\end{equation*}
$$

for all i, or

$$
\begin{equation*}
\left.\left(D^{n}-\sum_{j=1}^{n} \frac{\partial F\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)}{\partial y_{j}} D^{j}\right)\right|_{y=f\left(x, y, c_{1}, \ldots, c_{n}\right)} f_{c_{i}}=0 \tag{10}
\end{equation*}
$$

where $D=d / d x$ is the total derivative with respect to x and $f_{c_{i}}$ denotes the partial derivatice over c_{i}.

Recall that

$$
\begin{equation*}
\mathcal{L}_{y^{(n)}-F} \stackrel{\text { def }}{=} D^{n}-\sum_{j=1}^{n} \frac{\partial F\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)}{\partial y_{j}} D^{j} \tag{11}
\end{equation*}
$$

is called the universal linearization of the operator $y^{(n)}-F$ and that a solution ϕ of the equation

$$
\begin{equation*}
\left.\left(\mathcal{L}_{y^{(n)}-F}\right) \varphi\right|_{\mathcal{E}}=0 \tag{12}
\end{equation*}
$$

is a symmetry of \mathcal{E}. Thus we have
Theorem 1. The partial derivatives $f_{c_{i}}, i=1, \ldots, n$, form a full functionally independent basis of symmetries for equation (1).

Remark 2. Let φ be a symmetry. Then it defines a flow on a set of solutions by the formula:

$$
\begin{equation*}
\frac{\partial y}{\partial \tau}=\left.\varphi\right|_{y} \tag{13}
\end{equation*}
$$

where $y=f\left(x, y, c_{1}, \ldots, c_{n}\right)$. A solution of this equation is a one-parameter family of solutions of (1). By (3), it has the form

$$
\begin{equation*}
y=f\left(x, c_{1}(\tau), \ldots, c_{n}(\tau)\right) \tag{14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left.\varphi\right|_{y}=\left.\left(\sum_{i=1}^{n} \frac{\partial c_{i}}{\partial \tau} f_{c_{i}}\right)\right|_{y} \tag{15}
\end{equation*}
$$

for any solution y of equation (1). Therefore,

$$
\begin{equation*}
\varphi=\sum_{i=1}^{n} \frac{\partial c_{i}}{\partial \tau} f_{c_{i}} \tag{16}
\end{equation*}
$$

holds everywhere on \mathcal{E}.

Note that the derivatives $\partial c_{i} /\left.\partial \tau\right|_{y}$ depend on y, that is, on c_{1}, \ldots, c_{1}, which are functions on $J^{n-1}(\mathbb{R})$ by virtue of (5). Since any choice of arbitrary functions $c_{i}(\tau)$ define some symmetry by (14), the functions $\partial c_{i} /\left.\partial \tau\right|_{y}$ are also arbitrary.

Thus, we got the general form of a symmetry for equation (1):

$$
\begin{equation*}
\varphi=\sum_{i=1}^{n} A_{i}\left(c_{1}, \ldots, c_{n}\right) \frac{\partial}{\partial c_{i}} f\left(x, y, c_{1}, \ldots, c_{n}\right) \tag{17}
\end{equation*}
$$

here f is a general solution, A_{i} are arbitrary functions and c_{i} are functions on $J^{n-1}(\mathbb{R})$ given by system (4).

Formula (17) gives a representation of the algebra of vector fields on \mathbb{R}^{n} in the full symmetry algebra of (6) by the isomorphism

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i}\left(c_{1}, \ldots, c_{n}\right) \frac{\partial}{\partial c_{i}} \longleftrightarrow \sum_{i=1}^{n} A_{i}\left(c_{1}, \ldots, c_{n}\right) \frac{\partial}{\partial c_{i}} f\left(x, c_{1}, \ldots, c_{n}\right) \tag{18}
\end{equation*}
$$

(on the left-hand side, c_{i} are coordinates in \mathbb{R}^{n}; on the right-hand side they denote differential invariants (5) of (1) or special functions on $J^{n-1}(\mathbb{R})$).

Theorem 1 give an explicit representation of this correspondence, provided the general solution is known. Yet its existence is guaranteed only locally; hence, the formula (18) is also generally local.

Remark 3. Theorem 1 generalizes easily to the case of a system of differential equations (6). Its full symmetry algebra is isomorphic to the algebra of vector fields on $\mathbb{R}^{m n}$: the representation is given by

$$
\sum_{i=1}^{m n} A_{i}\left(c_{1}, \ldots, c_{m n}\right) \frac{\partial}{\partial c_{i}} \longleftrightarrow \partial \mathbf{f} \times \mathbf{A}
$$

where $\partial \mathbf{f}, \mathbf{A}$ are respectively $m \times m n$ and $m n \times 1$ matrices with matrix elements given by the formulas

$$
(\partial \mathbf{f})_{j, i}=\frac{\partial f_{j}}{\partial c_{i}}, \quad(\mathbf{A})_{i}=A_{i}
$$

Remark 4. A full symmetry algebra is a module over the ring of the equation differential constants. The module is generated by partial derivatives of a general solution by independent constants.

Let us call $f_{c_{i}}, i=1, \ldots, n$, basic symmetries. They correspond to the flows $y(\tau)=f\left(x, c_{1}, \ldots, c_{i}+\tau, \ldots, c_{n}\right)$. Thus, in the case of an explicit general solution (3) basic symmetries are $f_{c_{i}}=y_{c_{i}}$. If a general solution of (1) is given in an implicit form (2), then

$$
\begin{equation*}
y_{c_{i}}=-\left(\frac{\partial \Phi}{\partial c_{i}}\right) /\left(\frac{\partial \Phi}{\partial y}\right) . \tag{19}
\end{equation*}
$$

2.3. Special and invariant solutions. Invariant solution y of (1) is a solution that satisfies the condition $\varphi(y)=0$ for some symmetry φ of the form (17). Hence an invariant solution satisfy the system of equations

$$
\begin{cases}\mathcal{E}(f) & =y^{(n)}-F\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0 \tag{20}\\ \phi(y) & =\sum_{i=1}^{n} A_{i}\left(c_{1}(y), \ldots, c_{n}(y)\right) \frac{\partial}{\partial c_{i}} f\left(x, y, c_{1}(y), \ldots, c_{n}(y)\right)=0\end{cases}
$$

Since c_{i} are constants on solutions of (1), so are $A_{i}\left(c_{1}(y), \ldots, c_{n}(y)\right)$. Thus (20) is simply

$$
\left\{\begin{array}{l}
\mathcal{E}(f)=y^{(n)}-F\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0 \tag{21}\\
\phi(y)=\sum_{i=1}^{n} A_{i} f_{c_{i}}\left(x, y, c_{1}, \ldots, c_{n}\right)=0
\end{array}\right.
$$

with constant A_{i} and c_{i}. The second condition in (21) means that basic symmetries are linearly dependent on an invariant solution. If $\left.\operatorname{rank}\left\{f_{c_{1}}, \ldots, f_{c_{n}}\right\}\right|_{y}=n-k$, we introduce the notion of a k-invariant solution.

Consider a simple case of (21),

$$
\left\{\begin{array}{l}
y^{(n)}-F\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)=0 \tag{22}\\
f_{c_{i}}=0
\end{array}\right.
$$

Its solution is a fixed point of the flow $c_{i} \rightarrow c_{i}+\tau$. Geometrically, such a solution is an envelope for the family of solutions generated by this flow, see Subsection 2.4.

2.4. Examples.

Example 1. Consider the equation

$$
y^{\prime \prime}+\frac{9}{8}\left(y^{\prime}\right)^{4}=0
$$

It is invariant with respect to the translations in both x and y, hence its symmetry algebra is obvious. Its general solution is as follows:

$$
\Phi\left(x, y, c_{1}, c_{2}\right)=\left(y+c_{1}\right)^{3}-\left(x+c_{2}\right)^{2}=0
$$

or

$$
y=f\left(x, c_{1}, c_{2}\right)=\left(x+c_{2}\right)^{\frac{2}{3}}-c_{1}
$$

Therefore, its basic symmetries are $f_{c_{1}}=-1, f_{c_{2}}=\frac{2}{3}\left(x+c_{2}\right)^{-\frac{1}{3}}$. They depend on the differential constants c_{1}, c_{2} that may be found from the system (4),

$$
\begin{aligned}
\left(y+c_{1}\right)^{3} & =\left(x+c_{2}\right)^{2} \\
3 y^{\prime}\left(y+c_{1}\right)^{2} & =2\left(x+c_{2}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& c_{1}=\left(\frac{2}{3 y^{\prime}}\right)^{2}-y, \\
& c_{2}=\left(\frac{2}{3 y^{\prime}}\right)^{3}-x .
\end{aligned}
$$

Now, basic symmetries come to

$$
\begin{aligned}
& f_{c_{1}}=-1, \\
& f_{c_{2}}=y^{\prime}
\end{aligned}
$$

which are (not surprisingly) translations in y and x respectively.
So the general symmetry for this equation is of the form (17)

$$
\begin{aligned}
& \varphi=A_{1}\left(c_{1}, c_{2}\right) f_{c_{1}}+A_{2}\left(c_{1}, c_{2}\right) f_{c_{2}} \\
& \quad=-A_{1}\left(\left(\frac{2}{3 y^{\prime}}\right)^{2}-y,\left(\frac{2}{3 y^{\prime}}\right)^{3}-x\right)+A_{2}\left(\left(\frac{2}{3 y^{\prime}}\right)^{2}-y,\left(\frac{2}{3 y^{\prime}}\right)^{3}-x\right) y^{\prime}
\end{aligned}
$$

where A_{1}, A_{2} are arbitrary functions in two variables.
Invariant solutions must satisfy the system (21)

$$
\begin{aligned}
A+y^{\prime} B & =0, \\
y^{\prime \prime}+\frac{9}{8}\left(y^{\prime}\right)^{4} & =0
\end{aligned}
$$

for some constants A, B. It follows that $y^{\prime}=0$, so $y=$ const. This is a special solution (in the sense it is not obtained from the general integral). Each special solution is an envelope for the family

$$
(y-\text { const })^{3}-\left(x+c_{2}\right)^{2}=0
$$

for all c_{2}.
Example 2. Linear equations (cf. [4])

$$
y^{(n)}+\sum_{i=0}^{n-1} a_{i}(x) y^{(i)}=0
$$

Here the general integral is if the form

$$
y=\sum_{i=1}^{n} c_{i} f_{i}(x)
$$

where $f_{i}(x)$ are independent solutions, i.e., their Wronskian is nonzero:

$$
W=W\left(f_{1}, \ldots, f_{i}, \ldots, f_{n}\right)=\left|\begin{array}{ccccc}
f_{1} & \ldots & f_{i} & \ldots & f_{n} \\
f_{1}^{\prime} & \ldots & f_{i}^{\prime} & \ldots & f_{n}^{\prime} \\
\ldots \ldots & \ldots & \ldots & \ldots \ldots & \ldots \\
\ldots & \ldots \ldots \\
f_{1}^{(n-1)} & \ldots & f_{i}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right| \neq 0
$$

Independent solutions f_{i} coincide with basic symmetries in this case: $f_{i}=f_{c_{i}}$.
Differential constant c_{i} is given by the formula

$$
c_{i}\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)=\frac{W_{i}}{W}
$$

where W_{i} is obtained from W by changing the entries of the i th column of W for $y, y^{\prime}, \ldots, y^{(n-1)}$ in the respective order.

The general form of a symmetry is

$$
\varphi=\sum_{i=1}^{n} A_{i}\left(\frac{W_{1}}{W}, \ldots, \frac{W_{i}}{W}, \ldots, \frac{W_{n}}{W}\right) f_{i}(x)
$$

Example 3. Linear boundary problem

$$
u_{t t}-u_{x x}=0,\left.\quad u\right|_{x=0}=\left.u\right|_{x=\pi}=0
$$

This example is a rather wide generalization of the previous one. Fourier general solution on $[0, \pi]$ for this string is

$$
u=\sum_{n=0}^{\infty} \sin n x\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

where a_{n}, b_{n} are constants, but neither differential nor local: the Fourier coefficient formula states that

$$
\begin{equation*}
a_{n}=\left.\frac{2}{\pi} \int_{0}^{\pi} u\right|_{t=0} \sin n x d x, \quad b_{n}=\left.\frac{2}{\pi n} \int_{0}^{\pi} u_{t}\right|_{t=0} \sin n x d x \tag{23}
\end{equation*}
$$

A general form of the symmetry is given by

$$
\begin{aligned}
\varphi=\sum_{n=0}^{\infty} \sin n x\left(A_{n}\left(a_{1}, b_{1}, \ldots, a_{i}, b_{i}, \ldots\right) \cos n t\right. & \\
& \left.+B_{n}\left(a_{1}, b_{1}, \ldots, a_{i}, b_{i}, \ldots\right) \sin n t\right)
\end{aligned}
$$

Here A_{n}, B_{n} are arbitrary functions depending on any finite number of a_{i}, b_{j} given by (23).

3. Full symmetry algebra for a general control system

3.1. General solution and differential constants. Consider a first order control system

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{F}(x, \mathbf{y}, \mathbf{v}(x)) \tag{24}
\end{equation*}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ is an m-vector of unknown functions and $\mathbf{v}(\mathbf{x}) \in \mathbb{R}^{k}$ in a k-vector of control functions.

With any fixed choice of controls, (24) comes to (6), where $n=1$. Thus, the general solution of (24) is of the form

$$
\begin{equation*}
\mathbf{y}=\mathbf{f}\left(x, c_{1}, \ldots, c_{m}, \mathbf{v}(x)\right) \tag{25}
\end{equation*}
$$

where c_{i} are constants. From (25) it follows that there exists (at least an implicit) dependence

$$
\begin{equation*}
c_{i}=c_{i}\left(x, \mathbf{y}(x), \mathbf{y}^{\prime}(x), \mathbf{v}(x)\right), \quad i=1, \ldots, m \tag{26}
\end{equation*}
$$

of constants c_{i} on $x, \mathbf{y}(x), \mathbf{y}^{\prime}(x), \mathbf{v}(x)$. Both \mathbf{f} and c_{i} are operators on \mathbf{v}. Examples below show that these operators may be nonlocal.
3.2. Full symmetry algebra. Technically, equation (24) is an equation with two types of dependent variables, that is, with \mathbf{y} and \mathbf{v}. Let us put this equation in the form

$$
\mathcal{H}(\mathbf{y}, \mathbf{v})=\mathbf{y}^{\prime}-\mathbf{F}(x, \mathbf{y}, \mathbf{v}(x))=0
$$

The symmetry equation in this case is as follows:

$$
\begin{equation*}
\left(D-\mathbf{F}_{\mathbf{y}}\right) \mathbf{A}-\left.\mathbf{F}_{\mathbf{v}} \mathbf{B}\right|_{\mathcal{H}=0}=0 \tag{27}
\end{equation*}
$$

where (\mathbf{A}, \mathbf{B}) is a symmetry (if it defines a flow, then $\mathbf{y}_{\tau}=\mathbf{A}, \mathbf{v}_{\tau}=\mathbf{B}$). Besides, $\mathbf{F}_{\mathbf{y}}$ is an $m \times m$ matrix with the entries $\left(F_{i}\right)_{y_{j}}$ and $\mathbf{F}_{\mathbf{v}}$ is an $m \times k$ matrix with the entries $\left(F_{i}\right)_{v_{j}}$.

It is convenient to put (27) in a vector form,

$$
\begin{equation*}
\left.\left(D-\mathbf{F}_{\mathbf{y}},-\mathbf{F}_{\mathbf{v}}\right) \cdot\binom{\mathbf{A}}{\mathbf{B}}\right|_{\mathcal{H}=0}=0 \tag{28}
\end{equation*}
$$

The left factor in this formula is the linearization of \mathcal{H} denoted by $\mathcal{L}_{\mathcal{H}}$.
Theorem 2. Partial derivative vectors

$$
\begin{equation*}
\binom{\mathbf{f}_{\mathbf{c}}}{0}, \quad\binom{\mathbf{f}_{\mathbf{v}}}{\mathrm{I}} \tag{29}
\end{equation*}
$$

form a full functionally independent basis of symmetries for equation (24).
Proof. In terms of the general solution, the general form of a flow on the set of solutions of equation (24) is given by the formula

$$
\begin{equation*}
\mathbf{y}=\mathbf{f}\left(x, c_{1}(\tau), \ldots, c_{m}(\tau), \mathbf{v}(x, \tau)\right) \tag{30}
\end{equation*}
$$

where τ is a parameter of the flow. Since (30) is a solution for any τ, we have

$$
\begin{aligned}
& \frac{d}{d \tau}\left(\mathbf{f}^{\prime}\left(x, c_{1}(\tau), \ldots, c_{m}(\tau), \mathbf{v}(x, \tau)\right)\right. \\
&\left.-\mathbf{F}\left(x, \mathbf{f}\left(x, c_{1}(\tau), \ldots, c_{m}(\tau), \mathbf{v}(x, \tau)\right), \mathbf{v}(x, \tau)\right)\right)=0
\end{aligned}
$$

It follows that

$$
\begin{align*}
&\left.\left(\left(D-\mathbf{F}_{\mathbf{y}}\right)\left(\mathbf{f}_{\mathbf{c}} \cdot \mathbf{c}_{\tau}+\mathbf{f}_{\mathbf{v}} \cdot \mathbf{v}_{\tau}\right)-\mathbf{F}_{\mathbf{v}} \mathbf{v}_{\tau}\right)\right|_{\mathcal{H}=0} \\
&=\left.\left(D-\mathbf{F}_{\mathbf{y}},-\mathbf{F}_{\mathbf{v}}\right) \cdot\binom{\mathbf{f}_{\mathbf{c}} \cdot \mathbf{c}_{\tau}+\mathbf{f}_{\mathbf{v}} \cdot \mathbf{v}_{\tau}}{\mathbf{v}_{\tau}}\right|_{\mathcal{H}=0} \\
&=\left.\mathcal{L}_{\mathcal{H}}\binom{\mathbf{f}_{\mathbf{c}} \cdot \mathbf{c}_{\tau}+\mathbf{f}_{\mathbf{v}} \cdot \mathbf{v}_{\tau}}{\mathbf{v}_{\tau}}\right|_{\mathcal{H}=0}=0 \tag{31}
\end{align*}
$$

Thus, the general solution of the symmetry equation is (cf. (16))

$$
\begin{equation*}
\binom{\mathbf{f}_{\mathbf{c}}}{0} \cdot \mathbf{c}_{\tau}+\binom{\mathbf{f}_{\mathbf{v}}}{\mathrm{I}} \cdot \mathbf{v}_{\tau} . \tag{32}
\end{equation*}
$$

Here $\mathbf{f}_{\mathbf{c}}=\left(f_{i}\right)_{c_{j}}$ is an $m \times m$ matrix, $\mathbf{f}_{\mathbf{v}}$ is an $m \times k$ matrix and I is the $k \times k$ identity matrix.

To obtain the general form of the symmetry for equation (24) it remains to notice that

1. \mathbf{v}_{τ} is an arbitrary vector-function;
2. for any fixed \mathbf{v}, equation (24) coincides with (6), so $c_{i \tau}$ are the components of a vector field on the solution space. Therefore, $c_{i \tau}=\mathcal{A}_{i}(\mathbf{c}, \mathbf{v})$ are arbitrary functions;
3. c_{i} are constants on solution of (24) given by (26).

Finally, we can write down the general form of a symmetry for (24):

$$
\begin{equation*}
\varphi=\binom{\mathbf{f}_{\mathbf{c}}}{0} \cdot \mathcal{A}(\mathbf{c}, \mathbf{v}(x))+\binom{\mathbf{f}_{\mathbf{v}}}{\mathrm{I}} \cdot \mathbf{u}(x) . \tag{33}
\end{equation*}
$$

Here $\mathcal{A}(\mathbf{c}, \mathbf{v}(x))$ and $\mathbf{u}(x)$ are arbitrary proper-sized matrices.
Remark 5. Generally, the solution (25) and its derivatives as well as expressions of the type $\mathcal{A}(\mathbf{c}, \mathbf{v}(x))$ or $\mathbf{u}(x)$ are operators on $\mathbf{v}(x)$. If they are differential operators of order l, we obtain l th order higher symmetries by formula (33).

Example 4. A linear scalar equation

$$
\begin{equation*}
y^{\prime}=x y+v(x) \tag{34}
\end{equation*}
$$

The general solution in this case is

$$
y=e^{\frac{x^{2}}{2}} \int_{x_{0}}^{x} e^{-\frac{t^{2}}{2}} v(t) d t+c \cdot e^{\frac{x^{2}}{2}}
$$

Thus,

$$
c=y \cdot e^{\frac{-x^{2}}{2}}-I(x), \text { where } I(x)=\int_{x_{0}}^{x} e^{-\frac{t^{2}}{2}} v(t) d t
$$

is constant on any solution of (34).
Therefore, from (33) it follows that the general form of the symmetry in this example is

$$
\begin{equation*}
\varphi=\binom{e^{\frac{x^{2}}{2}}}{0} \cdot \mathcal{A}\left(y \cdot e^{\frac{-x^{2}}{2}}-I(x), v(x)\right)+\binom{e^{\frac{x^{2}}{2}} \int_{x_{0}}^{x} e^{-\frac{t^{2}}{2}}[\bullet] d t}{1} \cdot u(x) \tag{35}
\end{equation*}
$$

Here $\mathcal{A}(c, v(x))$ and $u(x)$ are arbitrary operator and function respectively; $f_{v}=$ $e^{\frac{x^{2}}{2}} \int_{x_{0}}^{x} e^{-\frac{t^{2}}{2}}[\bullet] d t$ is an operator acting on $u(x)$ by the formula

$$
\left(e^{\frac{x^{2}}{2}} \int_{x_{0}}^{x} e^{-\frac{t^{2}}{2}}[\bullet] d t\right) u(x)=e^{\frac{x^{2}}{2}} \int_{x_{0}}^{x} e^{-\frac{t^{2}}{2}} u(t) d t
$$

This example shows that, since a general solution $f=f(v)$ of a control system is an operator on controls, f_{v} in formula (33) is a linearization of this operator.

References

[1] S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung, Arch. fur Math. 6 (1881), pp. 328-368
[2] Symmetries and Conservation Laws for Differential equations of Mathematical Physics, I. S. Krasil'shchik and A. M. Vinogradov (eds), AMS Translations of Math. Monographs v. 182 (1998), 333 pp.
[3] A. V. Samokhin, Symmetries of Linear Ordinary Differential Equations, Amer. Math. Soc. Transl. (2), $\mathbf{1 6 7}$ (1995).
[4] A. V. Samokhin, Symmetries of Linear and Linearizable Systems of Differential Equations, Acta Appl. Math., 56 (1999), 253-300.
[5] P. W. Doyle, Symmetry and Ordinary Differential Constraints, Int. J. of Nonlinear Mech., 34, (1999), 1089-1102
[6] A. V. Samokhin, Symmetries of control systems, Banach Center Publications, 33 (1996), 337-342

Department of Mathematics, Moscow State Technical University of Civil Aviation, 20 Kronshtadtsky Blvd., Moscow 125993, RUSSIA

E-mail address: asamohin@online.ru

[^0]: 1991 Mathematics Subject Classification. 58G37, 34H05.
 Key words and phrases. Symmetry, control system, general solution.
 This work was partially supported by INTAS grant 96-0793.

