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SYMMETRY ALGEBRA FOR CONTROL SYSTEMS

A. SAMOKHIN

Abstract. A description of the full symmetry algebra for a general nonlin-

ear system of ordinary differential equations is given in terms of its general

solution and differential constants. The full symmetry algebra of a system is
a module over the ring of its differential constants; the module is generated

by partial derivatives of the general solution by the independent constants.
Special solutions, such as an envelope of a family of solutions, are described
naturally in this context. These results are extended to control systems; in

such case, differential constants become operators on controls. Examples are

provided.

1. Introduction

The study of symmetries of ordinary differential equation (ODE) was initiated
by Sophus Lie [1] and has a long history, see [2] for details. The latest results were
obtained in [4] and [5].

To find symmetries for a particular equation still remains a hard task. This
publication deals, however, with another problem. We give a full description of
the symmetry algebra of a system of ODE in a nondegenerate situation using the
general solution whose (local) existence is guaranteed by classical theorems. For a
linear system of ODEs this result was obtained in [3] and it was recently generalized
to the normal form scalar ODEs in [5].

Given a general solution, our description of the symmetry algebra is effective
and explicit: the full symmetry algebra of a system is a module over the ring of its
differential constants; the module is generated by partial derivatives of the general
solution by the independent constants. Special solutions, such as an envelope of a
family of solutions, are described naturally in this context. The interconnection be-
tween differential invariants, symmetries and a general solution is quite transparent
in the case of ODEs and may be used as a model aplicable in other situations.

We give two such applications below. First, we describe the symmetries of a
boundary/initial value problem for a one-dimensional wave equation. The sec-
ond, main application deals with symmetries of a control system. In both cases,
differential invariants become nonlocal ones.
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2. Full symmetry algebra for a general nonlinear ordinary
differential equation and a system of equations

2.1. General solution and differential constants. We begin with trivialities
to introduce notation.

Let E denote a general scalar ordinary differential equation of nth order:

y(n) − F (x, y, y′, . . . , y(n−1)) = 0. (1)

Its general solution (or a general integral) is of the form

Φ(x, y, c1, c2, . . . , cn) = 0. (2)

When (2) is solved with respect to y, we get

y = f(x, c1, . . . , cn); (3)

almost any solution of (1) is obtained from (3) by a proper choice of constants ci.
(The solution that is not produced by the general one is called a special solution.
Such solutions are discussed below.)

Remark 1. The existence of a general solution of (1) is by no means guaranteed.
Yet if F is continuously differentiable, the classical theorem on a differentiable
dependence of a solution of ODE on initial data guaranties an existence of a local
form of (2) in a neighborhood of a chosen solution. In this local form the initial
datum y(k)(x0) is taken as a differential constant ck, k = 0, . . . , n − 1. Below we
deal mostly with a global general solution, but it is always possible to make a
correspondent local statement.

Differentiating (3) by x, we obtain the following system of n independent equa-
tions 

y = f(x, c1, . . . , cn),
y′ = f ′(x, c1, . . . , cn),
. . . . . . . . . . . . . . . . . . . .
y(n−1) = f (n−1)(x, c1, . . . , cn)

(4)

One can obtain an expression (not necessary explicit) for ci solving (4). Thus

ci = ci(x, y, y′, . . . , y(n−1)), i = 1, . . . , n. (5)

In this way, all ci are differential constants of order less than n. In other words,
they are differential operators of order n−1, or functions on the jet space Jn−1(R).

In the case of a system of m differential equations,

y(n) − F(x,y,y′, . . . ,y(n−1)) = 0, (6)

where y = (y1, . . . , ym), F = (F1, . . . , Fm), the general solution is of the form

y = f(x, c1, . . . , cmn). (7)
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2.2. Full symmetry algebra. By definition of a solution, if in the right-hand
side of (3) f(x, y, c1, . . . , cn) is substituted for y in (1), we obtain the identity

f (n) − F (x, f, f ′, . . . , f (n−1)) ≡ 0. (8)

Hence
∂

∂ci

(
f (n) − F (x, f, f ′, . . . , f (n−1))

)
= 0 (9)

for all i, orDn −
n∑

j=1

∂F (x, y, y′, . . . , y(n−1))
∂yj

Dj

∣∣∣∣∣∣
y=f(x,y,c1,...,cn)

fci = 0, (10)

where D = d/dx is the total derivative with respect to x and fci denotes the partial
derivatice over ci.

Recall that

Ly(n)−F
def= Dn −

n∑
j=1

∂F (x, y, y′, . . . , y(n−1))
∂yj

Dj (11)

is called the universal linearization of the operator y(n) − F and that a solution φ
of the equation (

Ly(n)−F

)
ϕ
∣∣
E = 0 (12)

is a symmetry of E . Thus we have

Theorem 1. The partial derivatives fci , i = 1, . . . , n, form a full functionally
independent basis of symmetries for equation (1).

Remark 2. Let ϕ be a symmetry. Then it defines a flow on a set of solutions by
the formula:

∂y

∂τ
= ϕ|y, (13)

where y = f(x, y, c1, . . . , cn). A solution of this equation is a one-parameter family
of solutions of (1). By (3), it has the form

y = f(x, c1(τ), . . . , cn(τ)). (14)

Hence

ϕ|y =

(
n∑

i=1

∂ci

∂τ
fci

)∣∣∣∣∣
y

(15)

for any solution y of equation (1). Therefore,

ϕ =
n∑

i=1

∂ci

∂τ
fci

(16)

holds everywhere on E .
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Note that the derivatives ∂ci/∂τ |y depend on y, that is, on c1, . . . , c1, which are
functions on Jn−1(R) by virtue of (5). Since any choice of arbitrary functions ci(τ)
define some symmetry by (14), the functions ∂ci/∂τ |y are also arbitrary.

Thus, we got the general form of a symmetry for equation (1):

ϕ =
n∑

i=1

Ai(c1, . . . , cn)
∂

∂ci
f(x, y, c1, . . . , cn); (17)

here f is a general solution, Ai are arbitrary functions and ci are functions on
Jn−1(R) given by system (4).

Formula (17) gives a representation of the algebra of vector fields on Rn in the
full symmetry algebra of (6) by the isomorphism

n∑
i=1

Ai(c1, . . . , cn)
∂

∂ci
←→

n∑
i=1

Ai(c1, . . . , cn)
∂

∂ci
f(x, c1, . . . , cn) (18)

(on the left-hand side, ci are coordinates in Rn; on the right-hand side they denote
differential invariants (5) of (1) or special functions on Jn−1(R)).

Theorem 1 give an explicit representation of this correspondence, provided the
general solution is known. Yet its existence is guaranteed only locally; hence, the
formula (18) is also generally local.

Remark 3. Theorem 1 generalizes easily to the case of a system of differential
equations (6). Its full symmetry algebra is isomorphic to the algebra of vector
fields on Rmn: the representation is given by

mn∑
i=1

Ai(c1, . . . , cmn)
∂

∂ci
←→ ∂f ×A,

where ∂f ,A are respectively m ×mn and mn × 1 matrices with matrix elements
given by the formulas

(∂f)j,i =
∂fj

∂ci
, (A)i = Ai.

Remark 4. A full symmetry algebra is a module over the ring of the equation
differential constants. The module is generated by partial derivatives of a general
solution by independent constants.

Let us call fci
, i = 1, . . . , n, basic symmetries. They correspond to the flows

y(τ) = f(x, c1, . . . , ci + τ, . . . , cn). Thus, in the case of an explicit general solution
(3) basic symmetries are fci = yci . If a general solution of (1) is given in an implicit
form (2), then

yci = −
(

∂Φ
∂ci

)/(
∂Φ
∂y

)
. (19)
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2.3. Special and invariant solutions. Invariant solution y of (1) is a solution
that satisfies the condition ϕ(y) = 0 for some symmetry ϕ of the form (17). Hence
an invariant solution satisfy the system of equationsE(f) = y(n) − F (x, y, y′, . . . , y(n−1)) = 0,

φ(y) =
n∑

i=1

Ai(c1(y), . . . , cn(y))
∂

∂ci
f(x, y, c1(y), . . . , cn(y)) = 0.

(20)

Since ci are constants on solutions of (1), so are Ai(c1(y), . . . , cn(y)). Thus (20)
is simply E(f) = y(n) − F (x, y, y′, . . . , y(n−1)) = 0,

φ(y) =
n∑

i=1

Aifci
(x, y, c1, . . . , cn) = 0

(21)

with constant Ai and ci. The second condition in (21) means that basic symmetries
are linearly dependent on an invariant solution. If rank{fc1 , . . . , fcn}|y = n−k, we
introduce the notion of a k-invariant solution.

Consider a simple case of (21),{
y(n) − F (x, y, y′, . . . , y(n−1)) = 0
fci

= 0.
(22)

Its solution is a fixed point of the flow ci → ci + τ . Geometrically, such a solution
is an envelope for the family of solutions generated by this flow, see Subsection 2.4.

2.4. Examples.

Example 1. Consider the equation

y′′ +
9
8
(y′)4 = 0.

It is invariant with respect to the translations in both x and y, hence its symmetry
algebra is obvious. Its general solution is as follows:

Φ(x, y, c1, c2) = (y + c1)3 − (x + c2)2 = 0,

or
y = f(x, c1, c2) = (x + c2)

2
3 − c1.

Therefore, its basic symmetries are fc1 = −1, fc2 = 2
3 (x + c2)−

1
3 . They depend on

the differential constants c1, c2 that may be found from the system (4),

(y + c1)3 = (x + c2)2,

3y′(y + c1)2 = 2(x + c2).

It follows that

c1 =
( 2

3y′

)2

− y,

c2 =
( 2

3y′

)3

− x.
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Now, basic symmetries come to

fc1 = −1,

fc2 = y′,

which are (not surprisingly) translations in y and x respectively.
So the general symmetry for this equation is of the form (17)

ϕ = A1(c1, c2)fc1 + A2(c1, c2)fc2

= −A1

(( 2
3y′

)2

− y,
( 2

3y′

)3

− x

)
+ A2

(( 2
3y′

)2

− y,
( 2

3y′

)3

− x

)
y′,

where A1, A2 are arbitrary functions in two variables.
Invariant solutions must satisfy the system (21)

A + y′B = 0,

y′′ +
9
8
(y′)4 = 0

for some constants A, B. It follows that y′ = 0, so y = const. This is a special
solution (in the sense it is not obtained from the general integral). Each special
solution is an envelope for the family

(y − const)3 − (x + c2)2 = 0

for all c2.

Example 2. Linear equations (cf. [4])

y(n) +
n−1∑
i=0

ai(x)y(i) = 0.

Here the general integral is if the form

y =
n∑

i=1

cifi(x),

where fi(x) are independent solutions, i.e., their Wronskian is nonzero:

W = W (f1, . . . , fi, . . . , fn) =

∣∣∣∣∣∣∣∣
f1 . . . fi . . . fn

f ′1 . . . f ′i . . . f ′n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(n−1)
1 . . . f

(n−1)
i . . . f

(n−1)
n

∣∣∣∣∣∣∣∣ 6= 0

Independent solutions fi coincide with basic symmetries in this case: fi = fci .
Differential constant ci is given by the formula

ci(y, y′, . . . , y(n−1)) =
Wi

W
,

where Wi is obtained from W by changing the entries of the ith column of W for
y, y′, . . . , y(n−1) in the respective order.
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The general form of a symmetry is

ϕ =
n∑

i=1

Ai

(
W1

W
, . . . ,

Wi

W
, . . . ,

Wn

W

)
fi(x).

Example 3. Linear boundary problem

utt − uxx = 0, u|x=0 = u|x=π = 0.

This example is a rather wide generalization of the previous one. Fourier general
solution on [0, π] for this string is

u =
∞∑

n=0

sinnx(an cos nt + bn sinnt),

where an, bn are constants, but neither differential nor local: the Fourier coefficient
formula states that

an =
2
π

∫ π

0

u|t=0 sinnx dx, bn =
2

πn

∫ π

0

ut|t=0 sinnx dx (23)

A general form of the symmetry is given by

ϕ =
∞∑

n=0

sinnx
(
An(a1, b1, . . . , ai, bi, . . . ) cos nt

+ Bn(a1, b1, . . . , ai, bi, . . . ) sinnt
)
.

Here An, Bn are arbitrary functions depending on any finite number of ai, bj given
by (23).

3. Full symmetry algebra for a general control system

3.1. General solution and differential constants. Consider a first order con-
trol system

y′ = F(x,y,v(x)), (24)

where y ∈ Rm is an m-vector of unknown functions and v(x) ∈ Rk in a k-vector
of control functions.

With any fixed choice of controls, (24) comes to (6), where n = 1. Thus, the
general solution of (24) is of the form

y = f(x, c1, . . . , cm,v(x)), (25)

where ci are constants. From (25) it follows that there exists (at least an implicit)
dependence

ci = ci(x,y(x),y′(x),v(x)), i = 1, . . . ,m, (26)

of constants ci on x, y(x), y′(x), v(x). Both f and ci are operators on v. Examples
below show that these operators may be nonlocal.
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3.2. Full symmetry algebra. Technically, equation (24) is an equation with two
types of dependent variables, that is, with y and v. Let us put this equation in
the form

H(y,v) = y′ − F(x,y,v(x)) = 0.

The symmetry equation in this case is as follows:

(D − Fy)A− FvB|H=0 = 0, (27)

where (A,B) is a symmetry (if it defines a flow, then yτ = A, vτ = B). Besides,
Fy is an m×m matrix with the entries (Fi)yj

and Fv is an m× k matrix with the
entries (Fi)vj

.
It is convenient to put (27) in a vector form,

(D − Fy,−Fv) ·
(
A
B

)∣∣∣∣
H=0

= 0. (28)

The left factor in this formula is the linearization of H denoted by LH.

Theorem 2. Partial derivative vectors(
fc
0

)
,

(
fv
I

)
(29)

form a full functionally independent basis of symmetries for equation (24).

Proof. In terms of the general solution, the general form of a flow on the set of
solutions of equation (24) is given by the formula

y = f(x, c1(τ), . . . , cm(τ),v(x, τ)), (30)

where τ is a parameter of the flow. Since (30) is a solution for any τ , we have

d

dτ

(
f ′(x, c1(τ), . . . , cm(τ),v(x, τ))

− F(x, f(x, c1(τ), . . . , cm(τ),v(x, τ)),v(x, τ))
)

= 0.

It follows that(
(D − Fy)(fc · cτ + fv · vτ )− Fvvτ

)∣∣
H=0

= (D − Fy,−Fv) ·
(
fc · cτ + fv · vτ

vτ

)∣∣∣∣
H=0

= LH
(
fc · cτ + fv · vτ

vτ

)∣∣∣∣
H=0

= 0. (31)

Thus, the general solution of the symmetry equation is (cf. (16))(
fc
0

)
· cτ +

(
fv
I

)
· vτ . (32)

Here fc = (fi)cj
is an m × m matrix, fv is an m × k matrix and I is the k × k

identity matrix.
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To obtain the general form of the symmetry for equation (24) it remains to
notice that

1. vτ is an arbitrary vector-function;
2. for any fixed v, equation (24) coincides with (6), so ciτ are the components

of a vector field on the solution space. Therefore, ciτ = Ai(c,v) are arbitrary
functions;

3. ci are constants on solution of (24) given by (26).

Finally, we can write down the general form of a symmetry for (24):

ϕ =
(
fc
0

)
· A(c,v(x)) +

(
fv
I

)
· u(x). (33)

Here A(c,v(x)) and u(x) are arbitrary proper-sized matrices.

Remark 5. Generally, the solution (25) and its derivatives as well as expressions of
the type A(c,v(x)) or u(x) are operators on v(x). If they are differential operators
of order l, we obtain lth order higher symmetries by formula (33).

Example 4. A linear scalar equation

y′ = xy + v(x). (34)

The general solution in this case is

y = e
x2
2

∫ x

x0

e−
t2
2 v(t) dt + c · e x2

2 .

Thus,

c = y · e
−x2

2 − I(x), where I(x) =
∫ x

x0

e−
t2
2 v(t) dt,

is constant on any solution of (34).
Therefore, from (33) it follows that the general form of the symmetry in this

example is

ϕ =

(
e

x2
2

0

)
· A(y · e

−x2
2 − I(x), v(x)) +

(
e

x2
2
∫ x

x0
e−

t2
2 [ • ] dt

1

)
· u(x). (35)

Here A(c, v(x)) and u(x) are arbitrary operator and function respectively; fv =
e

x2
2
∫ x

x0
e−

t2
2 [ • ] dt is an operator acting on u(x) by the formula(

e
x2
2

∫ x

x0

e−
t2
2 [ • ] dt

)
u(x) = e

x2
2

∫ x

x0

e−
t2
2 u(t) dt.

This example shows that, since a general solution f = f(v) of a control system
is an operator on controls, fv in formula (33) is a linearization of this operator.
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