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SPHERES IN A WEYL SPACE

ZELIHA ŞENTÜRK AND ABDÜLKADIR ÖZDEĞER

Abstract. In this paper, we have defined spheres in a Weyl space and ob-

tained their characterization.

1. Introduction

A differentiable manifold of dimension n having a conformal metric tensor g and
a symmetric connection ∇ satisfying the compatibility condition

∇g = 2(T ⊗ g)(1.1)

where T is a 1−form(complementary covector field) is called a Weyl space which
we denote it by Wn(g, T ). Under the conformal change

ḡ = λ2g(1.2)

of the metric tensor g, T is transformed by the law

T̄ = T + d lnλ.(1.3)

An object A defined on Wn(g, T ) is called a satellite of g of weight {p} if it
admits a transformation of the form

Ā = λpA(1.4)

under the conformal change of g([1],[2],[3]). The prolonged derivative and the
prolonged covariant derivative in the direction of the vector X of the satellite A of
weight {p} are, respectively defined by

∂̇XA = ∂XA− pT (X)A(1.5)

and

∇̇XA = ∇XA− pT (X)A(1.6)

where ∂XA is the derivative of A in the direction of X. By (1.2) and (1.6) it follows
that for every X, ∇̇Xg = 0.

We note that prolonged differentiation and prolonged covariant differentiation
preserve the weights of the satellites.
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Let x ∈ U ⊂ Wn(g, T ), X ∈ Tx(U), A ∈ χ(U), and let X =
∑n

k=1 Xk( ∂
∂xk )x,

A =
∑n

i=1 Ai ∂
∂xi , T =

∑n
k=1 Tkdxk. Then (1.6) gives

Xk∇̇kAi = Xk∇kAi − pTkAi , ∇k = ∇ ∂

∂xk
.(1.7)

Spheres in Riemannian spaces are extensively studied by K.Yano and K.Nomizu
[4].

The definition of a sphere given in a Riemannian space is not applicable in a Weyl
space since the length of a vector field is not a gauge invariant. In the following we
use the prolonged covariant differentiation in the definition of a sphere in a Weyl
space due to the fact that it preserves the metric tensor and the weights of the
satellites.

As far as we know, spheres in Weyl spaces have not yet been studied.
Let Wn(g, T ) be a subspace of the Weyl space W̄m(ḡ, T̄ ) and let ∇ and ∇̄ be the

corresponding connections. Let pεWn(g, T ) and let U , Ū be the special coordinate
neighborhoods of p. Then, the Gauss equation and the Weingarten equation for
Wn(g, T ) are respectively

∇̄X̄ Ȳ |U = ∇̄XY = ∇XY + α(X, Y )(1.8)

∇̄X̄ ξ̄|U = ∇̄Xξ = −AξX +∇⊥Xξ(1.9)

where XεTp(U), Y εχ(U) and ξ is a vector field normal to Wn(g, T ) while X̄, Ȳ
are extensions of X ve Y to Ū [5].

We now find the expressions for Gauss and Weingarten equations in terms of
prolonged covariant derivative. The prolonged covariant derivative of the vector
field Y εχ(U) of weight {−1} in the direction of X is, according to (1.6)

˙̄∇XY = ∇̄XY + T̄ (X)Y.(1.10)

By (1.8), (1.10) becomes ˙̄∇XY = ∇XY +α(X, Y )+T̄ (X)Y from which it follows
that

tan ˙̄∇XY = ∇XY + T̄ (X)Y = ∇̇XY

nor ˙̄∇XY = α(X, Y )

and consequently we have
˙̄∇XY = tan ˙̄∇XY + nor ˙̄∇XY
˙̄∇XY = ∇̇XY + α(X, Y ).(1.11)

Similarly, the normal vector field ξ of weight {−1} has the prolonged covariant
derivative

˙̄∇Xξ = ∇̄Xξ + T̄ (X)ξ(1.12)

in the direction of X. By the Weingarten equation (1.9), (1.12) takes the form

˙̄∇Xξ = −AξX +∇⊥Xξ + T̄ (X)ξ.
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Since

tan ˙̄∇Xξ = −AξX,

nor ˙̄∇Xξ = ∇⊥Xξ + T̄ (X)ξ,(1.13)

(1.12) reduces to

˙̄∇Xξ = tan ˙̄∇Xξ + nor ˙̄∇Xξ

˙̄∇Xξ = −AξX +∇⊥Xξ + T̄ (X)ξ,

or

˙̄∇Xξ = −AξX + ∇̇⊥Xξ.(1.14)

A normal vector field ξ on Wn(g, T ) is said to be parallel with respect to ∇⊥X if

∇⊥Xξ = 0(1.15)

for every tangent vector X.
The vector field

η =
1
n

trα(1.16)

is called the mean curvature vector of Wn(g, T ).
Let C be a smooth curve belonging to the Weyl space Wn(g, T ) and let ξ

1 be
the tangent vector to C at the point P normalized by the condition g(ξ1 , ξ1 ) = 1. A
curve in Wn(g, T ) is called a circle if there exist a vector field ξ

2 , normalized by the
condition g(ξ2 , ξ2 ) = 1, along C and a positive prolonged covariant constant scalar
function κ of weight {−1} such that

(1.17) ∇̇ξ
1

ξ
1 = κξ

2

(1.18) ∇̇ξ
1

ξ
2 = −κξ

1 .

We note that the equations (1.17) and (1.18) are invariant under a gauge trans-
formation.

A circle C satisfies the third order differential equation

(1.19) ∇̇2
ξ
1

ξ
1 + g(∇̇ξ

1

ξ
1 , ∇̇ξ

1

ξ
1 )ξ1 = 0 , ξ

1

i
=

dxi

ds

where s is the arclength of C measured from a fixed point on C and xi are the
coordinates of a current point belonging to C [6].
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2. SPHERES IN A WEYL SPACE

Let Wn(g, T ) be a submanifold of a Weyl space W̄m(ḡ, T̄ ). In this section the
concept of a sphere in Riemannian space will be generalized to a Weyl space.

Definition 1. If Wn(g, T ) is an n-dimensional umbilical submanifold of the m-
dimensional Weyl space W̄m(ḡ, T̄ ) with a non-zero curvature vector then it is called
an extrinsic sphere or simply a sphere.

Theorem 1. Let Wn(g, T ) (n ≥ 2) be a submanifold of the Weyl space W̄m(ḡ, T̄ ).
If every circle in Wn(g, T ) is a circle in W̄m(ḡ, T̄ ), then Wn(g, T ) is a sphere in
W̄m(ḡ, T̄ ). Conversely, if Wn(g, T ) is a sphere in W̄m(ḡ, T̄ ), then every circle in
Wn(g, T ) is a circle in W̄m(ḡ, T̄ ).

Proof. Let x be an arbitrary point of Wn(g, T ) and ξ, η orthonormal vectors in
the tangent space of Wn(g, T ) at x. Let C be a curve admitting a parametric
representation x = x(s). We now take the arc length (|s| < ε) as a parameter for
the curve C. Let the curve C be a circle in the submanifold Wn(g, T ) such that

x(0) = x0 = x , ξ(0) = ξ0 = ξ , ∇̇ξ
1

ξ
1 |0=

1
r
η(2.1)

where ξ
1 is a tangent vector of the circle C.

Since C is a circle, the vector ξ
1 satisfies the differential equation

∇̇2
ξ
1

ξ
1 + g(∇̇ξ

1

ξ
1 , ∇̇ξ

1

ξ
1 )ξ1 = 0.(2.2)

Denoting by ∇̄ the connection of W̄m(ḡ, T̄ ), if the curve C in Wn(g, T ) is a circle
in W̄m(ḡ, T̄ ), then we have

˙̄∇2
ξ
1

ξ
1 + g( ˙̄∇ξ

1

ξ
1 , ˙̄∇ξ

1

ξ
1 )ξ1 = 0.(2.3)

Denoting by α the second fundamental form of Wn(g, T ) and using the Gauss
equation (1.11) we get

˙̄∇ξ
1

ξ
1 = ∇̇ξ

1

ξ
1 + α(ξ1 , ξ1 ).(2.4)

Taking the prolonged covariant derivative of (2.4) in the direction of ξ
1 we obtain

˙̄∇2
ξ
1

ξ
1 = ˙̄∇ξ

1

(∇̇ξ
1

ξ
1 ) + ˙̄∇ξ

1

α(ξ1 , ξ1 )

= ∇̇2
ξ
1

ξ
1 + α(ξ1 , ∇̇ξ

1

ξ
1 )−A

α(ξ1 ,ξ1 )
ξ
1 + ∇̇⊥ξ

1

α(ξ1 , ξ1 )(2.5)

where Aξ is the shape operator for a normal vector ξ and ∇̇⊥ denotes the prolonged
covariant differentiation along C relative to the normal connection. Substituting
(2.4) and (2.5) into (2.3) and taking account of (2.2) we get

α(ξ1 , ∇̇ξ
1

ξ
1 )−A

α(ξ1 ,ξ1 )
ξ
1 + ∇̇⊥ξ

1

α(ξ1 , ξ1 ) + g(α(ξ1 , ξ1 ), α(ξ1 , ξ1 ))ξ1 = 0.(2.6)
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Separating (2.6) into tangential and normal components , we get respectively

A
α(ξ1 ,ξ1 )

ξ
1 = g(α(ξ1 , ξ1 ), α(ξ1 , ξ1 ))ξ1(2.7)

and

α(ξ1 , ∇̇ξ
1

ξ
1 ) + ∇̇⊥ξ

1

α(ξ1 , ξ1 ) = 0.(2.8)

Using

(∇̇∗ξ
1

α)(ξ1 , ξ1 ) = ∇̇⊥ξ
1

α(ξ1 , ξ1 )− 2α(∇̇ξ
1

ξ
1 , ξ1 )(2.9)

we may rewrite (2.8) in the form

3α(∇̇ξ
1

ξ
1 , ξ1 ) = −(∇̇∗ξ

1

α)(ξ1 , ξ1 ) ,(2.10)

where ∇̇∗ξ
1

α is the Weyl version of the natural covariant derivative of the second

fundamental form α in the direction of ξ
1 in the Riemannian case [7].

Noting that ∇̇ξ
1

ξ
1 |0=

1
r η and using (2.2) we obtain

α(η, ξ) = −r

3
(∇̇∗ξ

1

α)(ξ, ξ).(2.11)

This equation shows that α(η, ξ) is independent of η provided that η is orthog-
onal to ξ. In particular changing η into −η we find α(η, ξ) = 0 .

To complete the proof of the theorem we now establish the
Lemma Let x be an arbitrary point of Wn(g, T ), and let ξ, η be orthonormal
vectors in the tangent space of Wn(g, T ) at x so that α(ξ, η) = 0. Then the
following conclusions hold:

(1) α(ξ, ξ) = α(η, η) for any orthonormal ξ and η in Tx(Wn).
(2) The mean curvature vector ηx is equal to α(ξ1 , ξ1 ), where ξ

1 is an arbitrary
vector in Tx(Wn) normalized by the condition g(ξ1 , ξ1 ) = 1.

(3) Wn(g, T ) is umbilical at x , i.e.

α(ξ, η) = g(ξ, η)ηx , for all ξ, η ∈ Tx(Wn).

Proof.
(1) Since ξ and η are orthonormal, so are 1√

2
(ξ + η) and 1√

2
(ξ − η). Thus

α(
1√
2
(ξ + η),

1√
2
(ξ − η)) = 0

which implies that

α(ξ, ξ) = α(η, η).

(2) Let {ξ1 , ξ2 , ..., ξn} be an orthonormal basis in Tx(Wn).By (1)

α(ξ1 , ξ1 ) = α(ξ2 , ξ2 ) = ... = α(ξn , ξn ).
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Therefore we find

ηx =
1
n

n∑
i=1

α(ξi , ξi ) = α(ξ1 , ξ1 ).

(3) Since {ξ1 , ξ2 , ..., ξn} is an orthonormal basis we can write

ξ =
n∑

i=1

aiξi and η =
n∑

i=1

biξi .

So that

α(ξ, η) =
n∑

i,j=1

aibjα(ξi , ξj ) = (
n∑

i=1

aibi)α(ξ1 , ξ1 )

= g(ξ, η)ηx.

Now we go back to the theorem. Since g(ξ1 , ∇̇ξ
1

ξ
1 ) = 0 we have α(ξ1 , ∇̇ξ

1

ξ
1 ) = 0.

Thus (2.8) gives

∇̇⊥ξ
1

α(ξ1 , ξ1 ) = 0.(2.12)

By (2) of the lemma we know that α(ξ1 , ξ1 ) is equal to the mean curvature vector
ηx along the curve C. (2.12) means that

∇̇⊥ξ
1

η = 0.(2.13)

Since x and ξ
1 are arbitrary we have shown that the mean curvature vector η of

Wn(g, T ) is parallel. Thus Wn(g, T ) is a sphere.
Conversely, assume that Wn(g, T ) is a sphere in W̄m(ḡ, T̄ ) and the curve C is a

circle in Wn(g, T ). In this case the differential equation (2.2) is satisfied.
Since Wn(g, T ) is umbilical, we have

α(ξ1 , ξ1 ) = g(ξ1 , ξ1 )ηx = ηx.(2.14)

From (2.4) and (2.3) we get

g( ˙̄∇ξ
1

ξ
1 , ˙̄∇ξ

1

ξ
1 ) = g(∇̇ξ

1

ξ
1 , ∇̇ξ

1

ξ
1 ) + H2(2.15)

where H =‖ ηx ‖ is the mean curvature.
In (2.6) we have

α(ξ1 , ∇̇ξ
1

ξ
1 ) = g(ξ1 , ∇̇ξ

1

ξ
1 )ηx = 0

A
α(ξ1 ,ξ1 )

ξ
1 = Aηx

ξ
1 = H2ξ

1 .

Since η is parallel we obtain

∇̇⊥ξ
1

α(ξ1 , ξ1 ) = ∇̇⊥ξ
1

ηx = 0.
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Thus (2.5) reduces to
˙̄∇2
ξ
1

ξ
1 = ∇̇2

ξ
1

ξ
1 −H2ξ

1 .(2.16)

The equation (2.3) is satisfied as a consequence of (2.2), (2.15) and (2.16). Thus
the curve C is a circle in W̄m(ḡ, T̄ ).
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