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ON HAMILTON p2–EQUATIONS IN SECOND-ORDER
FIELD THEORY

DANA SMETANOVÁ

Abstract. In the present paper recent results on regularizations of first order

variational problems are generalized to Lagrangians affine in the second deriva-
tives. New regularity conditions are found and Legendre transformations are

studied.

1. Introduction and notation

In this paper we consider an extension of the classical Hamilton–Cartan varia-
tional theory on fibered manifolds.

It is known that in field theory to a variational problem represented by a La-
grangian one can associate different Hamilton equations corresponding to different
Lepagean equivalents of the Lagrangian (Dedecker [1], Krupka [7]). Accord-
ingly, these Hamilton equations depend upon a Lagrangian (resp. its Poincaré
- Cartan form), and an auxiliary differential form corresponding to the at least
2-contact part of the Lepagean equivalent of the Lagrangian. This admits a new
approach to the problem of regularity (Dedecker [1], Krupková [11], [12], Krup-
ková and Smetanová [13], [14]). Contrary to the classical calculus of variations
where regularity is a property of a single Lagrangian, in the generalized approach
regularity conditions (different from [3], [4], [8], [15]) depend upon a Lagrangian
and some “free” functions which can be considered as parameters. Within this
setting, a proper choice of a Lepagean equivalent can lead to a “regularization” of
a Lagrangian. Using this regularization procedure one can regularize some inter-
esting traditionally singular physical fields, the Dirac field, and the electromagnetic
field (cf. Dedecker [1], Krupková and Smetanová [13], [14]).

Throughout this paper, π : Y → X is s fibered manifold, and dimX = n,
dimY = m + n. The r-jet prolongation of π is a fibered manifold denoted by
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πr : JrY → X and πr,s : JrY → JsY , 0 ≤ s ≤ r, we denote the natural jet
projections. A fibered chart on Y (resp. an associated fibered chart on JrY ) is
denoted by (V, ψ), ψ = (xi, yσ) (resp. (Vr, ψr), ψr = (xi, yσ, yσ

i , . . . , y
σ
i1...ir

)). In
what follows, we consider r = 1 or r = 2.

Recall that every q-form η on JrY admits a unique (canonical) decomposition
into a sum of q-forms on Jr+1Y as follows:

π∗r+1,rη = h(η) +
q∑

k=1

pk(η),

where h(η) is a horizontal form, called the horizontal part of η, and pk(η), 1 ≤ k ≤
q, is a k-contact form, called the k-contact part of η (see e.g. [5], [6] for review).

We use the following notations:

ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn, ωi = i∂/∂xiω0, ωij = i∂/∂xjωi,

and
ωσ = dyσ − yσ

j dx
j , ωσ

i = dyσ
i − yσ

ijdx
j .

By an r-th order Lagrangian we shall mean a horizontal n-form λ on JrY . A
form ρ is called a Lepagean equivalent of a Lagrangian λ if (up to a projection)
h(ρ) = λ, and p1(dρ) is a πr+1,0-horizontal form [5]. For an r-th order Lagrangian
we have all its Lepagean equivalents of order (2r−1) characterized by the following
formula

(1.1) ρ = Θ + ν,

where Θ is a global Poincaré–Cartan form associated to λ, and ν is an arbitrary
n-form of order of contactness ≥ 2, i.e., such that h(ν) = p1(ν) = 0 (cf. Krupka
[5], [6]). Recall that for a Lagrangian of order 1, Θ = θλ where θλ is the classical
Poincaré–Cartan form of λ,

θλ = Lω0 +
∂L

∂yσ
i

ωσ ∧ ωi.

If r = 2, Θ is no more unique, however, there is an invariant decomposition

(1.2) Θ = θλ + dφ,

where

θλ = Lω0 +

(
∂L

∂yσ
j

− dk
∂L

∂yσ
jk

)
ωσ ∧ ωj +

∂L

∂yσ
ij

ωσ
i ∧ ωj

and φ does not depend upon λ (Krupka [6]).
With the help of Lepagean equivalents of a Lagrangian one obtains the following

intrinsic formulation of the Euler–Lagrange and Hamilton equations.

Theorem (Krupka [5]). Let λ be a Lagrangian on JrY , ρ its Lepagean equivalent.
A section γ of π is an extremal of λ if and only if

(1.3) J2r−1γ∗iJ2r−1ξdρ = 0

for every π-vertical vector field ξ on Y .
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A section δ of the fibered manifold π2r−1 is called a Hamilton extremal of ρ
(Krupka [7]) if

(1.4) δ∗iξdρ = 0,

for every π2r−1-vertical vector field ξ on J2r−1Y .
(1.3) are called the Euler–Lagrange equations and (1.4) the Hamilton equations

of ρ, respectively. Notice that while the Euler–Lagrange equations are uniquely
determined by the Lagrangian, Hamilton equations depend upon a choice of ν.
Consequently, one gets many different Hamilton theories associated to a given
variational problem.

In accordance with [13], by Hamilton p2-equations we shall mean Hamilton
equations of a Lepagean equivalent ρ of λ where ν is a 2-contact n-form (i. e.,
h(ν) = pi(ν) = 0, i ≥ 1, i 6= 2).

The aim of this paper is to consider Hamilton p2-equations for a class of second
order Lagrangians. Namely, we study Lagragians affine in second derivatives yσ

kl,
such that their Lepagean equivalent is of the form ρ = θλ + ν, where ν = p2(β),
for an n-form β defined on J1Y .

Recall that a section δ of the fibered manifold πr is said to be holonomic if
δ = Jrγ for a section γ of π. Clearly, if γ is an extremal then J2r−1γ is a Hamilton
extremal; conversely, however, a Hamilton extremal need not be holonomic, and
thus a jet prolongation of some extremal. This suggests a definition of regularity
proposed by Krupka and Štěpánková [9] in consequence with a study of second
order Lagrangians with projectable Poincaré–Cartan forms: Throughout this paper
a Lepagean form is called regular if every its Hamilton extremal is holonomic.
Taking a Lepagean equivalent of λ in the form ρ = θλ + p2(β), where β is defined
on J1Y , we can see that regularity conditions involve λ and β, and one can ask
about a proper choice β, such that ρ is regular. We study this question in Section
2. Section 3 is then devoted to the question on the existence of certain Legendre
coordinates for regularizable Lagrangians. In Section 4 we deal with Lagrangians,
affine with second derivatives, admitting a Lepagean equivalent projectable onto
J1Y . Our results are a direct generalization of techniques and results from [13],
[14] and provide, as a special case, the results of [9] and [2].

2. Regularization of variational problems for second-order
Lagrangians affine in second derivatives

We shall consider Lagrangians affine in the second derivatives and its Lepagean
forms (1.1), (1.2) where φ = 0, ν is 2-contact, and

ν = p2(β),

where β is defined on J1Y and such that pi(β) = 0 for all i ≥ 3.
In a fiber chart, a Lagrangian λ affine in the second derivatives is expressed by

(2.1) λ = Lω0, L = L̃+ L̃ij
σ y

σ
ij ,
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where functions L̃, L̃ij
σ do not depend on the variables yκ

kl and the functions L̃ij
σ

satisfy the condition L̃ij
σ = L̃ji

σ . In view of the above considerations we obtain

(2.2)

ρ =
(
L̃+ L̃kl

ν y
ν
kl

)
ω0 +

(
∂L̃

∂yσ
j

+
∂L̃kl

ν

∂yσ
j

yν
kl − dkL̃

jk
σ

)
ωσ ∧ ωj

+ L̃il
σω

σ
i ∧ ωj + f ij

σνω
σ ∧ ων ∧ ωij + gkij

σν ω
σ ∧ ων

k ∧ ωij

+ hklij
σν ωσ

k ∧ ων
l ∧ ωij ,

where the functions f ij
σν , gkij

σν , hklij
σν do not depend on the yκ

pq’s and satisfy the
conditions

f ij
σν = −f ij

νσ, f ij
σν = −f ji

σν , f ij
σν = f ji

νσ;

gkij
σν = −gkji

σν ;(2.3)

hklij
σν = −hlkij

νσ , hklij
σν = −hklji

σν .

In general case, the Poincaré–Cartan forms of a second order Lagrangians is
defined on J3Y , but for Lagrangians of the forms (2.1) θλ is projectable onto J2Y .
Our choice of the 2-contact part ν of ρ conserves the Lepagean form (2.2), (2.3)
defined on J2Y .

In the following theorems necessary conditions for regularity are found, which
according to the definition of regularity in this paper, guarantee that extremals
and Hamilton extremals of λ = hρ are in bijective correspondence.

Theorem A. Let dimX ≥ 3. Let λ be a second-order Lagrangian affine in the
variables yσ

ij, the formula (2.1) be its expression in a fiber chart (V, ψ), ψ = (xi, yσ)
on Y . Let ρ be a Lepagean equivalent of λ of the form (2.2), (2.3).

Assume that the matrix

(2.5)
(
Aklj

νσ | Bklpq
νκ

)
,

with mn2 rows (resp. mn + mn(n + 1)/ 2 columns) labelled by (ν, k, l) (resp.
(σ, j, κ, p, q), where 1 ≤ p ≤ q ≤ n), where

Aklj
νσ =

(
∂L̃kl

ν

∂yσ
j

− 1
2

(
∂L̃jk

σ

∂yν
l

+
∂L̃jl

σ

∂yν
k

)
− gkjl

σν − gljk
σν

)
,

and
Bklpq

νκ =
(
hkpql

νκ + hlpqk
νκ

)
,

has rank mn(n + 3)/ 2.
Then ρ is regular on π2

−1 (V ), i.e., every Hamilton extremal δ : π(V ) ⊃ U →
J2Y of ρ is of the form δ = J2γ, where γ is an extremal of λ.

Proof. Expressing the Hamilton p2-equations (1.4) in fiber coordinates we get along
δ the following system of first-order equations for section δ:
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mn2 equations(
∂L̃kl

ν

∂yσ
j

− 1
2

(
∂L̃jk

σ

∂yν
l

+
∂L̃jl

σ

∂yν
k

)
− gkjl

σν − gljk
σν

)(
∂yσ

∂xj
− yσ

j

)
(2.6)

+2
(
hkijl

νσ + hlijk
νσ

)(∂yσ
i

∂xj
− yσ

ij

)
= 0,

mn equations(
∂2L̃

∂yσ
j ∂y

ν
k

+
∂2L̃pq

κ

∂yσ
j ∂y

ν
k

yκ
pq −

∂

∂yν
k

dpL̃
jp
σ − ∂L̃kj

ν

∂yσ
− 4f jk

σν + 2dig
kij
σν

)
(2.7)

×
(
∂yσ

∂xj
− yσ

j

)
+

(
∂L̃ij

σ

∂yν
k

− ∂L̃kj
ν

∂yσ
i

+ 2gkij
σν − 2gikj

νσ − 4dlh
kilj
νσ

)

×
(
∂yσ

i

∂xj
− yσ

ij

)
+ 2

(
hikjl

σν + hlkji
σν

)(∂yσ
il

∂xj
− yσ

ilj

)
+
(

2
∂f ij

σκ

∂yν
k

+
∂gkij

κν

∂yσ
− ∂gkij

σν

∂yκ

)(
∂yσ

∂xj
− yσ

j

)(
∂yκ

∂xi
− yκ

i

)
+ 2

(
2
∂hlkij

κν

∂yσ
+
∂glij

σκ

∂yν
k

− ∂gkij
σν

∂yκ
l

)(
∂yσ

∂xi
− yσ

i

)(
∂yκ

l

∂xj
− yκ

lj

)
+ 2

(
∂hlkij

σν

∂yκ
p

+
∂hkpij

νκ

∂yσ
l

+
∂hplij

κσ

∂yν
k

)(
∂yκ

p

∂xi
− yκ

pi

)(
∂yσ

l

∂xj
− yσ

lj

)
= 0,

and m equations(
∂L̃

∂yν
+
∂L̃pq

κ

∂yν
yκ

pq − dj

(
∂L̃

∂yν
j

+
∂L̃pq

κ

∂yν
j

yκ
pq

)
+ djdkL̃

jk
ν

)
(2.8)

+

(
∂2L̃

∂yσ
j ∂y

ν
+

∂2L̃pq
κ

∂yσ
j ∂y

ν
yκ

pq −
∂2L̃

∂yσ∂yν
j

− ∂8L̃pq
κ

∂yσ∂yν
j

yκ
pq −

∂

∂yν
dkL̃

jk
σ

+
∂

∂yσ
dkL̃

jk
ν + 2dif

ij
σν

)(
∂yσ

∂xj
− yσ

j

)

+

(
∂L̃kj

σ

∂yν
− ∂2L̃

∂yσ
j ∂y

ν
k

− ∂2L̃pq
κ

∂yσ
j ∂y

ν
k

yκ
pq +

∂

∂yσ
k

dpL̃
jp
ν + 4f jk

νσ − 2dig
kij
νσ

)

×
(
∂yσ

k

∂xj
− yσ

kj

)

+

(
∂L̃kl

σ

∂yν
j

− 1
2

(
∂L̃jk

ν

∂yσ
l

+
∂L̃jl

ν

∂yσ
k

)
− gkjl

νσ − gljk
νσ

)(
∂yσ

kl

∂xj
− yσ

klj

)



334 DANA SMETANOVÁ

+ 2
(
∂f ij

σν

∂yκ
+
∂f ij

κσ

∂yν
+
∂f ij

νκ

∂yσ

)(
∂yκ

∂xi
− yκ

i

)(
∂yσ

∂xj
− yσ

j

)
+ 2

(
2
∂f ij

σν

∂yκ
k

+
∂gkij

νκ

∂yσ
− ∂gkij

σκ

∂yν

)(
∂yκ

k

∂xi
− yκ

ki

)(
∂yσ

∂xj
− yσ

j

)
+
(

2
∂hlkij

κσ

∂yν
+
∂glij

νκ

∂yσ
k

− ∂gkij
νσ

∂yκ
l

)(
∂yκ

l

∂xi
− xκ

li

)(
∂yσ

k

∂xj
− yσ

kj

)
= 0.

The system (2.6) can be viewed as a system of mn2 (algebraic) linear homoge-
neous equations for

mn+mn

(
n+ 1

2

)
= mn

(
n+ 3

2

)
unknowns (

∂yσ

∂xi
− yσ

i

)
,

and (
∂yσ

j

∂xi
− yσ

ij

)
, j ≤ i.

According to the (algebraic) Frobenius theorem, this system has a unique (zero)
solution if and only if the rank of the matrix of system, i. e.,

(
Aklj

νσ | Bklpq
νκ

)
is equal

to the number of unknowns, i. e., mn ((n+ 3)/2). Let dimX = n ≥ 3, then

mn2 = mn
(n

2
+
n

2

)
≥ mn

(
n+ 3

2

)
,

as desired. Since rank of matrix (2.5) is maximal, by assumption, we obtain

∂yσ

∂xi
◦ δ = yσ

i ◦ δ,
∂yσ

j

∂xi
◦ δ = yσ

ij ◦ δ, j ≤ i,

proving that δ = J2γ. Substituting this into (2.8) we get(
∂L̃

∂yν
+
∂L̃pq

κ

∂yν
yκ

pq − dj

(
∂L̃

∂yν
j

+
∂L̃pq

κ

∂yν
j

yκ
pq

)
+ djdkL̃

jk
ν

)
◦ J3γ

=

(
∂L

∂yν
− dj

∂L

∂yν
j

+ djdk
∂L

∂yν
jk

)
◦ J3γ = 0,

i. e., γ is an extremal of λ.

Theorem B. Let λ be a second-order Lagrangian affine in the variables yσ
ij, the

formula (2.1) be its expression in a fiber chart (V, ψ), ψ = (xi, yσ) on Y . Let ρ
be a Lepagean equivalent of λ of the form (2.2), (2.3). Suppose that ρ satisfies the
conditions

(2.9) hklij
σν = 0.



ON HAMILTON p2–EQUATIONS IN SECOND-ORDER FIELD THEORY 335

Assume that the matrix

(2.10) Aklj
νσ =

(
∂L̃kl

ν

∂yσ
j

− 1
2

(
∂L̃jk

σ

∂yν
l

+
∂L̃jl

σ

∂yν
k

)
− gkjl

σν − gljk
σν

)
with mn2 rows (resp. mn columns) labelled by (ν, k, l) (resp. (σ, j)), has the max-
imal rank (i.e. rankAklj

νσ = mn).
Then every Hamilton extremal δ : π(V ) ⊃ U → J2Y of ρ is of the form π2,1◦δ =

J1γ, where γ is an extremal of λ.

Proof. Substituting (2.9) into Hamilton p2-equations (2.6), and using the condition
rankAklj

νσ = mn we obtain
∂yσ ◦ δ
∂xj

= yσ
j ◦ δ.

The previous condition means π2,1 ◦ δ = J1γ. However, the last equations (2.8)
now mean that γ is an extremal of λ.

3. Legendre transformation on J2Y for second order Lagrangians
affine in second derivatives

Writing the Lepagean equivalent (2.2), (2.3) in the form of a noninvariant de-
composition in the canonical basis (dxi, dyσ, dyσ

i , dyσ
ij) of 1-forms we get

ρ = −Hω0 + pi
σdy

σ ∧ ωi + pij
σ dy

σ
i ∧ ωj

+ f ij
σν dy

σ ∧ dyν ∧ ωij + gkij
σν dy

σ ∧ dyν
k ∧ ωij + hklij

σν dyσ
k ∧ dyν

l ∧ ωij ,

where

H = −L+
(
∂L

∂yσ
i

− djL̃
ij
σ

)
yσ

i +L̃ij
σ y

σ
ij+2f ij

σνy
σ
i y

ν
j−
(
gkij

σν +gjik
σν

)
yσ

i y
ν
jk

− 1
2
(
hklij

σν + hilkj
σν + hkjil

σν + hijkl
σν

)
yσ

iky
ν
jl,

pi
σ =

∂L

∂yσ
i

− djL̃
ij
σ − 4f ij

σνy
ν
j −

(
gkij

σν + gjik
σν

)
yν

jk,

pij
σ = L̃ij

σ +
(
gikj

νσ + gjki
νσ

)
yν

k − 2
(
hkilj

νσ + hlikj
νσ

)
yν

kl.

(3.1)

If pij
σ = pji

σ (i. e., hkilj
νσ + hlikj

νσ = hkjli
νσ + hljki

νσ ) and

det


∂pi

σ

∂yν
k

∂pi
σ

∂yν
kl

∂pij
σ

∂yν
k

∂pij
σ

∂yν
kl

 6= 0,

then

(3.2) ψ2 = (xi, yσ, yσ
i , y

σ
ij) → (xi, yσ, pi

σ, p
ij
σ ) = χ
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is a coordinate transformation over an open set U ⊂ V2. We call it Legendre
transformation, and the χ (3.2) the Legendre coordinates. Accordingly, H, pi

σ, p
ij
σ

are called a Hamiltonian and momenta, respectively. Since the functions f ij
σν , gkij

σν ,
hlikj

νσ (2.3) may depend upon the momenta pi
σ (not upon pij

σ ), the Hamilton p2-
equations (1.4) in these “Legendre coordinates” take a rather complicated form:

∂H

∂yσ
= −∂p

i
σ

∂xi
+ 4

∂f ij
σν

∂xj

∂yν

∂xi
+ 2

(
∂f ij

κν

∂yσ
+
∂f ij

κσ

∂yν
+
∂f ij

νκ

∂yσ

)
∂yκ

∂xi

∂yν

∂xj

− 4
∂f ij

σν

∂pk
κ

∂pk
κ

∂xi

∂yν

∂xj
+
∂gkij

σν

∂xj

∂yν
k

∂xi
+ 2

(
∂gkij

κν

∂yσ
− ∂gkij

σν

∂yκ

)
∂yκ

∂xi

∂yν
k

∂xj

− 2
∂gkij

σν

∂pl
κ

∂pl
κ

∂xi

∂yν
k

∂xj
+ 2

∂hklij
κν

∂yσ

∂yκ
k

∂xi

∂yν
l

∂xj
,

∂H

∂pi
σ

=
∂yσ

∂xi
+ 2

∂f jk
κν

∂pi
σ

∂yκ

∂xj

∂yν

∂xk
+ 2

∂gkjl
κν

∂pi
σ

∂yκ

∂xj

∂yν
k

∂xl
+ 2

∂hkljm
κν

∂pi
σ

∂yκ
k

∂xj

∂yν
l

∂xm
,

∂H

∂pij
σ

=
1
2

(
∂yσ

i

∂xj
+

∂yσ
j

∂xi

)
.

However, if dη = 0, where

η = f ij
σν dy

σ ∧ dyν ∧ ωij + gkij
σν dy

σ ∧ dyν
k ∧ ωij + hklij

σν dyσ
k ∧ dyν

l ∧ ωij ,

then
∂H

∂yσ
= −∂p

i
σ

∂xi
,

∂H

∂pi
σ

=
∂yσ

∂xi
,

∂H

∂pij
σ

=
1
2

(
∂yσ

i

∂xj
+

∂yσ
j

∂xi

)
.

In general case the regularity of the Lepagean form (2.3), (2.3) and regularity of
Legendre transformation (3.2) do not coincides. By the following Theorem C the
existence of Legendre transformation (3.2) guarantees that Theorem B holds.

Theorem C. Let λ be a second-order Lagrangian affine in the variables yσ
ij, the

formula (2.1) be its expression in a fiber chart (V, ψ), ψ = (xi, yσ) on Y . Let ρ
be a Lepagean equivalent of λ of the form (2.2), (2.3). Suppose that ρ satisfies the
conditions hklij

σν = 0. Suppose that ρ admits the Legendre transformation

ψ2 = (xi, yσ, yσ
i , y

σ
ij) → (xi, yσ, pi

σ, p
ij
σ ) = χ

defined by (3.1), (3.2).
Then π2,1 ◦ δ = J1γ, where γ is an extremal of λ.

Proof. Since, the functions hklij
σν vanish, the Jacobi matrix of the Legendre trans-

formation takes the form  ∂pi
σ

∂yν
k

∂pi
σ

∂yν
kl

∂pij
σ

∂yν
k

0
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The above matrix is regular if and only if the matrices
(

∂pi
σ

∂yν
kl

)
, and

(
∂pij

σ

∂yν
k

)
have

the maximal rank. Explicit computations lead to

∂pi
σ

∂yν
kl

=
∂L̃kl

ν

∂yσ
i

− 1
2

(
∂L̃ik

σ

∂yν
l

+
∂L̃il

σ

∂yν
k

)
− gkil

σν − glik
σν ,

i.e. in the notation (2.10),
(

∂pi
σ

∂yν
kl

)
=
(
Aklj

νσ

)T .

Accordingly, from Theorem B we obtain π2,1 ◦ δ = J1γ, where γ is an extremal
of λ.

For a deeper discussion on Legendre transformations and their geometric mean-
ing we refer to [11], [12].

4. Projectability onto J1Y

Theorem D. Let λ be a second-order Lagrangian affine in the variables yσ
ij, i. e.,

in fibered coordinates expressed by (2.1). Let ρ be a Lepagean equivalent of λ of the
form (2.2), (2.3). The following conditions are equivalent:

I. ρ is projectable onto J1Y .
II. ρ satisfies the conditions

(4.1)

hkilj
νσ + hlikj

νσ = 0,

gkjl
σν + gljk

σν =
∂L̃kl

ν

∂yσ
j

− 1
2

(
∂L̃jk

σ

∂yν
l

+
∂L̃jl

σ

∂yν
k

)
.

Proof. Taking into account

ρ = −Hω0 + pi
σdy

σ ∧ ωi + pij
σ dy

σ
i ∧ ωj

+ f ij
σν dy

σ ∧ dyν ∧ ωij + gkij
σν dy

σ ∧ dyν
k ∧ ωij + hklij

σν dyσ
k ∧ dyν

l ∧ ωij ,

it is sufficient to find conditions of the independenceH, pi
σ, and pij

σ on yσ
ij ’s. Explicit

computations lead to

∂pi
σ

∂yν
kl

=
∂L̃kl

ν

∂yσ
i

− 1
2

(
∂L̃ik

σ

∂yν
l

+
∂L̃il

σ

∂yν
k

)
− gkil

σν − glik
σν = 0,

∂pij
σ

∂yν
kl

= −2
(
hkilj

νσ + hlikj
νσ

)
= 0,

∂H

∂yν
kl

=

(
∂L̃kl

ν

∂yσ
i

− 1
2

(
∂L̃ik

σ

∂yν
l

+
∂L̃il

σ

∂yν
k

)
− gkil

σν − glik
σν

)
yσ

i

−
(
hkjli

νσ + hkilj
νσ + hljki

νσ + hlikj
νσ

)
yσ

ij .



338 DANA SMETANOVÁ

Corollary. Every second-order Lagrangian affine in the variables yκ
ij has a Lep-

agean equivalent projectable onto J1Y .

Remark. If the functions f ij
σν , gkij

σν , hklij
σν (2.2), (2.3) vanish, i. e., ρ = θλ the

projectability conditions (4.1) take the form (cf. [9])

∂L̃kl
ν

∂yσ
j

− 1
2

(
∂L̃jk

σ

∂yν
l

+
∂L̃jl

σ

∂yν
k

)
= 0.

Theorem E. Let λ be a second-order Lagrangian affine in the variables yσ
ij, the

formula (2.1) be its expression in a fiber chart (V, ψ), ψ = (xi, yσ) on Y . Let ρ be
a Lepagean equivalent of λ of the form (2.2), (2.3) and suppose that it is projectable
onto J1Y . If ρ satisfies the conditions

(4.2)

hklij
σν = 0,

∂f ij
σν

∂yκ
k

=
1
2

(
∂gkij

κσ

∂yν
− ∂gkij

κν

∂yσ

)

gikj
νσ − gkij

σν =
1
2

(
∂L̃ij

σ

∂yν
k

− ∂L̃kj
ν

∂yσ
i

)

∂glij
σκ

∂yν
k

− ∂gkij
σν

∂yκ
l

= 0.

and the matrix

Ckj
νσ =

(
∂2L̃

∂yσ
j ∂y

ν
k

+
∂2L̃pq

κ

∂yσ
j ∂y

ν
k

yκ
pq −

∂

∂yν
k

dpL̃
jp
σ − ∂L̃kj

ν

∂yσ
− 4f jk

σν + 2dig
kij
σν

)
,

with rows (resp. columns) labelled by (ν, k) (resp. (σ, j)), is regular, then ρ is
regular, i.e., every Hamilton extremal δ : π(V ) ⊃ U → J1Y of ρ is of the form
δ = J1γ, where γ is an extremal of λ.

Proof. Expressing the Hamilton p2-equations (1.4) of a Lepagean equivalent ρ pro-
jectable onto J1Y in fiber coordinates and using (4.2) we get along δ the following
system of first-order equations:
mn equations(

∂2L̃

∂yσ
j ∂y

ν
k

+
∂2L̃pq

κ

∂yσ
j ∂y

ν
k

yκ
pq −

∂

∂yν
k

dpL̃
jp
σ − ∂L̃kj

ν

∂yσ
− 4f jk

σν + 2dig
kij
σν

)
(4.3)

×
(
∂yσ

∂xj
− yσ

j

)
= 0,

m equations(
∂L̃

∂yν
+
∂L̃pq

κ

∂yν
yκ

pq − dj

(
∂L̃

∂yν
j

+
∂L̃pq

κ

∂yν
j

yκ
pq

)
+ djdkL̃

jk
ν

)
(4.4)
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+

(
∂2L̃

∂yσ
j ∂y

ν
+

∂2L̃pq
κ

∂yσ
j ∂y

ν
yκ

pq −
∂2L̃

∂yσ∂yν
j

− ∂2L̃pq
κ

∂yσ∂yν
j

yκ
pq −

∂

∂yν
dkL̃

jk
σ

+
∂

∂yσ
dkL̃

jk
ν + 2dif

ij
σν

)(
∂yσ

∂xj
− yσ

j

)

+

(
∂L̃kj

σ

∂yν
− ∂2L̃

∂yσ
j ∂y

ν
k

− ∂2L̃pq
κ

∂yσ
j ∂y

ν
k

yκ
pq +

∂

∂yσ
k

dpL̃
jp
ν + 4f jk

νσ − 2dig
kij
νσ

)

×
(
∂yσ

k

∂xj
− yσ

kj

)
+ 2

(
∂f ij

σν

∂yκ
+
∂f ij

κσ

∂yν
+
∂f ij

νκ

∂yσ

)(
∂yκ

∂xi
− yκ

i

)(
∂yσ

∂xj
− yσ

j

)
= 0.

The matrix Ckj
νσ is regular. Hence, from equations (4.3) we obtain the formula

(4.5)
∂yσ ◦ δ
∂xj

= yσ
j ◦ δ.

Substituting this into (4.4) we get(
∂L̃

∂yν
+
∂L̃pq

κ

∂yν
yκ

pq − dj

(
∂L̃

∂yν
j

+
∂L̃pq

κ

∂yν
j

yκ
pq

)
+ djdkL̃

jk
ν

)
◦ J3γ

=

(
∂L

∂yν
− dj

∂L

∂yν
j

+ djdk
∂L

∂yν
jk

)
◦ J3γ = 0,

proving our assertion.

Remark. a) Let λ be a second-order Lagrangian (2.1), suppose that the functions
L̃ij

σ satisfy the conditions

∂L̃ki
σ

∂yν
j

=
∂L̃ki

ν

∂yσ
j

This means that L̃ij
σ take the form

L̃ij
σ =

1
2

(
∂f j

∂yσ
i

+
∂f i

∂yσ
j

)
and the Lagrangian equivalent with a first-order Lagrangian.

We can choose the functions gkij
σν in a regular Lepagean equivalent (in the sense

of Theorem E) in the following form

gkij
σν =

1
2

(
∂L̃kj

ν

∂yσ
i

− ∂L̃ki
ν

∂yσ
j

)
+ tkij

σν ,
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where the functions tkij
σν do not depend on the variables yν

kl and satisfy the condi-
tions

tkij
σν = −tkji

σν , t
kij
σν = −tjik

σν , t
kij
σν = −tikj

νσ .

b) Let λ be a second-order Lagrangian (2.1) and suppose that the functions L̃ij
σ

satisfy the conditions

∂L̃kl
ν

∂yσ
j

− 1
2

(
∂L̃jk

σ

∂yν
l

+
∂L̃jl

σ

∂yν
k

)
= 0.

Then we can choose the functions gkij
σν as follows:

gkij
σν =

1
4

(
∂L̃kj

ν

∂yσ
i

− ∂L̃ij
σ

∂yν
k

)
+ tijk

σν ,

where the tkij
σν ’s are as above.
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