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SOME CLASSIFICATION PROBLEM ON WEIL BUNDLES
ASSOCIATED TO MONOMIAL WEIL ALGEBRAS

JIŘÍ TOMÁŠ

Abstract. A natural T -function on a natural bundle F is a natural operator

transforming vector fields on a manifold M into functions on FM . For a
monomial Weil algebra A satisfying dim M ≥ width(A) + 1 we determine all

natural T -functions on T ∗T AM , the cotangent bundle to a Weil bundle T AM .

1. The aim of this paper is the classification of all natural T -functions defined
on the cotangent bundle to a Weil bundle T ∗TA corresponding to a monomial Weil
algebra A. Roughly speaking, the concept of a monomial Weil algebra denotes
an algebra of jets factorized by an ideal generated only by monomial elements.
Weil algebras of this kind form a significant class of themselves, since they cover
algebras of holonomic and non-holonomic velocities as well as quasivelocities, [11].
The starting point is a general result by Kolář,[4], [5], determining all natural
operators T → TTA transforming vector fields on manifolds to vector fields on a
Weil bundle TA. Further, partial results of our general problem are solved in [3]
and [9]. We follow the basic terminology from [5].

We start from the concept of a natural T -function. For a natural bundle F ,
a natural T -function f is a natural operator fM transforming vector fields on a
manifold M to functions on FM . The naturality condition reads as follows. For a
local diffeomorphism ϕ : M → N between manifolds M , N and for vector fields X
on M and Y on N satisfying Tϕ ◦X = Y ◦ ϕ it holds fN (Y ) ◦ Fϕ = fM (X). An
absolute natural operator of this kind, i.e. independent of the vector field is called
a natural function on F .

There is a related problem of the classification of all natural operators lifting
vector fields on m-dimensional manifolds to T ∗TA. The solution of the second
problem is given by the solution of the first one as follows ([10]). Natural operators
AM : TM → TT ∗TAM are in the canonical bijection with natural T -functions
gM : T ∗T ∗TAM → R linear on fibers of T ∗(T ∗TAM) → T ∗TAM . Using natural
equivalences s : TT ∗ → T ∗T by Modugno-Stefani, [7] and t : TT ∗ → T ∗T ∗ by
Kolář-Radziszewski, [6], we obtain the identification of gM with natural T -functions
fM : T ∗TTAM → R given by fM = gM ◦tT AM ◦s−1

T AM
. Thus we investigate natural
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T -functions defined on T ∗TD⊗AM to determine all natural operators T → TT ∗TA,
where D denotes the algebra of dual numbers.

We remind the general result by Kolář, [4], [5]. For a Weil algebra A, the Lie
group AutA of all algebra automorphisms of A has a Lie algebra AutA identified
with DerA, the algebra of derivations of A. Thus everyD ∈ DerA determines a one
parameter subgroup d(t) and a vector field DM on TAM tangent to (d(t))M . Hence
we have an absolute natural operator λD : TM → TTAM defined by λDX = DM

for any vector field X on M . For a natural bundle F , let F denote the correspond-
ing flow operator, [5]. Further, let LM : A× TTAM → TTAM denote the natural
affinor by Koszul, [4], [5]. Then the result by Kolář reads

All natural operators T → TTA are of the form L(c)T A + λD for some c ∈ A
and D ∈ DerA.

Let ξ : M → TM be a vector field. Kolář in [3] defined an operation˜ transforming
a vector field on a manifold M onto a function on T ∗M by ξ̃(ω) = < ξ(p(ω)), ω >,
where p is the cotangent bundle projection and ω ∈ T ∗M . One can immediately
verify, that for a natural bundle F and a natural operator AM : TM → TFM we
have a natural T -function ÃM : T ∗FM → R defined by ÃM (X) = ÃMX for any
vector field X : M → TM .

2. In this section, we find all natural T -functions fM : T ∗TAM → R for any
manifold M for m = dimM ≥ width(A) + 1. For some cases of A, [11], all natural
T -functions in question are of the form

h(L̃(c)T A, λ̃D)) c ∈ C, D ∈ D

where C is a basis of A, D is a basis of DerA and h is any smooth function
Rdim A+dim Der A → R. Let Dr

k denote the algebra of jets Jr
0 (Rk,R). It can be also

considered as the algebra of polynomials of variables τ1, . . . , τk. By [6], any Weil
algebra A is obtained as the factor of Dr

k by an ideal I of itself, i.e. A = Dr
k/I.

The contravariant approach to the definition of a Weil bundle by Morimoto sets
MA = Hom(C∞(M,R), A) and was studied by many authors as Muriel, Munoz,
Rodriguez, Alonso,([1] [8]). The covariant approach (Kolář, [3], [5]) defines TAM as
the space of A-velocities. Let ϕ,ψ : Rk →M , ϕ(0) = ψ(0). Then ϕ and ψ are said
to be I-equivalent iff for any germxf , f : M → R it holds germ(f ◦ϕ− f ◦ψ) ∈ I.
Classes of such an equivalence jAϕ are said to be A-velocities. For a smooth map
g : M → N define TAg(jAϕ) = jA(g ◦ ϕ). Since TA preserves products, we have
TAR = A, TARm = Am. The identification F : MA → TAM between those two
approaches to the definition of Weil bundle is given by

(1) F (jAϕ)(f) = jA(f ◦ ϕ) for any f ∈ C∞(M,R)
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We are going to construct natural T -functions defined on T ∗TA from natural op-
erators T → TT r

k , since there are some additional ones on T ∗TA, which cannot be
constructed from natural operators T → TTA.

Let p : Dr
k → A be the projection homomorphism of Weil algebra inducing the

natural transformation p̃M : T r
kM → TAM . There is a linear map ι : A→ Dr

k such
that p ◦ ι = idA. By ι we construct an embedding TAM → T r

kM . Consider any
jAϕ ∈ TAM as an element of Hom(C∞(M,R), A). Then domains of jAϕ ∈ TA

x0
M

can be replaced by Jr
x0

(M,R). Indeed, for any f ∈ C∞(M,R) it holds jAϕ(f) =
jA(f ◦ ϕ) = [germx0f ◦ germ0ϕ]I , where x0 = ϕ(1), 0 ∈ Rk. Since any ideal I in
the algebra E(k) of finite codimension contains the r-th power of the maximal ideal
of E(k), the last expression can be replaced by [jr

0(f ◦ ϕ)]J = jAϕ(jr
x0
f), where J

is an ideal of Dr
k corresponding to I.

Further, any element jr
x0
f ∈ Jr

x0
(M,R) can be decomposed onto f(x0)+jr

x0
(t−1

f(x0)
◦

f) = f(x0) + jr
x0
f̃ , where ty : R → R denotes in general a translation mapping 0

onto y. The second expression is an element of the bundle of covelocities of type
(1, r), namely an element of (T r∗)x0M = (T r∗

1 )x0M , the bundle of covelocities of
type (k, r) being defined as T r∗

k M = Jr(M,Rk)0, [5] .
Select any minimal set of generators Bx0 of the algebra T r∗

x0
M . For any jr

x0
f̃ ∈

Bx0 define ι̃x0 : TA
x0
M → (T r

k )x0M by (ι̃x0(j
Aϕ))(jr

x0
f̃) = ι̃((jAϕ)(jr

x0
f̃)). In the

second step, ι̃ can be extended onto the homomorphism Jr
x0

(M,R) → Dr
k.

We extend the map ι̃x0 to ι̃ : TAM → T r
kM . For a general Weil algebra B

we show that any element jBϕ ∈ TB
x̄ M corresponds bijectively to some element

jBϕ0 ∈ TB
x0
M . Indeed, jBϕ(jr

x̄f) = jB(f ◦ϕ) = jB(f ◦t−1
x̄ ◦tx̄ ◦ϕ0) = jBϕ0(jr

x0
f0).

This general property extends ι̃x0 onto ι̃ : TAM → T r
kM . We proved the following

assertion

Proposition 1. Let A = Dr
k/I be a Weil algebra, p : Dr

k → A the projection
homomorphism with its associated natural transformation p̃ : T r

k → TA and ι :
A → Dr

k a linear map satisfying p ◦ ι = idA. For a manifold M and x0 ∈ M
let Bx0 be a minimal set of generators of the algebra Jr

x0
(M,R)0 = T r∗

x0
M . Then

there is an embedding ι̃ : TAM → T r
kM satisfying p̃M ◦ ι̃ = idT AM such that

(ι̃(jAϕ))(jr
x0
f̃) = ι((jAϕ)(jr

x0
f̃)) for any jAϕ ∈ TA

x0
M and jr

x0
f̃ ∈ Bx0 .

In the following investigations, we limit ourselves to monomial Weil algebras. A
Weil algebra A = Dr

k/I is said to be monomial if I is generated only by monomi-
als. We shall need the coordinate expression of some operators used later for the
construction of natural T -functions in question. Thus we introduce coordinates
on TAM and T ∗TAM . Consider the polynomial approach to the definition of Dr

k.
Then its elements are of the form 1

α!xατ
α, where τ1, . . . , τk are variables and α are

multiindices satisfying 0 ≤ |α| ≤ r. Define a linear map ι : A → Dr
k as follows.

For τα, put ι(p(τα)) = 0 if τα ∈ I and ι(p(τα)) = τα otherwise. As a matter of
fact, ι : A → Dr

k is a zero section. Similarly as p : Dr
k → A, the map ι can be

extended to ι̃ : Am → (Dr
k)m by components. Then it coincides with the map ι̃
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from Proposition 1, if we put M = Rm, choose x0 ∈ Rm and substitute jr
x0
xi for

the elements of Bx0 , where xi are canonical coordinates on Rm. Further, define the
additional coordinates on T ∗TAM by pα

i dx
i
α.

Let us define operators T → TTA by means of ι̃ and natural operators T → TT r
k

as follows. Every natural operator λ : T → TT r
k defines an operator

(2) Λ : T → TTA by Λ = T p̃ ◦ λ ◦ ι̃

which does not to have be natural and neither does the functions Λ̃ : T ∗TA →
R Consider a basis of natural operators T → TT r

k . The non-absolute natural
operators λ together with some of the absolute ones in this basis induce natural
operators Λ : T → TTA, while the others will be used for the construction of the
additional natural functions defined on T ∗TA.

By general theory, [5], searching for natural T -functions defined on T ∗TA, we are
going to investigate Gr+2

m -invariant functions defined on (Jr+1T )0Rm×(T ∗TA)0Rm.
Therefore we state some assertions, concerning the action of Gr+2

m and some of its
subgroups on this space. It will be necessary to consider the coordinate expression
of this action as well as that of base operators Λ : T → TTA and their associated
functions Λ̃ : T ∗TA → R.

Denote by λβ
j a natural operator λDβ

j
associated to a derivation of Dr

k defined

by τi → δj
i τ

β for j ∈ {1, . . . , k} and 1 ≤ |β| ≤ r. Then we have coordinate forms
of λβ

j and λ̃β
j , of the same form as those of Λβ

j and Λ̃β
j . We have

(3) λβ
j =

(α+ β)!
α!

xi
α

∂

∂xi
α+β−{j}

, λ̃β
j =

(α+ β)!
α!

xi
αp

α+β−{j}
i

Let k be the width of a monomial Weil algebra A. For m ≥ k, define an
immersion element i ∈ TA

0 Rm by xi
α = 0 whenever |α| ≥ 2 and xi

j = δi
j for

j ∈ {1, . . . , k}. For general r, k, remind the jet group Gr
k = inv Jr

0 (Rk,Rk)0, where
inv indicates the invertibility of maps in question. The multiplication in Gr

k is
defined by the jet composition. We give the coordinate form of the action of this
group on T ∗TA. Let ai

l1,...,lq
denote the canonical coordinates on Gs

m and ãi
l1,...,lq

indicate the inverse. Then the transformation law of the action of Gs
m on TA

0 Rm

is of the form

(4) x̄i
α = ai

l1...lqx
l1
α1
. . . xlq

αq

for all admissible multiindices α and their decompositions α1, . . . , αq.
The jet group Gr

k is identified with Aut Dr
k, the group of automorphisms of the

algebra Dr
k, as follows. For jr

0g ∈ Gr
k and jr

0ϕ ∈ Dr
k define

(5) jr
0g(j

r
0ϕ) = jr

0ϕ ◦ (jr
0g)

−1

Let A be a monomial Weil algebra of width k and height r and p : Dr
k → A be the

projection homomorphism.
In what follows, we shall consider A as Ds

m/(I ∪ {τk+1, . . . , τm}) for s ≥ r,
m ≥ k with the properly modified projection p : Ds

m → A. Consider a group
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GA = {js
0g ∈ Gs

m; p ◦ js
0g = p}, [1]. The following lemma characterizes GA as the

stability subgroup of the immersion element i.

Lemma 2. Let A = Ds
m/I be a monomial Weil algebra of width k, height r and

St(i) ⊆ Gs
m be the stability subgroup of the immersion element i ∈ TA

0 Rm under
the canonical left action of Gs

m on TA
0 Rm. Then it holds GA = St(i).

Proof. The formula (4) implies that every element of Gs
m stabilizes i if and only

if ai
j = δi

j for j ∈ {1, . . . , k} and ai
α = 0 whenever |α| ≥ 2, τα 6∈ I and τα ∈<

τ1, . . . , τk >.
On the other hand, GA = {js

0g ∈ Gs
m; p ◦ js

0ϕ ◦ (js
0g)

−1 = p ◦ js
0ϕ ∀js

0ϕ ∈ Ds
m}.

In coordinates, we have

(6) x̄α = xl1,...lq ã
l1
α1
. . . ãlq

αq

where x̄α indicates the transformed value of js
0ϕ (in coordinates xα) under an

automorphism js
0g (with coordinates ai

α. Substituting an i-th projection pri for
ϕ, we obtain x̄α = ãi

α and consequently ãi
j = ai

j = δi
j for j ∈ {1, . . . , k} and

ãi
α = ai

α = 0 for |α| ≥ 2, τα 6∈ I and τα ∈< τ1 . . . , τk >. Thus we have GA ⊆ St(i).
The converse inclusion is immediately obtained from (6), taking into account the
coordinate form of i. It proves our claim.

We remind the concept of a regular A-point of a Weil bundle MA. An element
ϕ ∈MA is said to be regular (a regular A-point) if and only if its image coincides
with A, [1]. Taking into account the identification (1), such a concept can be
extended to an A-velocity jAϕ ∈ TAM . Clearly, it is regular if and only if ϕ is an
immersion in 0 ∈ Rk, where k is the width of A. Further, it must hold dimM ≥ k.
In the case m = k the concept of regularity coincides with that of invertibility.
The map ι̃ from Proposition 1 preserves regularity and thus ι̃ : Ak → Rk can be
restricted to reg(Nk) → Gr

k, where N denotes the nilpotent ideal of A.
Alonso in [1] proved that there is a structure of a fiber bundle on reg TAM

with the standard fiber Gr
k/GA over a k-dimensional manifold M and therefore

reg TA
0 Rk is identified with Gr

k/GA. The elements of reg(TA)0Rk are left classes
jr
0gGA. We extend this assertion of his to m-dimensional manifolds for m ≥ k.

For ι̃ : Am → (Dr
k)m corresponding to a Weil algebra of width k we define a map

ι̃∗ : Am → (Dr
k)m by

(7) ι̃∗(xi
ατ

α) = xi
ατ

α + δp
i τp p ≥ k + 1

Then we have a lemma, giving the decomposition of any jr
0g ∈ Gr

m onto its projec-
tion from ι̃∗ ◦ p̃(Gr

m) and the component in GA.

Lemma 3. Let A = Dr
k/I be a Weil algebra of width k and jr

0g ∈ Gr
m, m ≥ k.

There is an element jr
0h ∈ GA such that

(8) jr
0g = ι̃∗ ◦ p̃(jr

0g) ◦ jr
0h
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Proof. The proof of the assertion is done in coordinates and it is based on the
iterated application of (4). We do it for only for k, since for m ≥ k it is almost the
same. Let ciγ denote the coordinates of jr

0g, a
i
γ the coordinates of ι̃ ◦ p̃(jr

0g) and
biγ the coordinates of jr

0h to be found. Clearly, ai
γ = ciγ whenever τγ 6∈ I. In the

first step suppose that α is a minimal multiindex such that τα ∈ I. It follows from
(4), that ciα = ai

lb
l
α, if we consider the conditions for jr

0h. The unique solution is
given by the invertibility of jr

0g. Suppose the assertion being proved for |α| ≤ p.
We prove it for |α| = p + 1. By (4) we have ciα = ai

l1...ls
bl1α1

. . . blsαs
+ ai

lb
l
α, s ≥ 2.

From the regularity of jr
0g we obtain again the unique solution blα, which proves

our claim.

In the proof of the assertion giving the main result, we need to describe the
stability group of jr+1

0 ( ∂
∂xm+1 ). The transformation laws for the action of Gr+2

m+1

on (Jr+1T )0Rm has the coordinate expression

(9) X̄i
α = ai

lγ1
X l

γ2
ãγ

α,

where Xi
α, |α| ≤ r + 1 denote the canonical coordinates of jr+1

0 ( ∂
∂xm+1 ). Further,

any multiindex γ including the empty one is decomposed into γ1, γ2 and the no-
tation ãγ

α denotes the system of all ãl1
α1
. . . ãls

αs
for l1, . . . , ls forming the multiindex

γ and decompositions α1, . . . , αs forming α. It follows, that in coordinates any
element of Gr+2

m+1 must satisfy ai
j = δi

m+1 and ai
α = 0 whenever the multiindex α

formed by all 1, . . . ,m+1 contains any m+1 for |α| ≥ 2. To describe the stability
group of jr+1

0 ( ∂
∂xm+1 ) by terms of Lemma 2 and Lemma 3, denote As

m+1 the Weil
algebra of Ds

m+1/I for I =< τm+1τ
α >, |α| ≥ 1. Thus we have proved the following

lemma

Lemma 4. The stability group of jr+1
0 ( ∂

∂xm+1) in Gr+2
m+1 is of the form ι̃((Ar+2

m+1)
m+1)

∩Gr+2
m+1. Moreover, the stability group of jr+1

0 ( ∂
∂xm+1 ) and the immersion element

i ∈ TA
0 Rm+1 is of the form GA;m+1 = GA ∩ ι̃((Ar+2

m+1)
m+1).

Let us consider the base B̃ of all T -functions Λ̃ defined on T ∗TA (not natural in
general ), constructed from the non-absolute natural operators L(τα)T A and from
the absolute operators Λβ

j with the coordinate expression given by (3). Let B̃1

denote the subbasis of B̃ formed by natural operators T → TTA. It follows from
Lemma 3, that any element jAg ∈ reg TAM is identified with ι̃∗(jAg) ∈ Gr+1

m+1, the
only representative of the left class jAgGA in the sense of Lemma 3. Therefore we
have

(10) i = l((ι̃∗(jAg))−1, jAg)

where l is the symbol for the left action of Gr+1
m+1 on TA

0 Rm+1 to be used also for
the action of this group on (Jr+1T )0Rm+1 × (T ∗TA)0Rm+1. Let us define a map
Imm : T ∗(reg TA)0Rm+1 → (T ∗i T

A)0Rm+1 as follows

(11) Imm(w) = l((ι̃∗(q(w)))−1, w),
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w ∈ T ∗(reg TA)0Rm+1.

Proposition 5. Let A be a monomial Weil algebra and (T ∗(reg TA))0Rm+1 →
(reg TA)0Rm+1 be the restriction of the natural bundle T ∗TARm+1 → TARm+1

to the opened submanifold (reg TA)0Rm+1. Then all operators from B̃ − B̃0 are
Gr+2

m+1-invariant in respect to the map Imm.

Proof. We prove the assertion from the transformation laws of the action of Gr+2
m+1

on (Jr+1T )0Rm+1×(T ∗TA)0Rm+1. We complete them for pα
j . Denote γ = α−{j}

the multiindex from (3). Then we have

(12) p̄β
j =

(β + γ)!
β!γ1! . . . γs!

ãl
jl1...ls x̄

l1
γ1
. . . x̄ls

γs
pβγ

j

when the sum is made for all decompositions γ1, . . . , γs of multiindices γ. The
formula is obtained from (3) and the standard combinatorics. To accent Imm(w)
as a transformed value for any w ∈ T ∗(reg TA)0Rm+1, use p̄α

i for the additional
coordinates (obviously, the coordinates x̄i

α coincide with those of i). Then we have
Λ̃β

j (Imm(w)) = Λ̃β
j (x̄i

α)p̄α+β−{j}
i = β!p̄β

j = β! (β+γ)!
β!γ! ã

i
jγp

βγ
i if we put γ = α − {j},

which follows from (12). If we consider the coordinate expression of ι̃(Am+1) and
the formula (3), we obtain that the last expression coincides with (β+γ)!

γ! xi
jγp

βγ
i =

αj

αj+βj

(α+β)!
α! xi

αp
α+β−j
i = Λ̃(xi

α, p
α
i ) = Λ̃(w). It proves our claim.

The following lemma specifies a certain class of functions, among which all in-
vestigated ones must be contained.

Lemma 6. Let m ≥ k. Then every natural T -function f : T ∗TARm+1 → R is of

the form h( ˜L(τα)T A, Λ̃β
j ) for some smooth function h of the suitable type.

Proof. By general theory, we are searching for all Gr+2
m+1-invariant functions de-

fined on (Jr+1T )0Rm+1 × (T ∗TA)0Rm+1. Let w ∈ (T ∗TA)0Rm+1 and xi
α denote

the coordinates of q(w), q : T ∗TA → TA being the cotangent bundle projec-
tion. By a general lemma from [5], Chapter VI, the natural T -function must
satisfy f(jr+1

0 X,w) = h(Xi
γp

β
i , x

i
αp

β
i ) for any non-zero jr+1

0 X of a vector field
X on Rm+1. The coordinates used in the recent identity coincide with those
defined before Lemma 2. The last expression can be considered in the form
h( ˜L(τα)T A, Xi

γp
β
i , Λ̃

β
j , x

i
δp

β
i ) for |β| ≥ 0, |γ| ≥ 1 and |δ| ≥ 2. Identify q(w)

with jAg for any w ∈ T ∗(reg TA)0Rm+1, i.e. q(w) = l(ι̃(jAg), i) and put jr+1
0 Y =

l(ι̃(jAg)−1, jr+1
0 Y ). Then f(jr+1

0 X,w) = h( ˜L(τα)T A, Y i
γ p̄

β
i , Λ̃

β
j , 0, p

0
i ) for |γ| ≥ 1

and i ∈ {1, . . . , k}. Here p̄β
i indicate the transformed values of pβ

i under the map
Imm. The last identity follows from Proposition 5. Further, there is jr+2

0 g ∈ GA ∩
GAr+2

m+1
such that l(jr+1

0 g, jr+1
0 ( ∂

∂xm+1 )) = jr+1
0 Y . Then we have f(jr+1

0 X,w) =
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h( ˜L(τα)T A, 0, Λ̃β
j , 0, p

0
i ) for i ∈ {1, . . . , k}. The excessive coordinates p0

i are anni-
hilated by an element of Kerπr+1

r ∩ ι̃((Ar+2
m+1)

m+1), namely by an element satis-
fying in coordinates ai

α = 0 except of α = (i, . . . , i)︸ ︷︷ ︸
(r+1)−times

. Such an element stabilizes

jr+1
0 ( ∂

∂xm+1 ) as well as i, which completes the proof.

Searching for all natural T -functions T ∗TARm+1→R among those from Lemma
6, we state the basis B of functions defined on T ∗i T

ARm+1 and identify it with B̃.
By general theory, [5], every natural T -function in question is determined by its
value over jr+1

0 ( ∂
∂xm+1 ) on (T ∗TA)0Rm+1. Further, it follows from Lemma 4 and

the formula (11) that the map Imm stabilizes jr+1
0 ( ∂

∂xm+1 ) in the following sense.
For any w ∈ T ∗(reg TA)0Rm+1 the action of ι̃(q(w)) on (Jr+1T )0Rm+1 stabilizes
jr+1
0 ( ∂

∂xm+1 ).
Set B the basis of functions defined on T ∗i T

ARm+1 obtained by the restriction
of B̃ over jr+1

0 ( ∂
∂xm+1 ) onto T ∗i T

ARm+1. Conversely, B determines B̃ by

(13) B̃(jr+1
0 (

∂

∂xm+1
), w) = B ◦ Imm(w)

Analogously, we construct B1 from B̃1. Moreover, for any w ∈ T ∗i (reg TA)0Rm+1,
the values formed by B(w) coincide with the coordinates pβ

j of w defined before
(2) for j = 1, . . . , k except that of p0

j for the absolute functions and pβ
m+1 for the

non-absolute ones. Thus any base T -function of B defined on T ∗i (reg TA)0Rm+1 cor-
responds to some projection prβ

j : T ∗i (reg TA)0Rm+1 → R. It follows from Lemma 4

and the fact that ˜L(τα)T A are natural that all natural T -functions (T ∗TA)Rm+1→
R from Lemma 6 are in the canonical bijection with GA-invariant functions defined
on T ∗i T

ARm+1 which are of the form h( ˜L(τα)T A)(Λ̃β
j ) for Λ̃β

j : T ∗i T
ARm+1 →R.

Using coordinates, we find all GA-invariants of pβ
j , j ∈ {1, . . . , k}, |β| ≥ 1. Then

we identify the functions h( ˜L(τα)T A)(pβ
j ) with h( ˜L(τα)T A)(Λ̃β

j ) and by (12), we
obtain all natural T -functions on T ∗TARm+1.

This way we have deduced that our problem can be reduced to the problem
of searching for all GA-invariant functions defined on T ∗i T

ARm+1 which can be
identified with a smooth function h : RN → R for a suitable integer N . The
coordinate expression of the action of GA on T ∗i T

ARm+1 is induced by (12) and it
is of the form

(14) p̄β
j = pβ

j − C(β + γ, β)al
jγp

βγ
l for τjτ

γ ∈ I and τβτγ 6∈ I

where C indicates the multicombinatorial number. Clearly, T ∗i T
ARm+1 is iden-

tified with the space RN endowed with the action (14) of GA. We are going to
investigate GA ∩ Gr

m+1-orbits on RN , since only p0
j depend on Br+1

m+1 and they
can be annihilated by this subgroup. For those orbits, we construct all functions
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distinguishing them and then we express the corresponding invariants by terms of
elements from B̃.
The following assertion describes an important property of (GA ∩ Kerπr

s)-orbits
to bee necessary in the proof of the main result. Denote by Bs ⊆ B the set of all
(GA∩Kerπr

s)-invariants selected from B and denote by Ns the number of elements
in Bs. Clearly, B1 ⊆ B2 ⊆ · · · ⊆ Br−1 ⊆ Br. Further, denote Bs

t = Bs − Bt and
Ns

t = Ns −Nt. Then we have

Proposition 7. Let w ∈ RN and Orbs(w) be its (GA ∩ Kerπr
s)-orbit. Then

Bs+1
s (Orbs(w)) has the structure of an affine subspace of RNs+1

s , the modelling
vector space of which being determined by the formula (14) restricted to Bs+1

m+1∩GA.

Proof. is done directly applying the formula (14). Let w1 and w2 be elements
of Bs+1

s (Orb(w)). Then w1 can be achieved from w by the action of an element
of Bs+1

m+1 ∩ GA. The coordinate expression of such a transformation is given by
p̄β

j = pβ
j −C(β+γ, β)al

jγp
βγ
l . Analogously for w1 and w2, we have ¯̄pβ

j = p̄β
j −C(β+

γ, β)bljγ p̄
βγ
l . Then ¯̄pβ

j = pβ
j − (al

jγ + bljγ)pβγ
l , which follows −→ww2 = −→ww1 + −→w1w2. It

proves our claim.

In what follows, we construct a basis D̃ of natural functions from B̃. The con-
struction is given by a procedure, generating step by step a base of GA-invariants
determining the base of natural functions. We start the procedure selecting el-
ements of B1 and put D̃1 = B̃1. For any w ∈ T ∗i T

ARm+1, consider its orbit
Orb(w) = Orb1(w).

In the second step, consider B2
1(Orb1(w)), which is by Proposition 7 a k2-

dimensional affine subspace of the affine space RN2
1 for some k2 ≤ N2

1 . For al-
most every GA-orbit in the sense of density, such an affine subspace contains a
unique point IC2 satisfying prj(IC2) = 0 for j ∈ C2. The remaining components
of IC2 determine GA-invariants IC2

1 , . . . , IC2
N2

1−k2
identified with natural functions

ĨC2
1 , . . . , ĨC2

N2
1−k2

.
In order to express them in formulas, we notice the following property of

Bs+1
s (Orbs(w)) for any s = 1, . . . , r−1. Proposition 7 and its proof imply that if an

element of Bs+1
s (Orbs(w)) is stabilized by js+1

0 g ∈ Bs+1
m+1 under the canonical left

action then the whole Bs+1
s (Orbs(w)) is stabilized. Denote Sts+1

s;m+1 ⊆ GA ∩Bs+1
m+1

the stability group of Bs+1
s (Orbs(w)). One can easily deduce that Sts+1

s;m+1 satisfies
the stability property of this kind for almost every w ∈ RN . Clearly, Sts+1

s;m+1 is a
closed and normal subgroup of GA∩Bs+1

m+1 and thus Hs+1
s;m+1 = GA∩Bs+1

m+1/Sts+1
s;m+1

is a Lie group. It follows the existence of a section σs+1;m+1 : Hs+1
s;m+1 → GA∩Bs+1

m+1.
Hence for any w ∈ RN we have a unique j20h ∈ σ2;m+1(H2

1;m+1) ' H2
1;m+1 such

that B2
1(l(j

2
0h,w)) = IC2(w). Thus we have a map αC2 : RN → H2

1;m+1. Therefore,
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any w ∈ T ∗i TARm+1 is transformed onto

(15) l(αC2(w), w) = lαC2
(w) = (IC2

js
(w)), s = 1, . . . N2

1 − k2, js 6∈ Cs

Applying the identification (13), we obtain ĨC2
1 , . . . , ĨC2

N2
1−k2

and put D̃2 = D̃1∪
{ĨC2

1 , . . . , ĨC2
N2

1−k2
}.

In the (s+ 1)-th step of the procedure we come out from the basis D̃s of natu-
ral functions and an element ws = lαCs

◦ · · · ◦ lαC2
(w) ∈ Orb1(w) instead w from

the second step. By Proposition 7, Bs+1
s (Orbs(ws)) is an affine subspace of di-

mension ks+1 of RNs+1
s for some ks+1. Select Cs+1 ⊆ {1, . . . , Ns+1

s }. For almost
every ws ∈ T ∗i TARm+1 there is a unique point ICs+1(ws) = ICs+1(Bs+1

s (Orbs(ws))
such that prj ◦ICs+1 = 0 for j ∈ Cs+1. The remaining components of ICs+1 deter-
mine analogously to the second step of the procedure GA-invariants and by (13)
natural functions ĨCs+1,...,C2

ls+1
for ls+1 6∈ Cs+1. Analogously to the second step,

for any ws under discussion there is a unique element js+1
0 h ∈ σs+1;m+1(Hs+1

s;m+1)
such that l(js+1

0 h,Bs+1
s (ws)) = ICs+1(ws). Hence we have a map αCs : RN →

σs+1;m+1(Hs+1
s;m+1) such that l(αCs+1(ws), ws) = ICs+1(ws) = lαCs+1

◦· · ·◦lαC2
(w)=

ĨCs+1,...,C2(w) taking into account the identification (13). Hence we obtained the
basis D̃s+1 = D̃s ∪ {ĨCs+1,...,C2

ls+1
; ls+1 6∈ Cs+1}. We proved the main result, given by

the following Proposition

Proposition 8. Let A = Dr
k/I be a monomial Weil algebra of width k, dimM =

m ≥ k + 1. Let ι̃ : TAM → T r
kM be an embedding described in Proposition 1.

Consider a basis C of A and a basis B0 of Der(Dr
k). Further, let B̃ be a basis

of functions defined on T ∗TAM constructed from operators T p̃ ◦ λD ◦ ι̃ by the
operation ˜ defined in the very end of Section 1, D ∈ B0. Then all natural T -
functions fM : T ∗TAM → R are of the form

h( ˜LM (c)T A
M , Ĩl1 , Ĩ

C2
l2
, . . . , ĨCs,...,C2

ls
)

where h is any smooth function of a suitable type, Ĩl1 are natural functions selected

directly from B̃ and ĨCs,...,C2
ls

(ls 6∈ Cs) are obtained by the procedure.

I would like to express my gratitude to professor Kolář for his precious advise
and comments.
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[3] Kolář I., On Cotagent Bundles of Some Natural Bundles, Rendiconti del Circolo Matematico

di Palermo, Serie II-Numero, 37, 1994, 115-120.
[4] Kolář I., On the Natural Operators on Vector Fields, Ann. Global Anal. Geometry, 6, 1988,

109-117.



WEIL BUNDLES ASSOCIATED TO MONOMIAL WEIL ALGEBRAS 373
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