SOME CLASSIFICATION PROBLEM ON WEIL BUNDLES ASSOCIATED TO MONOMIAL WEIL ALGEBRAS

JIŘí TOMÁŠ

Abstract

A natural T-function on a natural bundle F is a natural operator transforming vector fields on a manifold M into functions on $F M$. For a monomial Weil algebra A satisfying $\operatorname{dim} M \geq \operatorname{width}(A)+1$ we determine all natural T-functions on $T^{*} T^{A} M$, the cotangent bundle to a Weil bundle $T^{A} M$.

1. The aim of this paper is the classification of all natural T-functions defined on the cotangent bundle to a Weil bundle $T^{*} T^{A}$ corresponding to a monomial Weil algebra A. Roughly speaking, the concept of a monomial Weil algebra denotes an algebra of jets factorized by an ideal generated only by monomial elements. Weil algebras of this kind form a significant class of themselves, since they cover algebras of holonomic and non-holonomic velocities as well as quasivelocities, [11]. The starting point is a general result by Kolář,[4], [5], determining all natural operators $T \rightarrow T T^{A}$ transforming vector fields on manifolds to vector fields on a Weil bundle T^{A}. Further, partial results of our general problem are solved in [3] and [9]. We follow the basic terminology from [5].

We start from the concept of a natural T-function. For a natural bundle F, a natural T-function f is a natural operator f_{M} transforming vector fields on a manifold M to functions on $F M$. The naturality condition reads as follows. For a local diffeomorphism $\varphi: M \rightarrow N$ between manifolds M, N and for vector fields X on M and Y on N satisfying $T \varphi \circ X=Y \circ \varphi$ it holds $f_{N}(Y) \circ F \varphi=f_{M}(X)$. An absolute natural operator of this kind, i.e. independent of the vector field is called a natural function on F.

There is a related problem of the classification of all natural operators lifting vector fields on m-dimensional manifolds to $T^{*} T^{A}$. The solution of the second problem is given by the solution of the first one as follows ([10]). Natural operators $A_{M}: T M \rightarrow T T^{*} T^{A} M$ are in the canonical bijection with natural T-functions $g_{M}: T^{*} T^{*} T^{A} M \rightarrow \mathbb{R}$ linear on fibers of $T^{*}\left(T^{*} T^{A} M\right) \rightarrow T^{*} T^{A} M$. Using natural equivalences $s: T T^{*} \rightarrow T^{*} T$ by Modugno-Stefani, [7] and $t: T T^{*} \rightarrow T^{*} T^{*}$ by Kolář-Radziszewski, [6], we obtain the identification of g_{M} with natural T-functions

[^0]Key words and phrases. natural bundle, natural operator, Weil bundle.
The author was supported by the grants No. 201/96/0079 and No. 201/99/D007 of the GA ČR and partially supported by grants MSM 261100007 and J22/98 261100009.
T-functions defined on $T^{*} T^{\mathbb{D} \otimes A} M$ to determine all natural operators $T \rightarrow T T^{*} T^{A}$, where \mathbb{D} denotes the algebra of dual numbers.

We remind the general result by Kolář, [4], [5]. For a Weil algebra A, the Lie group $\mathcal{A} u t A$ of all algebra automorphisms of A has a Lie algebra $\mathcal{A} u t A$ identified with $\operatorname{Der} A$, the algebra of derivations of A. Thus every $D \in \operatorname{Der} A$ determines a one parameter subgroup $d(t)$ and a vector field D_{M} on $T^{A} M$ tangent to $(d(t))_{M}$. Hence we have an absolute natural operator $\lambda_{D}: T M \rightarrow T T^{A} M$ defined by $\lambda_{D} X=D_{M}$ for any vector field X on M. For a natural bundle F, let \mathcal{F} denote the corresponding flow operator, [5]. Further, let $L_{M}: A \times T T^{A} M \rightarrow T T^{A} M$ denote the natural affinor by Koszul, [4], [5]. Then the result by Kolář reads

All natural operators $T \rightarrow T T^{A}$ are of the form $L(c) \mathcal{T}^{A}+\lambda_{D}$ for some $c \in A$ and $D \in \operatorname{Der} A$.

Let $\xi: M \rightarrow T M$ be a vector field. Kolář in [3] defined an operation ${ }^{\sim}$ transforming a vector field on a manifold M onto a function on $T^{*} M$ by $\widetilde{\xi}(\omega)=<\xi(p(\omega)), \omega>$, where p is the cotangent bundle projection and $\omega \in T^{*} M$. One can immediately verify, that for a natural bundle F and a natural operator $A_{M}: T M \rightarrow T F M$ we have a natural T-function $\widetilde{A}_{M}: T^{*} F M \rightarrow \mathbb{R}$ defined by $\widetilde{A}_{M}(X)=\widetilde{A_{M} X}$ for any vector field $X: M \rightarrow T M$.
2. In this section, we find all natural T-functions $f_{M}: T^{*} T^{A} M \rightarrow \mathbb{R}$ for any manifold M for $m=\operatorname{dim} M \geq \operatorname{width}(A)+1$. For some cases of A, [11], all natural T-functions in question are of the form

$$
\left.h\left(\widetilde{L(c) \mathcal{T}^{A}}, \widetilde{\lambda_{D}}\right)\right) \quad c \in C, D \in \mathcal{D}
$$

where C is a basis of A, \mathcal{D} is a basis of $\operatorname{Der} A$ and h is any smooth function $\mathbb{R}^{\operatorname{dim} A+\operatorname{dim} \operatorname{Der} A} \rightarrow \mathbb{R}$. Let \mathbb{D}_{k}^{r} denote the algebra of jets $J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$. It can be also considered as the algebra of polynomials of variables $\tau_{1}, \ldots, \tau_{k}$. By [6], any Weil algebra A is obtained as the factor of \mathbb{D}_{k}^{r} by an ideal I of itself, i.e. $A=\mathbb{D}_{k}^{r} / I$.

The contravariant approach to the definition of a Weil bundle by Morimoto sets $M_{A}=\operatorname{Hom}\left(C^{\infty}(M, \mathbb{R}), A\right)$ and was studied by many authors as Muriel, Munoz, Rodriguez, Alonso,([1] [8]). The covariant approach (Kolář, [3], [5]) defines $T^{A} M$ as the space of A-velocities. Let $\varphi, \psi: \mathbb{R}^{k} \rightarrow M, \varphi(0)=\psi(0)$. Then φ and ψ are said to be I-equivalent iff for any $\operatorname{germ}_{x} f, f: M \rightarrow \mathbb{R}$ it holds $\operatorname{germ}(f \circ \varphi-f \circ \psi) \in I$. Classes of such an equivalence $j^{A} \varphi$ are said to be A-velocities. For a smooth map $g: M \rightarrow N$ define $T^{A} g\left(j^{A} \varphi\right)=j^{A}(g \circ \varphi)$. Since T^{A} preserves products, we have $T^{A} \mathbb{R}=A, T^{A} \mathbb{R}^{m}=A^{m}$. The identification $F: M_{A} \rightarrow T^{A} M$ between those two approaches to the definition of Weil bundle is given by

$$
\begin{equation*}
F\left(j^{A} \varphi\right)(f)=j^{A}(f \circ \varphi) \quad \text { for any } f \in C^{\infty}(M, \mathbb{R}) \tag{1}
\end{equation*}
$$

We are going to construct natural T-functions defined on $T^{*} T^{A}$ from natural operators $T \rightarrow T T_{k}^{r}$, since there are some additional ones on $T^{*} T^{A}$, which cannot be constructed from natural operators $T \rightarrow T T^{A}$.

Let $p: \mathbb{D}_{k}^{r} \rightarrow A$ be the projection homomorphism of Weil algebra inducing the natural transformation $\tilde{p}_{M}: T_{k}^{r} M \rightarrow T^{A} M$. There is a linear map $\iota: A \rightarrow \mathbb{D}_{k}^{r}$ such that $p \circ \iota=\operatorname{id}_{A}$. By ι we construct an embedding $T^{A} M \rightarrow T_{k}^{r} M$. Consider any $j^{A} \varphi \in T^{A} M$ as an element of $\operatorname{Hom}\left(C^{\infty}(M, \mathbb{R}), A\right)$. Then domains of $j^{A} \varphi \in T_{x_{0}}^{A} M$ can be replaced by $J_{x_{0}}^{r}(M, \mathbb{R})$. Indeed, for any $f \in C^{\infty}(M, \mathbb{R})$ it holds $j^{A} \varphi(f)=$ $j^{A}(f \circ \varphi)=\left[\operatorname{germ}_{x_{0}} f \circ \operatorname{germ}_{0} \varphi\right]_{I}$, where $x_{0}=\varphi(1), 0 \in \mathbb{R}^{k}$. Since any ideal I in the algebra $E(k)$ of finite codimension contains the r-th power of the maximal ideal of $E(k)$, the last expression can be replaced by $\left[j_{0}^{r}(f \circ \varphi)\right]_{J}=j^{A} \varphi\left(j_{x_{0}}^{r} f\right)$, where J is an ideal of \mathbb{D}_{k}^{r} corresponding to I.

Further, any element $j_{x_{0}}^{r} f \in J_{x_{0}}^{r}(M, \mathbb{R})$ can be decomposed onto $f\left(x_{0}\right)+j_{x_{0}}^{r}\left(t_{f\left(x_{0}\right)}^{-1} \circ\right.$ $f)=f\left(x_{0}\right)+j_{x_{0}}^{r} \tilde{f}$, where $t_{y}: \mathbb{R} \rightarrow \mathbb{R}$ denotes in general a translation mapping 0 onto y. The second expression is an element of the bundle of covelocities of type (1, r), namely an element of $\left(T^{r *}\right)_{x_{0}} M=\left(T_{1}^{r *}\right)_{x_{0}} M$, the bundle of covelocities of type (k, r) being defined as $T_{k}^{r *} M=J^{r}\left(M, \mathbb{R}^{k}\right)_{0},[5]$.

Select any minimal set of generators $\mathcal{B}_{x_{0}}$ of the algebra $T_{x_{0}}^{r *} M$. For any $j_{x_{0}}^{r} \tilde{f} \in$ $\mathcal{B}_{x_{0}}$ define $\tilde{\iota}_{x_{0}}: T_{x_{0}}^{A} M \rightarrow\left(T_{k}^{r}\right)_{x_{0}} M$ by $\left(\tilde{\iota}_{x_{0}}\left(j^{A} \varphi\right)\right)\left(j_{x_{0}}^{r} \tilde{f}\right)=\tilde{\iota}\left(\left(j^{A} \varphi\right)\left(j_{x_{0}}^{r} \tilde{f}\right)\right)$. In the second step, $\tilde{\iota}$ can be extended onto the homomorphism $J_{x_{0}}^{r}(M, \mathbb{R}) \rightarrow \mathbb{D}_{k}^{r}$.

We extend the map $\tilde{\iota}_{x_{0}}$ to $\tilde{\iota}: T^{A} M \rightarrow T_{k}^{r} M$. For a general Weil algebra B we show that any element $j^{B} \varphi \in T_{\bar{x}}^{B} M$ corresponds bijectively to some element $j^{B} \varphi_{0} \in T_{x_{0}}^{B} M$. Indeed, $j^{B} \varphi\left(j_{\bar{x}}^{r} f\right)=j^{B}(f \circ \varphi)=j^{B}\left(f \circ t_{\bar{x}}^{-1} \circ t_{\bar{x}} \circ \varphi_{0}\right)=j^{B} \varphi_{0}\left(j_{x_{0}}^{r} f_{0}\right)$. This general property extends $\tilde{\iota}_{x_{0}}$ onto $\tilde{\iota}: T^{A} M \rightarrow T_{k}^{r} M$. We proved the following assertion

Proposition 1. Let $A=\mathbb{D}_{k}^{r} / I$ be a Weil algebra, $p: \mathbb{D}_{k}^{r} \rightarrow A$ the projection homomorphism with its associated natural transformation $\tilde{p}: T_{k}^{r} \rightarrow T^{A}$ and ι : $A \rightarrow \mathbb{D}_{k}^{r}$ a linear map satisfying $p \circ \iota=\operatorname{id}_{A}$. For a manifold M and $x_{0} \in M$ let $\mathcal{B}_{x_{0}}$ be a minimal set of generators of the algebra $J_{x_{0}}^{r}(M, \mathbb{R})_{0}=T_{x_{0}}^{r *} M$. Then there is an embedding $\tilde{\imath}: T^{A} M \rightarrow T_{k}^{r} M$ satisfying $\tilde{p}_{M} \circ \tilde{\iota}=\operatorname{id}_{T^{A} M}$ such that $\left(\tilde{\iota}\left(j^{A} \varphi\right)\right)\left(j_{x_{0}}^{r} \tilde{f}\right)=\iota\left(\left(j^{A} \varphi\right)\left(j_{x_{0}}^{r} \tilde{f}\right)\right)$ for any $j^{A} \varphi \in T_{x_{0}}^{A} M$ and $j_{x_{0}}^{r} \tilde{f} \in \mathcal{B}_{x_{0}}$.

In the following investigations, we limit ourselves to monomial Weil algebras. A Weil algebra $A=\mathbb{D}_{k}^{r} / I$ is said to be monomial if I is generated only by monomials. We shall need the coordinate expression of some operators used later for the construction of natural T-functions in question. Thus we introduce coordinates on $T^{A} M$ and $T^{*} T^{A} M$. Consider the polynomial approach to the definition of \mathbb{D}_{k}^{r}. Then its elements are of the form $\frac{1}{\alpha!} x_{\alpha} \tau^{\alpha}$, where $\tau_{1}, \ldots, \tau_{k}$ are variables and α are multiindices satisfying $0 \leq|\alpha| \leq r$. Define a linear map $\iota: A \rightarrow \mathbb{D}_{k}^{r}$ as follows. For τ^{α}, put $\iota\left(p\left(\tau^{\alpha}\right)\right)=0$ if $\tau^{\alpha} \in I$ and $\iota\left(p\left(\tau^{\alpha}\right)\right)=\tau^{\alpha}$ otherwise. As a matter of fact, $\iota: A \rightarrow \mathbb{D}_{k}^{r}$ is a zero section. Similarly as $p: \mathbb{D}_{k}^{r} \rightarrow A$, the map ι can be extended to $\tilde{\iota}: A^{m} \rightarrow\left(\mathbb{D}_{k}^{r}\right)^{m}$ by components. Then it coincides with the map $\tilde{\iota}$
from Proposition 1, if we put $M=\mathbb{R}^{m}$, choose $x_{0} \in \mathbb{R}^{m}$ and substitute $j_{x_{0}}^{r} x^{i}$ for the elements of $\mathcal{B}_{x_{0}}$, where x^{i} are canonical coordinates on \mathbb{R}^{m}. Further, define the additional coordinates on $T^{*} T^{A} M$ by $p_{i}^{\alpha} d x_{\alpha}^{i}$.

Let us define operators $T \rightarrow T T^{A}$ by means of $\tilde{\iota}$ and natural operators $T \rightarrow T T_{k}^{r}$ as follows. Every natural operator $\lambda: T \rightarrow T T_{k}^{r}$ defines an operator

$$
\begin{equation*}
\Lambda: T \rightarrow T T^{A} \quad \text { by } \quad \Lambda=T \tilde{p} \circ \lambda \circ \tilde{\iota} \tag{2}
\end{equation*}
$$

which does not to have be natural and neither does the functions $\widetilde{\Lambda}: T^{*} T^{A} \rightarrow$ \mathbb{R} Consider a basis of natural operators $T \rightarrow T T_{k}^{r}$. The non-absolute natural operators λ together with some of the absolute ones in this basis induce natural operators $\Lambda: T \rightarrow T T^{A}$, while the others will be used for the construction of the additional natural functions defined on $T^{*} T^{A}$.

By general theory, [5], searching for natural T-functions defined on $T^{*} T^{A}$, we are going to investigate G_{m}^{r+2}-invariant functions defined on $\left(J^{r+1} T\right)_{0} \mathbb{R}^{m} \times\left(T^{*} T^{A}\right)_{0} \mathbb{R}^{m}$. Therefore we state some assertions, concerning the action of G_{m}^{r+2} and some of its subgroups on this space. It will be necessary to consider the coordinate expression of this action as well as that of base operators $\Lambda: T \rightarrow T T^{A}$ and their associated functions $\widetilde{\Lambda}: T^{*} T^{A} \rightarrow \mathbb{R}$.

Denote by λ_{j}^{β} a natural operator $\lambda_{D_{j}^{\beta}}$ associated to a derivation of \mathbb{D}_{k}^{r} defined by $\tau_{i} \rightarrow \delta_{i}^{j} \tau^{\beta}$ for $j \in\{1, \ldots, k\}$ and $1 \leq|\beta| \leq r$. Then we have coordinate forms of λ_{j}^{β} and $\widetilde{\lambda}_{j}^{\beta}$, of the same form as those of $\Lambda_{j}^{\bar{\beta}}$ and $\widetilde{\Lambda}_{j}^{\beta}$. We have

$$
\begin{equation*}
\lambda_{j}^{\beta}=\frac{(\alpha+\beta)!}{\alpha!} x_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha+\beta-\{j\}}^{i}}, \quad \widetilde{\lambda}_{j}^{\beta}=\frac{(\alpha+\beta)!}{\alpha!} x_{\alpha}^{i} p_{i}^{\alpha+\beta-\{j\}} \tag{3}
\end{equation*}
$$

Let k be the width of a monomial Weil algebra A. For $m \geq k$, define an immersion element $i \in T_{0}^{A} \mathbb{R}^{m}$ by $x_{\alpha}^{i}=0$ whenever $|\alpha| \geq 2$ and $x_{j}^{i}=\delta_{j}^{i}$ for $j \in\{1, \ldots, k\}$. For general r, k, remind the jet group $G_{k}^{r}=\operatorname{inv} J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)_{0}$, where inv indicates the invertibility of maps in question. The multiplication in G_{k}^{r} is defined by the jet composition. We give the coordinate form of the action of this group on $T^{*} T^{A}$. Let $a_{l_{1}, \ldots, l_{q}}^{i}$ denote the canonical coordinates on G_{m}^{s} and $\tilde{a}_{l_{1}, \ldots, l_{q}}^{i}$ indicate the inverse. Then the transformation law of the action of G_{m}^{s} on $T_{0}^{A} \mathbb{R}^{m}$ is of the form

$$
\begin{equation*}
\bar{x}_{\alpha}^{i}=a_{l_{1} \ldots l_{q}}^{i} x_{\alpha_{1}}^{l_{1}} \ldots x_{\alpha_{q}}^{l_{q}} \tag{4}
\end{equation*}
$$

for all admissible multiindices α and their decompositions $\alpha_{1}, \ldots, \alpha_{q}$.
The jet group G_{k}^{r} is identified with Aut \mathbb{D}_{k}^{r}, the group of automorphisms of the algebra \mathbb{D}_{k}^{r}, as follows. For $j_{0}^{r} g \in G_{k}^{r}$ and $j_{0}^{r} \varphi \in \mathbb{D}_{k}^{r}$ define

$$
\begin{equation*}
j_{0}^{r} g\left(j_{0}^{r} \varphi\right)=j_{0}^{r} \varphi \circ\left(j_{0}^{r} g\right)^{-1} \tag{5}
\end{equation*}
$$

Let A be a monomial Weil algebra of width k and height r and $p: \mathbb{D}_{k}^{r} \rightarrow A$ be the projection homomorphism.

In what follows, we shall consider A as $\mathbb{D}_{m}^{s} /\left(I \cup\left\{\tau_{k+1}, \ldots, \tau_{m}\right\}\right)$ for $s \geq r$, $m \geq k$ with the properly modified projection $p: \mathbb{D}_{m}^{s} \rightarrow A$. Consider a group
$G_{A}=\left\{j_{0}^{s} g \in G_{m}^{s} ; p \circ j_{0}^{s} g=p\right\},[1]$. The following lemma characterizes G_{A} as the stability subgroup of the immersion element i.
Lemma 2. Let $A=\mathbb{D}_{m}^{s} / I$ be a monomial Weil algebra of width k, height r and $\operatorname{St}(i) \subseteq G_{m}^{s}$ be the stability subgroup of the immersion element $i \in T_{0}^{A} \mathbb{R}^{m}$ under the canonical left action of G_{m}^{s} on $T_{0}^{A} \mathbb{R}^{m}$. Then it holds $G_{A}=\operatorname{St}(i)$.

Proof. The formula (4) implies that every element of G_{m}^{s} stabilizes i if and only if $a_{j}^{i}=\delta_{j}^{i}$ for $j \in\{1, \ldots, k\}$ and $a_{\alpha}^{i}=0$ whenever $|\alpha| \geq 2, \tau^{\alpha} \notin I$ and $\tau^{\alpha} \in<$ $\tau_{1}, \ldots, \tau_{k}>$.

On the other hand, $G_{A}=\left\{j_{0}^{s} g \in G_{m}^{s} ; p \circ j_{0}^{s} \varphi \circ\left(j_{0}^{s} g\right)^{-1}=p \circ j_{0}^{s} \varphi \forall j_{0}^{s} \varphi \in \mathbb{D}_{m}^{s}\right\}$. In coordinates, we have

$$
\begin{equation*}
\bar{x}_{\alpha}=x_{l_{1}, \ldots l_{q}} \tilde{a}_{\alpha_{1}}^{l_{1}} \ldots \tilde{a}_{\alpha_{q}}^{l_{q}} \tag{6}
\end{equation*}
$$

where \bar{x}_{α} indicates the transformed value of $j_{0}^{s} \varphi$ (in coordinates x_{α}) under an automorphism $j_{0}^{s} g$ (with coordinates a_{α}^{i}. Substituting an i-th projection $p r_{i}$ for φ, we obtain $\bar{x}_{\alpha}=\tilde{a}_{\alpha}^{i}$ and consequently $\tilde{a}_{j}^{i}=a_{j}^{i}=\delta_{j}^{i}$ for $j \in\{1, \ldots, k\}$ and $\tilde{a}_{\alpha}^{i}=a_{\alpha}^{i}=0$ for $|\alpha| \geq 2, \tau^{\alpha} \notin I$ and $\tau^{\alpha} \in<\tau_{1} \ldots, \tau_{k}>$. Thus we have $G_{A} \subseteq \operatorname{St}(i)$. The converse inclusion is immediately obtained from (6), taking into account the coordinate form of i. It proves our claim.

We remind the concept of a regular A-point of a Weil bundle M_{A}. An element $\varphi \in M_{A}$ is said to be regular (a regular A-point) if and only if its image coincides with $A,[1]$. Taking into account the identification (1), such a concept can be extended to an A-velocity $j^{A} \varphi \in T^{A} M$. Clearly, it is regular if and only if φ is an immersion in $0 \in \mathbb{R}^{k}$, where k is the width of A. Further, it must hold $\operatorname{dim} M \geq k$. In the case $m=k$ the concept of regularity coincides with that of invertibility. The map $\tilde{\imath}$ from Proposition 1 preserves regularity and thus $\tilde{\iota}: A^{k} \rightarrow \mathbb{R}^{k}$ can be restricted to $\operatorname{reg}\left(N^{k}\right) \rightarrow G_{k}^{r}$, where N denotes the nilpotent ideal of A.

Alonso in [1] proved that there is a structure of a fiber bundle on $\operatorname{reg} T^{A} M$ with the standard fiber G_{k}^{r} / G_{A} over a k-dimensional manifold M and therefore $\operatorname{reg} T_{0}^{A} \mathbb{R}^{k}$ is identified with G_{k}^{r} / G_{A}. The elements of $\operatorname{reg}\left(T^{A}\right)_{0} \mathbb{R}^{k}$ are left classes $j_{0}^{r} g G_{A}$. We extend this assertion of his to m-dimensional manifolds for $m \geq k$. For $\tilde{\iota}: A^{m} \rightarrow\left(\mathbb{D}_{k}^{r}\right)^{m}$ corresponding to a Weil algebra of width k we define a map $\tilde{\iota}^{*}: A^{m} \rightarrow\left(\mathbb{D}_{k}^{r}\right)^{m}$ by

$$
\begin{equation*}
\tilde{\iota}^{*}\left(x_{\alpha}^{i} \tau^{\alpha}\right)=x_{\alpha}^{i} \tau^{\alpha}+\delta_{i}^{p} \tau_{p} \quad p \geq k+1 \tag{7}
\end{equation*}
$$

Then we have a lemma, giving the decomposition of any $j_{0}^{r} g \in G_{m}^{r}$ onto its projection from $\tilde{\iota}^{*} \circ \tilde{p}\left(G_{m}^{r}\right)$ and the component in G_{A}.
Lemma 3. Let $A=\mathbb{D}_{k}^{r} / I$ be a Weil algebra of width k and $j_{0}^{r} g \in G_{m}^{r}, m \geq k$. There is an element $j_{0}^{r} h \in G_{A}$ such that

$$
\begin{equation*}
j_{0}^{r} g=\tilde{\iota}^{*} \circ \tilde{p}\left(j_{0}^{r} g\right) \circ j_{0}^{r} h \tag{8}
\end{equation*}
$$

Proof. The proof of the assertion is done in coordinates and it is based on the iterated application of (4). We do it for only for k, since for $m \geq k$ it is almost the same. Let c_{γ}^{i} denote the coordinates of $j_{0}^{r} g, a_{\gamma}^{i}$ the coordinates of $\tilde{\iota} \circ \tilde{p}\left(j_{0}^{r} g\right)$ and b_{γ}^{i} the coordinates of $j_{0}^{r} h$ to be found. Clearly, $a_{\gamma}^{i}=c_{\gamma}^{i}$ whenever $\tau^{\gamma} \notin I$. In the first step suppose that α is a minimal multiindex such that $\tau^{\alpha} \in I$. It follows from (4), that $c_{\alpha}^{i}=a_{l}^{i} b_{\alpha}^{l}$, if we consider the conditions for $j_{0}^{r} h$. The unique solution is given by the invertibility of $j_{0}^{r} g$. Suppose the assertion being proved for $|\alpha| \leq p$. We prove it for $|\alpha|=p+1$. By (4) we have $c_{\alpha}^{i}=a_{l_{1} \ldots l_{s}}^{i} b_{\alpha_{1}}^{l_{1}} \ldots b_{\alpha_{s}}^{l_{s}}+a_{l}^{i} b_{\alpha}^{l}, s \geq 2$. From the regularity of $j_{0}^{r} g$ we obtain again the unique solution b_{α}^{l}, which proves our claim.

In the proof of the assertion giving the main result, we need to describe the stability group of $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$. The transformation laws for the action of G_{m+1}^{r+2} on $\left(J^{r+1} T\right)_{0} \mathbb{R}^{m}$ has the coordinate expression

$$
\begin{equation*}
\bar{X}_{\alpha}^{i}=a_{l \gamma_{1}}^{i} X_{\gamma_{2}}^{l} \tilde{a}_{\alpha}^{\gamma}, \tag{9}
\end{equation*}
$$

where $X_{\alpha}^{i},|\alpha| \leq r+1$ denote the canonical coordinates of $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$. Further, any multiindex γ including the empty one is decomposed into γ_{1}, γ_{2} and the notation $\tilde{a}_{\alpha}^{\gamma}$ denotes the system of all $\tilde{a}_{\alpha_{1}}^{l_{1}} \ldots \tilde{a}_{\alpha_{s}}^{l_{s}}$ for l_{1}, \ldots, l_{s} forming the multiindex γ and decompositions $\alpha_{1}, \ldots, \alpha_{s}$ forming α. It follows, that in coordinates any element of G_{m+1}^{r+2} must satisfy $a_{j}^{i}=\delta_{m+1}^{i}$ and $a_{\alpha}^{i}=0$ whenever the multiindex α formed by all $1, \ldots, m+1$ contains any $m+1$ for $|\alpha| \geq 2$. To describe the stability group of $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ by terms of Lemma 2 and Lemma 3, denote A_{m+1}^{s} the Weil algebra of \mathbb{D}_{m+1}^{s} / I for $I=<\tau_{m+1} \tau^{\alpha}>,|\alpha| \geq 1$. Thus we have proved the following lemma

Lemma 4. The stability group of $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ in G_{m+1}^{r+2} is of the form $\tilde{\iota}\left(\left(A_{m+1}^{r+2}\right)^{m+1}\right)$ $\cap G_{m+1}^{r+2}$. Moreover, the stability group of $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ and the immersion element $i \in T_{0}^{A} \mathbb{R}^{m+1}$ is of the form $G_{A ; m+1}=G_{A} \cap \tilde{\imath}\left(\left(A_{m+1}^{r+2}\right)^{m+1}\right)$.

Let us consider the base $\widetilde{\mathcal{B}}$ of all T-functions $\widetilde{\Lambda}$ defined on $T^{*} T^{A}$ (not natural in general), constructed from the non-absolute natural operators $L\left(\tau^{\alpha}\right) \mathcal{T}^{A}$ and from the absolute operators Λ_{j}^{β} with the coordinate expression given by (3). Let $\widetilde{\mathcal{B}}_{1}$ denote the subbasis of $\widetilde{\mathcal{B}}$ formed by natural operators $T \rightarrow T T^{A}$. It follows from Lemma 3, that any element $j^{A} g \in \operatorname{reg} T^{A} M$ is identified with $\tilde{\iota}^{*}\left(j^{A} g\right) \in G_{m+1}^{r+1}$, the only representative of the left class $j^{A} g G_{A}$ in the sense of Lemma 3. Therefore we have

$$
\begin{equation*}
i=l\left(\left(\tilde{\iota}^{*}\left(j^{A} g\right)\right)^{-1}, j^{A} g\right) \tag{10}
\end{equation*}
$$

where l is the symbol for the left action of G_{m+1}^{r+1} on $T_{0}^{A} \mathbb{R}^{m+1}$ to be used also for the action of this group on $\left(J^{r+1} T\right)_{0} \mathbb{R}^{m+1} \times\left(T^{*} T^{A}\right)_{0} \mathbb{R}^{m+1}$. Let us define a map $\operatorname{Imm}: T^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1} \rightarrow\left(T_{i}^{*} T^{A}\right)_{0} \mathbb{R}^{m+1}$ as follows

$$
\begin{equation*}
\operatorname{Imm}(w)=l\left(\left(\tilde{\iota}^{*}(q(w))\right)^{-1}, w\right) \tag{11}
\end{equation*}
$$

$w \in T^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$.
Proposition 5. Let A be a monomial Weil algebra and $\left(T^{*}\left(\operatorname{reg} T^{A}\right)\right)_{0} \mathbb{R}^{m+1} \rightarrow$ $\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$ be the restriction of the natural bundle $T^{*} T^{A} \mathbb{R}^{m+1} \rightarrow T^{A} \mathbb{R}^{m+1}$ to the opened submanifold $\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$. Then all operators from $\widetilde{\mathcal{B}}-\widetilde{\mathcal{B}}_{0}$ are G_{m+1}^{r+2}-invariant in respect to the map Imm.

Proof. We prove the assertion from the transformation laws of the action of G_{m+1}^{r+2} on $\left(J^{r+1} T\right)_{0} \mathbb{R}^{m+1} \times\left(T^{*} T^{A}\right)_{0} \mathbb{R}^{m+1}$. We complete them for p_{j}^{α}. Denote $\gamma=\alpha-\{j\}$ the multiindex from (3). Then we have

$$
\begin{equation*}
\bar{p}_{j}^{\beta}=\frac{(\beta+\gamma)!}{\beta!\gamma_{1}!\ldots \gamma_{s}!} \tilde{a}_{j l_{1} \ldots l_{s}}^{l} \bar{x}_{\gamma_{1}}^{l_{1}} \ldots \bar{x}_{\gamma_{s}}^{l_{s}} p_{j}^{\beta \gamma} \tag{12}
\end{equation*}
$$

when the sum is made for all decompositions $\gamma_{1}, \ldots, \gamma_{s}$ of multiindices γ. The formula is obtained from (3) and the standard combinatorics. To accent $\operatorname{Imm}(w)$ as a transformed value for any $w \in T^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$, use \bar{p}_{i}^{α} for the additional coordinates (obviously, the coordinates \bar{x}_{α}^{i} coincide with those of i). Then we have $\widetilde{\Lambda}_{j}^{\beta}(\operatorname{Imm}(w))=\widetilde{\Lambda}_{j}^{\beta}\left(\bar{x}_{\alpha}^{i}\right) \bar{p}_{i}^{\alpha+\beta-\{j\}}=\beta!\bar{p}_{j}^{\beta}=\beta!\frac{(\beta+\gamma)!}{\beta!\gamma!} \tilde{a}_{j \gamma}^{i} p_{i}^{\beta \gamma}$ if we put $\gamma=\alpha-\{j\}$, which follows from (12). If we consider the coordinate expression of $\tilde{\imath}\left(A^{m+1}\right)$ and the formula (3), we obtain that the last expression coincides with $\frac{(\beta+\gamma)!}{\gamma!} x_{j \gamma}^{i} p_{i}^{\beta \gamma}=$ $\frac{\alpha_{j}}{\alpha_{j}+\beta_{j}} \frac{(\alpha+\beta)!}{\alpha!} x_{\alpha}^{i} p_{i}^{\alpha+\beta-j}=\widetilde{\Lambda}\left(x_{\alpha}^{i}, p_{i}^{\alpha}\right)=\widetilde{\Lambda}(w)$. It proves our claim.

The following lemma specifies a certain class of functions, among which all investigated ones must be contained.
Lemma 6. Let $m \geq k$. Then every natural T-function $f: T^{*} T^{A} \mathbb{R}^{m+1} \rightarrow \mathbb{R}$ is of the form $h\left(\widetilde{\left(\tau^{\alpha}\right) \mathcal{T}}{ }^{A}, \widetilde{\Lambda}_{j}^{\beta}\right)$ for some smooth function h of the suitable type.

Proof. By general theory, we are searching for all G_{m+1}^{r+2}-invariant functions defined on $\left(J^{r+1} T\right)_{0} \mathbb{R}^{m+1} \times\left(T^{*} T^{A}\right)_{0} \mathbb{R}^{m+1}$. Let $w \in\left(T^{*} T^{A}\right)_{0} \mathbb{R}^{m+1}$ and x_{α}^{i} denote the coordinates of $q(w), q: T^{*} T^{A} \rightarrow T^{A}$ being the cotangent bundle projection. By a general lemma from [5], Chapter VI, the natural T-function must satisfy $f\left(j_{0}^{r+1} X, w\right)=h\left(X_{\gamma}^{i} p_{i}^{\beta}, x_{\alpha}^{i} p_{i}^{\beta}\right)$ for any non-zero $j_{0}^{r+1} X$ of a vector field X on \mathbb{R}^{m+1}. The coordinates used in the recent identity coincide with those defined before Lemma 2. The last expression can be considered in the form $h\left(\widetilde{L\left(\tau^{\alpha}\right) \mathcal{T}^{A}}, X_{\gamma}^{i} p_{i}^{\beta}, \widetilde{\Lambda}_{j}^{\beta}, x_{\delta}^{i} p_{i}^{\beta}\right)$ for $|\beta| \geq 0,|\gamma| \geq 1$ and $|\delta| \geq 2$. Identify $q(w)$ with $j^{A} g$ for any $w \in T^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$, i.e. $q(w)=l\left(\tilde{\iota}\left(j^{A} g\right), i\right)$ and put $j_{0}^{r+1} Y=$ $l\left(\tilde{\iota}\left(j^{A} g\right)^{-1}, j_{0}^{r+1} Y\right)$. Then $f\left(j_{0}^{r+1} X, w\right)=h\left(\widetilde{L\left(\tau^{\alpha}\right) \mathcal{T}}{ }^{A}, Y_{\gamma}^{i} \bar{p}_{i}^{\beta}, \widetilde{\Lambda}_{j}^{\beta}, 0, p_{i}^{0}\right)$ for $|\gamma| \geq 1$ and $i \in\{1, \ldots, k\}$. Here \bar{p}_{i}^{β} indicate the transformed values of p_{i}^{β} under the map Imm. The last identity follows from Proposition 5. Further, there is $j_{0}^{r+2} g \in G_{A} \cap$ $G_{A_{m+1}^{r+2}}$ such that $l\left(j_{0}^{r+1} g, j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)\right)=j_{0}^{r+1} Y$. Then we have $f\left(j_{0}^{r+1} X, w\right)=$
$h\left(\widetilde{L\left(\tau^{\alpha}\right) \mathcal{T}} A, 0, \widetilde{\Lambda}_{j}^{\beta}, 0, p_{i}^{0}\right)$ for $i \in\{1, \ldots, k\}$. The excessive coordinates p_{i}^{0} are annihilated by an element of $\operatorname{Ker} \pi_{r}^{r+1} \cap \tilde{\iota}\left(\left(A_{m+1}^{r+2}\right)^{m+1}\right)$, namely by an element satisfying in coordinates $a_{\alpha}^{i}=0$ except of $\alpha=\underbrace{(i, \ldots, i)}_{(r+1) \text {-times }}$. Such an element stabilizes $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ as well as i, which completes the proof.

Searching for all natural T-functions $T^{*} T^{A} \mathbb{R}^{m+1} \rightarrow \mathbb{R}$ among those from Lemma 6 , we state the basis \mathcal{B} of functions defined on $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ and identify it with $\widetilde{\mathcal{B}}$. By general theory, [5], every natural T-function in question is determined by its value over $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ on $\left(T^{*} T^{A}\right)_{0} \mathbb{R}^{m+1}$. Further, it follows from Lemma 4 and the formula (11) that the map Imm stabilizes $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ in the following sense. For any $w \in T^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$ the action of $\tilde{\iota}(q(w))$ on $\left(J^{r+1} T\right)_{0} \mathbb{R}^{m+1}$ stabilizes $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$.

Set \mathcal{B} the basis of functions defined on $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ obtained by the restriction of $\widetilde{\mathcal{B}}$ over $j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right)$ onto $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$. Conversely, \mathcal{B} determines $\widetilde{\mathcal{B}}$ by

$$
\begin{equation*}
\widetilde{\mathcal{B}}\left(j_{0}^{r+1}\left(\frac{\partial}{\partial x^{m+1}}\right), w\right)=\mathcal{B} \circ \operatorname{Imm}(w) \tag{13}
\end{equation*}
$$

Analogously, we construct \mathcal{B}_{1} from $\widetilde{\mathcal{B}_{1}}$. Moreover, for any $w \in T_{i}^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$, the values formed by $\mathcal{B}(w)$ coincide with the coordinates p_{j}^{β} of w defined before (2) for $j=1, \ldots, k$ except that of p_{j}^{0} for the absolute functions and p_{m+1}^{β} for the non-absolute ones. Thus any base T-function of \mathcal{B} defined on $T_{i}^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1}$ corresponds to some projection $\operatorname{pr}_{j}^{\beta}: T_{i}^{*}\left(\operatorname{reg} T^{A}\right)_{0} \mathbb{R}^{m+1} \rightarrow \mathbb{R}$. It follows from Lemma 4 and the fact that $\widetilde{L\left(\tau^{\alpha}\right) \mathcal{T}^{A}}$ are natural that all natural T-functions $\left(T^{*} T^{A}\right) \mathbb{R}^{m+1} \rightarrow$ \mathbb{R} from Lemma 6 are in the canonical bijection with G_{A}-invariant functions defined on $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ which are of the form $h\left(\widetilde{\left(\tau^{\alpha}\right) \mathcal{T}}{ }^{A}\right)\left(\widetilde{\Lambda}_{j}^{\beta}\right)$ for $\widetilde{\Lambda}_{j}^{\beta}: T_{i}^{*} T^{A} \mathbb{R}^{m+1} \rightarrow \mathbb{R}$. Using coordinates, we find all G_{A}-invariants of $p_{j}^{\beta}, j \in\{1, \ldots, k\},|\beta| \geq 1$. Then we identify the functions $h\left(\widetilde{L\left(\tau^{\alpha}\right) \mathcal{T}^{A}}\right)\left(p_{j}^{\beta}\right)$ with $h\left(\widetilde{L\left(\tau^{\alpha}\right) \mathcal{T}^{A}}\right)\left(\widetilde{\Lambda}_{j}^{\beta}\right)$ and by (12), we obtain all natural T-functions on $T^{*} T^{A} \mathbb{R}^{m+1}$.

This way we have deduced that our problem can be reduced to the problem of searching for all G_{A}-invariant functions defined on $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ which can be identified with a smooth function $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ for a suitable integer N. The coordinate expression of the action of G_{A} on $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ is induced by (12) and it is of the form

$$
\begin{equation*}
\bar{p}_{j}^{\beta}=p_{j}^{\beta}-C(\beta+\gamma, \beta) a_{j \gamma}^{l} p_{l}^{\beta \gamma} \quad \text { for } \quad \tau_{j} \tau^{\gamma} \in I \quad \text { and } \quad \tau^{\beta} \tau^{\gamma} \notin I \tag{14}
\end{equation*}
$$

where C indicates the multicombinatorial number. Clearly, $T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ is identified with the space R^{N} endowed with the action (14) of G_{A}. We are going to investigate $G_{A} \cap G_{m+1^{r}}^{r}$-orbits on R^{N}, since only p_{j}^{0} depend on B_{m+1}^{r+1} and they can be annihilated by this subgroup. For those orbits, we construct all functions
distinguishing them and then we express the corresponding invariants by terms of elements from $\widetilde{\mathcal{B}}$.
The following assertion describes an important property of $\left(G_{A} \cap \operatorname{Ker} \pi_{s}^{r}\right)$-orbits to bee necessary in the proof of the main result. Denote by $\mathcal{B}_{s} \subseteq \mathcal{B}$ the set of all $\left(G_{A} \cap \operatorname{Ker} \pi_{s}^{r}\right)$-invariants selected from \mathcal{B} and denote by N_{s} the number of elements in \mathcal{B}_{s}. Clearly, $\mathcal{B}_{1} \subseteq \mathcal{B}_{2} \subseteq \cdots \subseteq \mathcal{B}_{r-1} \subseteq \mathcal{B}_{r}$. Further, denote $\mathcal{B}_{t}^{s}=\mathcal{B}_{s}-\mathcal{B}_{t}$ and $N_{t}^{s}=N_{s}-N_{t}$. Then we have

Proposition 7. Let $w \in \mathbb{R}^{N}$ and $\mathcal{O} r b_{s}(w)$ be its $\left(G_{A} \cap \operatorname{Ker} \pi_{s}^{r}\right)$-orbit. Then $\mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}(w)\right)$ has the structure of an affine subspace of $R^{N_{s}^{s+1}}$, the modelling vector space of which being determined by the formula (14) restricted to $B_{m+1}^{s+1} \cap G_{A}$.

Proof. is done directly applying the formula (14). Let w_{1} and w_{2} be elements of $\mathcal{B}_{s}^{s+1}(\mathcal{O} r b(w))$. Then w_{1} can be achieved from w by the action of an element of $B_{m+1}^{s+1} \cap G_{A}$. The coordinate expression of such a transformation is given by $\bar{p}_{j}^{\beta}=p_{j}^{\beta}-C(\beta+\gamma, \beta) a_{j \gamma}^{l} p_{l}^{\beta \gamma}$. Analogously for w_{1} and w_{2}, we have $\overline{\bar{p}}_{j}^{\beta}=\bar{p}_{j}^{\beta}-C(\beta+$ $\gamma, \beta) b_{j \gamma}^{l} \bar{p}_{l}^{\beta \gamma}$. Then $\overline{\bar{p}}_{j}^{\beta}=p_{j}^{\beta}-\left(a_{j \gamma}^{l}+b_{j \gamma}^{l}\right) p_{l}^{\beta \gamma}$, which follows $\vec{w}_{2}=\vec{w}_{1}+\bar{w}_{1} \vec{w}_{2}$. It proves our claim.

In what follows, we construct a basis $\widetilde{\mathcal{D}}$ of natural functions from $\widetilde{\mathcal{B}}$. The construction is given by a procedure, generating step by step a base of G_{A}-invariants determining the base of natural functions. We start the procedure selecting elements of \mathcal{B}_{1} and put $\widetilde{\mathcal{D}}_{1}=\widetilde{\mathcal{B}}_{1}$. For any $w \in T_{i}^{*} T^{A} \mathbb{R}^{m+1}$, consider its orbit $\mathcal{O} r b(w)=\mathcal{O} r b_{1}(w)$.

In the second step, consider $\mathcal{B}_{1}^{2}\left(\mathcal{O} r b_{1}(w)\right)$, which is by Proposition 7 a $k_{2^{-}}$ dimensional affine subspace of the affine space $\mathbb{R}^{N_{1}^{2}}$ for some $k_{2} \leq N_{1}^{2}$. For almost every G_{A}-orbit in the sense of density, such an affine subspace contains a unique point $I^{C_{2}}$ satisfying $\operatorname{pr}_{j}\left(I^{C_{2}}\right)=0$ for $j \in C_{2}$. The remaining components of $I^{C_{2}}$ determine G_{A}-invariants $I_{1}^{C_{2}}, \ldots, I_{N_{1}^{2}-k_{2}}^{C_{2}}$ identified with natural functions $\widetilde{I}_{1}^{C_{2}}, \ldots, \widetilde{I}_{N_{1}^{2}-k_{2}}^{C_{2}}$.

In order to express them in formulas, we notice the following property of $\mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}(w)\right)$ for any $s=1, \ldots, r-1$. Proposition 7 and its proof imply that if an element of $\mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}(w)\right)$ is stabilized by $j_{0}^{s+1} g \in B_{m+1}^{s+1}$ under the canonical left action then the whole $\mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}(w)\right)$ is stabilized. Denote $\mathrm{St}_{s ; m+1}^{s+1} \subseteq G_{A} \cap B_{m+1}^{s+1}$ the stability group of $\mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}(w)\right)$. One can easily deduce that $\mathrm{St}_{s ; m+1}^{s+1}$ satisfies the stability property of this kind for almost every $w \in \mathbb{R}^{N}$. Clearly, $\mathrm{St}_{s ; m+1}^{s+1}$ is a closed and normal subgroup of $G_{A} \cap B_{m+1}^{s+1}$ and thus $H_{s ; m+1}^{s+1}=G_{A} \cap B_{m+1}^{s+1} / \mathrm{St}_{s ; m+1}^{s+1}$ is a Lie group. It follows the existence of a section $\sigma_{s+1 ; m+1}: H_{s ; m+1}^{s+1} \rightarrow G_{A} \cap B_{m+1}^{s+1}$.

Hence for any $w \in \mathbb{R}^{N}$ we have a unique $j_{0}^{2} h \in \sigma_{2 ; m+1}\left(H_{1 ; m+1}^{2}\right) \simeq H_{1 ; m+1}^{2}$ such that $\mathcal{B}_{1}^{2}\left(l\left(j_{0}^{2} h, w\right)\right)=I^{C_{2}}(w)$. Thus we have a map $\alpha_{C_{2}}: \mathbb{R}^{N} \rightarrow H_{1 ; m+1}^{2}$. Therefore,
any $w \in T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ is transformed onto

$$
\begin{equation*}
l\left(\alpha_{C_{2}}(w), w\right)=l_{\alpha_{C_{2}}}(w)=\left(I_{j_{s}}^{C_{2}}(w)\right), \quad s=1, \ldots N_{1}^{2}-k_{2}, j_{s} \notin C_{s} \tag{15}
\end{equation*}
$$

Applying the identification (13), we obtain $\widetilde{I}_{1}^{C_{2}}, \ldots, \widetilde{I}_{N_{1}^{2}-k_{2}}^{C_{2}}$ and put $\widetilde{\mathcal{D}}_{2}=\widetilde{\mathcal{D}}_{1} \cup$ $\left\{\widetilde{I}_{1}^{C_{2}}, \ldots, \widetilde{I}_{N_{1}^{2}-k_{2}}^{C_{2}}\right\}$.

In the $(s+1)$-th step of the procedure we come out from the basis $\widetilde{\mathcal{D}}_{s}$ of natural functions and an element $w_{s}=l_{\alpha_{C_{s}}} \circ \cdots \circ l_{\alpha_{C_{2}}}(w) \in \mathcal{O} r b_{1}(w)$ instead w from the second step. By Proposition $7, \mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}\left(w_{s}\right)\right)$ is an affine subspace of dimension k_{s+1} of $\mathbb{R}^{N_{s}^{s+1}}$ for some k_{s+1}. Select $C_{s+1} \subseteq\left\{1, \ldots, N_{s}^{s+1}\right\}$. For almost every $w_{s} \in T_{i}^{*} T^{A} \mathbb{R}^{m+1}$ there is a unique point $I^{C_{s+1}}\left(w_{s}\right)=I^{C_{s+1}}\left(\mathcal{B}_{s}^{s+1}\left(\mathcal{O} r b_{s}\left(w_{s}\right)\right)\right.$ such that $\operatorname{pr}_{j} \circ I^{C_{s+1}}=0$ for $j \in C_{s+1}$. The remaining components of $I^{C_{s+1}}$ determine analogously to the second step of the procedure G_{A}-invariants and by (13) natural functions $\widetilde{I}_{l_{s+1}}^{C_{s+1}, \ldots, C_{2}}$ for $l_{s+1} \notin C_{s+1}$. Analogously to the second step, for any w_{s} under discussion there is a unique element $j_{0}^{s+1} h \in \sigma_{s+1 ; m+1}\left(H_{s ; m+1}^{s+1}\right)$ such that $l\left(j_{0}^{s+1} h, \mathcal{B}_{s}^{s+1}\left(w_{s}\right)\right)=I^{C_{s+1}}\left(w_{s}\right)$. Hence we have a map $\alpha_{C_{s}}: \mathbb{R}^{N} \rightarrow$ $\sigma_{s+1 ; m+1}\left(H_{s ; m+1}^{s+1}\right)$ such that $l\left(\alpha_{C_{s+1}}\left(w_{s}\right), w_{s}\right)=I^{C_{s+1}}\left(w_{s}\right)=l_{\alpha_{C_{s+1}}} \circ \cdots \circ l_{\alpha_{C_{2}}}(w)=$ $\widetilde{I}^{C_{s+1}, \ldots, C_{2}}(w)$ taking into account the identification (13). Hence we obtained the basis $\widetilde{\mathcal{D}}_{s+1}=\widetilde{\mathcal{D}}_{s} \cup\left\{\widetilde{I}_{l_{s+1}}^{C_{s+1}, \ldots, C_{2}} ; l_{s+1} \notin C_{s+1}\right\}$. We proved the main result, given by the following Proposition

Proposition 8. Let $A=\mathbb{D}_{k}^{r} / I$ be a monomial Weil algebra of width $k, \operatorname{dim} M=$ $m \geq k+1$. Let $\tilde{\iota}: T^{A} M \rightarrow T_{k}^{r} M$ be an embedding described in Proposition 1. Consider a basis C of A and a basis \mathcal{B}_{0} of $\operatorname{Der}\left(\mathbb{D}_{k}^{r}\right)$. Further, let $\widetilde{\mathcal{B}}$ be a basis of functions defined on $T^{*} T^{A} M$ constructed from operators $T \tilde{p} \circ \lambda_{D} \circ \tilde{\imath}$ by the operation ${ }^{\sim}$ defined in the very end of Section 1, $D \in \mathcal{B}_{0}$. Then all natural T functions $f_{M}: T^{*} T^{A} M \rightarrow \mathbb{R}$ are of the form

$$
h\left(\widetilde{L_{M}(c) \mathcal{T}_{M}^{A}}, \widetilde{I}_{l_{1}}, \widetilde{I}_{l_{2}}^{C_{2}}, \ldots, \widetilde{I}_{l_{s}}^{C_{s}, \ldots, C_{2}}\right)
$$

where h is any smooth function of a suitable type, $\widetilde{I}_{l_{1}}$ are natural functions selected directly from $\widetilde{\mathcal{B}}$ and $\widetilde{I}_{l_{s}}^{C_{s}, \ldots, C_{2}}\left(l_{s} \notin C_{s}\right)$ are obtained by the procedure.

I would like to express my gratitude to professor Kolář for his precious advise and comments.

References

[1] Alonso R. J.,Jet manifold associated to a Weil bundle, to appear in Archivum Mathematicum
[2] Kolář I., Covariant Approach to Natural Transformations of Weil Bundles Comment. Math. Univ. Carolinae, 1986.
[3] Kolář I., On Cotagent Bundles of Some Natural Bundles, Rendiconti del Circolo Matematico di Palermo, Serie II-Numero, 37, 1994, 115-120.
[4] Kolář I., On the Natural Operators on Vector Fields, Ann. Global Anal. Geometry, 6, 1988, 109-117.
[5] Kolár I., Michor P. W., Slovák J., Natural Operations in Differential Geometry Springer Verlag, 1993.
[6] Koláŕ I., Radziszewski Z., Natural Transformations of Second Tangent and Cotangent Bundles, Czechoslovak Math. 1988, 274-279.
[7] Modugno M., Stefani G. Some results on second tangent and cotangent spaces, Quaderni dell'Università di Lecce, 1978.
[8] Muriel, F.J., Munoz, J., Rodriguez, J., Weil bundles and jet spaces, to appear in Archivum Math.
[9] Tomás J. Natural operators on vector fields on the cotangent bundles of the bundles of (k, r)velocities, Rendiconti del Circolo Matematico di Palermo Serie II, Numero 54, 1998, 113-124.
[10] Tomáš J. Natural T-functions on the cotangent bundles of some Weil bundles, Differential Geometry and Applications, Proceedings of the Satellite Conference of ICM in Berlin, Brno, 1998, August 10-14, 293-302.
[11] Tomáš J., On quasijet bundles, Rendiconti del Circolo Matematico di Palermo Serie II, Num. 63, 2000, 187-196.

Department of Mathematics, Faculty of Civil Engineering, Technical University Brno, Žižkova 1760200 Brno, Czech Republic

E-mail address: Tomas.Jemail.fce.vutbr.cz

[^0]: 1991 Mathematics Subject Classification. 58A05, 58A20.

