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A CONTRIBUTION TO LOCAL BOL LOOPS

A. VANŽUROVÁ

Abstract. On an n-sphere, n ≥ 2 a geodesic local loop introduced in [Ki]

is a Bol loop, has SO(n + 1) as the group topologically generated by left
translations of the loop, and is called here an n-dimensional spherical local

Bol loop. Our aim is to prove that all smooth n-dimensional local Bol loops

which are locally isotopic to an n-dimensional spherical local Bol loop are
locally isomorphic to it.

1. Introduction

A smooth (= C∞-differentiable) (local) loop (L, ·, /, e), e ∈ L is a pointed smooth
manifold with a triple of smooth (local) mappings ·, \, / from open domains of L×L
to L such that for x, y, z ∈ L the identities

(x/y) · y ≈ x, y · (y\x) ≈ x, (x · y)/y ≈ x, y\(y · x) ≈ x,

x · e ≈ e · x ≈ x/e ≈ e\x ≈ x

hold (whenever the left side of the identity is defined). A germ of smooth local
loops with unit e can be introduced as an equivalence class in a usual way, [P], p.
67.

Due to smoothness, the conditions on the accompanying operations \, / can be
substituted by the assumption that both families of left translations λa : x 7→ a · x
and right translations %a : x 7→ x · a are (local) diffeomorphisms (L.V. Sabinin in
[K&N I], p. 298, [Ki]). Then a (local) isotopism of a smooth (local) loop (L, ·) onto
a smooth (local) loop (M, ◦) can be introduced as a triple of (local) diffeomorphisms
α,β, γ : L → M such that γ(x · y) = α(x) ◦β(y) for such x, y from L for which one
side of the identity is defined. Two isotopic (local) loops determine the same web,
[A&S]. Isomorphisms are obtained for α = β = γ.

Example 1. Given a smooth manifold (M,∇) with an affine connection, or es-
pecially a Riemannian manifold (M, g) with the canonical connection, then in a
restricted normal neighbourhood U of a distinguished point e ∈ M the so called
geodesic local loop at the point e can be introduced with multiplication on U given
by x · y = expx τ(e,x) exp−1

e (y), [Ki]. Here expxtX, 0 < t < δ denotes the geodesic
through x in the direction of a tangent vector X ∈ TxM , and τ(e,x) : TeM → TxM
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intermediates the parallel translation of the tangent spaces along the geodesic seg-
ment.

A smooth (local) loop L is called a (local) left Bol loop if the identity (x · (y ·
(x · z))) ≈ (x · (y · x)) · z is satisfied (on some neighbourhood of the unit e). In the
following, “ left ” will be omitted. A (local) loop isotopic to a (local) Bol loop is
also a (local) Bol loop.

Let G(L) denote the (local) group topologically generated by the family of left
translations of a smooth (local) loop L, G(L) = 〈Λ〉, Λ = {λx : y 7→ x · y; x ∈ L},
let 1 denote the unit in G. Let H denote the isotropic subgroup of a point e under
the (partial) action of G(L) on L. If L is a smooth connected (local) Bol loop then
G(L) is a connected (local) Lie group (by similar arguments as in [M&S1], Prop.
XII.2.14.), and H is its closed subgroup. Let g = T1G (h, respectively) be the Lie
algebra of G(L) (of H, respectively) and let m := T1Λ denote the tangent space
of Λ at the unit 1 ∈ G. Then m is a vector complement of h in g, g = h + m, m
generates g as Lie algebra and the following relation holds [M&S1], Prop. XII.8.23:

(1) [m, [m,m]] ⊂ m.

Vice versa, given a Lie algebra g and a subalgebra h containing no non-trivial
ideal of g then a vector complement m of h in g determines a unique local Bol
loop L if and only if g = m + [m,m] (m generates g as Lie algebra), and the
relation (1) holds, [M&S1] p. 428. The local Bol loop L associated with the triple
(g, h,m) has the property that the group G = exp g with unit 1 ∈ G is the group
topologically generated by the family of left translations of L, the group H = exp h
is the stabilizer of the unit e ∈ L, and Λ = expm is the set of left translation of L
([M&S2], p. 62-65).

Example 2. Example 2 If M is a symmetric (locally symmetric, respectively)
space equipped with the canonical connection then a geodesic loop at any point
e ∈ M is a smooth local Bol loop, [M&S2], p. 12, 13. If M is a compact symmetric
space then the group G topologically generated by the left translations of (M, ·)
coincides with the compact connected Lie group of displacements of the symmetric
space L. Since the group G acts transitively on the symmetric space L the geodesic
loops for different points as units are isomorphic.

To distinguish isotopic (respectively isomorphic) smooth local Bol loops we can
use a local version of the result proved by K. Strambach and P.T. Nagy which can
be be formulated as follows, [Va]:

Lemma 1. Let L1 and L2 be smooth connected local Bol loops realized on the same
manifold and having the same group G = 〈Λ1〉 = 〈Λ2〉 topologically generated by
the family of the left translations of L1, or L2, respectively. Consider the tangent
subspaces T1Λ1 = m1 and T1Λ2 = m2 of the Lie algebra g = T1G of G. The local
loops L1 and L2 are isotopic if and only if there exists an element g ∈ G such that
Ad(g)(m1) = m2 where Ad is the adjoint action of G on g. The local loops L1 and
L2 are isomorphic if and only if there exists an automorphism α ∈ Aut G of the
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group such that for the induced automorphism α∗ of g the relations α∗(h1) = h2

and α∗(m1) = m2 hold.

2. Spherical geometry

The unit sphere Sn in Rn+1 is a compact Riemannian manifold of constant
curvature (equal 1, [W], p. 66) endowed with a Riemannian metric induced by the
standard scalar product on Rn+1. The compact orthogonal group O(n + 1) plays
the role of the full group of isometries of the n-sphere, and G = SO(n + 1) is
the connected component of unit. An n-dimensional spherical geometry Sn has
elements of Sn as its points and maximal geodesics as lines; maximal geodesics
are sections of Sn with 2-planes of Rn+1 containing the origin. Collineations of
the spherical geometry arise as restrictions to Sn of actions of elements A ∈ G on
Rn+1.

On G, an involutive automorphism σ is given by σ(A) = SAS−1, A ∈ G where
S = diag(−1, 1, . . . , 1). The component of unit H0 of the subgroup H consisting
of all elements invariant under σ is of the form

(2) H0 =
{(

1 0
0 B

)
; B ∈ SO(n)

}
.

So H0 may be identified with SO(n). The triple (G, H0, σ) determines a symmetric
Riemannian space ([K&N II], p. 208, 225), and there is a diffeomorphism between
the homogeneous symmetric space SO(n+1)/SO(n) and Sn such that the canonical
connection of the symmetric space coincides with the Riemannian connection on
Sn, [K&N I], p. 277–228. Given a point e of Sn we can choose an orthonormal
basis 〈e, e1, . . . , en〉 in Rn+1 with respect to which the isotropic subgroup in G of
the point e is exactly H0.

The scalar product determines an orthogonality relation on Rn+1 (and in Sn)
which is denoted by ⊥. A reflection σ(x,−x), x ∈ Sn at the point pair {x,−x} in Sn

is a map induced by the orthogonal transformation of Rn+1 which fixes elementwise
the 1-dimensional subspace X of Rn+1 containing both points x, −x and induces
the inversion y 7→ −y, y ∈ X⊥ on the hyperplane X⊥ orthogonal to X. Hence the
matrix of σ(x,−x) is conjugate with the matrix diag(1,−1, . . . ,−1).

Let U be a neighbourhood of e in Sn such that for every point x in U there
exists exactly one geodesic in U incident with e and x, [K&N I], Th. 8.7., p.
146. Let x ∈ U , x 6= e. In the geodesic segment [e, x] contained in U there
is a unique middle point x

2 such that the reflection σ( x
2 ,− x

2 ) at {x
2 ,−x

2} maps e

onto x. The product λx := σ( x
2 ,− x

2 )σ(e,−e) called a local transvection at x, [K&N
II], p. 219, [W], p. 232, maps also e onto x, and is contained in the connected
group SO(n + 1), [K&N II], Lemma 1, p. 218. (Local) transvections are (local)
isometries the tangent maps of which induce parallel translation of tangent spaces
along geodesics, Tλx : TeSn → TxSn, [W], L.8.1.2. p. 232. If we denote by U ∩ Sn

the line of Sn containing the segment [e, x] then the local transvection λx can be
characterized as a map induced by the orthogonal transformation of Rn+1 which
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fixes an (n − 1)-dimensional subspace U⊥ of U in Rn+1 elementwise and acts on
U as a rotation. To any point x in the neighbourhood U there exists precisely one
transvection mapping e onto x. All transvections λy for points y of the geodesic
segment [e, x] ⊂ U form a local 1-parameter group. On U the local geodesic loop
multiplication is given as in the Example 1. If V is a normal neighborhood of e
contained in U such that for any two points x, y ∈ V the image λx(y) is contained
in U then the multiplication (x, y) 7→ λx(y), V × V → U coincides with the
geodesic multiplication (x, y) 7→ x · y on V since the formula is the same. That is,
(x, y) 7→ λx(y) belongs to the germ of geodesic multiplication of a locally symmetric
space at e, and hence defines on V a smooth local Bol loop with identity e. It will
be called an n-dimensional spherical local Bol loop (L(Sn, e)); by the Example 2,
it is independent of the choice of the point e up to isomorphism.

3. The structure of the groups SO(n + 1)

Let n = 2. In the Lie algebra so(n + 1) = {A ∈ M(R, n + 1); A + At = 0} we
can choose an R-basis consisting of the family of n(n+1)

2 matrices Mi,j = Eij −Eji

where i < j and Eij is a matrix with 1 on the position (i, j) and 0 otherwise. The
Lie multiplication [Mr,s,Mu,v] = Mr,sMu,v −Mu,vMr,s satisfies the relations

= Mk,i,

= −Mi,k,

[Mi,j ,Mj,l] = Mi,l,

for k < i,

for i < k,

[Mi,j ,Mi,l] = Ml,j ,

= −Mj,l,

[Mi,j ,Mk,i] = −Mk,j

for l < j,

for j < l,

and is equal 0 otherwise. The matrices Mi,j with 2 ≤ i < j ≤ n + 1 and 2 ≤ i ≤ n
form a basis for the Lie algebra h of the isotropic subgroup H0 of e in G,

h =
{(

1 0
0 b

)
; b ∈ so(n)

}
.

The matrices M1,j , 2 ≤ j ≤ n + 1 form a basis of a vector subspace m which
is complementary to h in the Lie algebra so(n + 1), g = m ⊕ h. The inclusions
[m,m] ⊂ h and [h,m] ⊂ m hold. Hence the space m determines together with the
Lie algebra h a symmetric space and if we denote by Λ the family of transvections
λx = σ( x

2 ,− x
2 )σ(e,−e) then Λ = expm. The matrix group

(3)
{(

1 0
0 A

)
; A ∈ O(n)

}
leaves the vector subspace Un =

{n+1∑
i=2

aiM1,i | (a2, . . . , an+1) ∈ Rn
}

invariant with

respect to the conjugation and acts on Un as the full orthogonal group O(n) on the
euclidean space Rn. Hence the vector space so(n+1) can be decomposed as a direct
sum Un ⊕Un−1 ⊕ · · · ⊕U1 of subspaces Ui which are orthogonal to each other and
the matrices Mi,j , i + 1 ≤ j ≤ n + 1 form an orthogonal basis of Ui. The subgroup{(

Ir 0
0 C

)
; C ∈ O(n+1− r)

}
of the matrix group (3) where 2 ≤ r ≤ n and Ir is
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the (r × r)−identity matrix fixes each of the subspaces Ui for 1 ≤ i ≤ r − 1. Now
let us choose a special canonical basis in each vector complement to the Lie algebra
of the stabilizer. Namely, let m be an n-dimensional complement of the subalgebra
h in so(n + 1) and let a1, . . . , an be an orthogonal basis of m. If we denote by πk

the projection of so(n + 1) onto Uk then the images πk(ai) of the vectors ai are
for different i orthogonal to each other. Using the action of the group (3) on the
orthogonal subspaces Ui we can suitably transform the original basis vectors; in
fact we can assume that the k-th vector ak is of the form

ak = M1,k+1 +
n+1−k∑

j=2

βj
kMj, k+j , 1 ≤ k ≤ n

where βj
k ≥ 0 are non-negative reals (otherwise we can conjugate ak by a suitable

diagonal matrix having as entries 1 and −1). A canonical basis B(βk
j ), 1 ≤ k ≤ n,

2 ≤ j ≤ n + 1 − k of this type will be called a normalized basis of a complement
m of h in g. Two complements having different normalized basis cannot determine
isomorphic local Bol loops.

4. Isotopisms and isomorphisms

Now we are interested how many isomorphism subclasses can be distinguished
in the class of smooth (local) Bol loops isotopic with an n-dimensional spherical
local Bol loop (L(Sn, e)). We shall show that in this case, isotopism is equivalent
with isomorphism. The following technical lemma shows that there is the only
isomorphism class since there is in fact a unique complement m of h satisfying (1),
namely a subspace spanned by the normalized basis 〈M1,2,M1,3, . . . ,M1,n+1〉.

Lemma 2. Let m = 〈a1, . . . , an〉 be an n-dimensional complement of the subalgebra
h in the Lie algebra so(n + 1) spanned by normalized basis vectors

(4) an−k = M1,n−k+1 + β2
n−kM2,n−k+2 + + · · ·+ βk+1

n−kMk+1,n+1

with k = 0, . . . , n − 1. The subspace m satisfies the condition (1), if and only if
βt

n−k = 0 for all t ∈ {2, . . . , k + 1}, k ∈ {0, . . . , n− 1}, iėi̇f and only if

(5) an−k = M1,n−k+1 for k = 0, . . . , n− 1.

Proof. If the basis vectors are of the form (5) then (1) holds. Vice versa, let us
verify that if a vector subspace m satisfies (1) then all coefficients βt

j are equal zero.
Let k = 1. Then [an−1, an] = −Mn,n+1 + β2

n−1M1,2 and

(6) u(n− 1, n, n− 1) = [[an−1, an], an−1] = (1 + (β2
n−1)

2)M1,n+1 − 2β2
n−1M2,n.

If (1) holds then u(n−1, n, n−1) ∈ m which means that the element can be written
in the form u(n − 1, n, n − 1) = %

(n−1,n,n−1)
1 a1 + · · · + %

(n−1,n,n−1)
n an. Comparing

both expressions we deduce that this is true if and only if %
(n−1,n,n−1)
n = 1+(β2

n−1)
2

and %
(n−1,n,n−1)
p = 0 for p < n since no multiple of M1,k appears in the formula (6)

for k < n + 1. Consequently, u(n− 1, n, n− 1) ∈ m holds if and only if β2
n−1 = 0,
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%
(n−1,n,n−1)
n = 0, and an−1 = M1,n. We can proceed step by step. In the k-th step,

assume that the statement holds for some fixed k − 1 ∈ {2, . . . , n− 1}, that is, we
know that βt

n−s = 0 for all s ∈ {0, . . . , k − 1} and all t ∈ {2, . . . , s + 1}, and an =
M1,n+1, an−1 = M1,n, . . . , an−k+1 = M1,n−k+2. Let us check an−k = M1,n−k+1

by proving that β2
n−k = · · · = βk+1

n−k = 0. For any j ∈ {n− k + 1, . . . , n− 1},

= −Mn−k+1,j + βk−n+j+1
n−k M1,k−n+j+1,

u(n− k, j, n) = [[an−k, aj ], an] = −βk−n+j+1
n−k Mk−n+j+1,n+1.

An element u(n − k, j, n) ∈ m if and only if u(n − k, j, n) =
∑

p %
(n−k,j,n)
p ap.

Comparing both expressions we obtain that all coefficients in the combination
vanish, %

(n−k,j,n)
p = 0, p = 1, . . . , n, and u(n − k, j, n) must be a zero vector.

Equivalently, βk−n+j+1
n−k = 0 for all j ∈ {n − k + 1, . . . , n − 1}. It remains to

verify βk+1
n−k = 0. By similar arguments as above, the product u(n− k, n, n− 1) =

[−Mn−k+1,n+1 + βk+1
n−kM1,k+1,M1,n] = −βk+1

n−kMk+1,n ∈ m if and only if βk+1
n−k = 0.

Hence an−k = M1,n−k+1 under the assumption (1), and the statement is true also
for k. Consequently the complementary subspace m satisfies (1) if and only if it is
spanned by the normalized basis 〈M1,2,M1,3, . . . ,M1,n+1〉.

Theorem 1. All smooth n-dimensional local Bol loops which are locally isotopic
to an n-dimensional spherical local Bol loop (L(Sn, e)) are locally isomorphic to it.

Proof. Let L be a smooth local Bol loop locally isotopic to an n-dimensional spher-
ical geodesic loop (L(Sn, e)). Then the left translation group of L is locally isomor-
phic to SO(n + 1), the stabilizer of a unit is locally isomorphic to the Lie group of
the shape (2), and its Lie algebra is h. Using the above considerations and notation
we can pass to the tangent objects and say that two vector complements m, m′ to
h in so(n+1) determine isomorphic local Bol loops if and only if they are provided
with the same normalized basis B(βk

j ). But they also satisfy the condition (1),
and the only normalized basis for which the products of basis vectors [[ai, aj ], ak]
belong to m is the basis 〈M1,2, . . . ,M1,n+1〉 presented in the above Lemma 2.
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Dept. Algebra and Geometry, Palacký University, Tomkova 40, Olomouc, Czech
Republic


