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We study submanifolds of a general Grassmann manifold which are of 1-type in a
suitably defined Euclidean space of F−Hermitian matrices (such a submanifold is
minimal in some hypersphere of that space and, apart from a translation, the im-

mersion is built using eigenfunctions from a single eigenspace of the Laplacian). We
show that a minimal 1-type hypersurface of a Grassmannian is mass-symmetric and
has the type-eigenvalue which is a specific number in each dimension. We derive
some conditions on the mean curvature of a 1-type hypersurface of a Grassmannian
and show that such a hypersurface with a nonzero constant mean curvature has
at most three constant principal curvatures. At the end, we give some estimates
of the first nonzero eigenvalue of the Laplacian on a compact submanifold of a
Grassmannian.

1. Introduction

The Grassmann manifold of k−dimensional subspaces of the vector space

Fm over a field F ∈ {R, C, H} can be conveniently defined as the base man-

ifold of the principal fibre bundle of the corresponding Stiefel manifold of

F−unitary frames, where a frame is projected onto the F−plane spanned

by it. As observed already in 1927 by Cartan, all Grassmannians are sym-

metric spaces and they have been studied in such context ever since, using

the root systems and the Lie algebra techniques. However, the submani-

fold geometry in Grassmannians of higher rank is much less developed than

the corresponding geometry in rank-1 symmetric spaces, the notable excep-

tions being the classification of the maximal totally geodesic submanifolds

(the well known results of J.A. Wolf and of Chen and Nagano) and the
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study of the faces of Grassmannians in the context of the theory of cali-

brations. See however [1], [2], [3], and [14] for some more recent advances

regarding submanifolds of the Grassmannians. In [10] the author used a

special embedding of a general Grassmannian into certain Euclidean space

of F−Hermitian matrices by identifying an F−plane with the orthogonal

projection onto it, thus considering points in a Grassmannian as projec-

tion operators with the trace equal to the dimension of the planes. This

approach deserves more attention because of its potential application to to-

mography and affine shape analysis [17], and seems, moreover, to be more

amenable to the study of submanifolds of Grassmannians.

In this paper we concentrate on the study of 1-type submanifolds of Grass-

mannians, and in particular on their hypersurfaces, viewed as submanifolds

of a naturally defined Euclidean space EN of Hermitian matrices. This

means that the immersion vector of each such submanifold into that space

allows a decomposition as

x̃ = x̃0 + x̃t, with x̃0 = const, x̃t 6= const, and ∆x̃t = λx̃t.

Here ∆ denotes the Laplacian on the submanifold considered (i.e. with

respect to the induced metric), applied to vector-valued functions compo-

nentwise, and λ ∈ R is the corresponding eigenvalue [7]. Invoking a well-

known result of Takahashi, this is equivalent to saying that the submanifold

is minimal in the ambient Euclidean space of Hermitian matrices or in some

hypersphere of that space. We give a characterization of 1-type submani-

folds and produce certain partial differential equations involving the mean

curvature that a 1-type real hypersurface must satisfy. In some cases the

mean curvature is constant, and we further prove that a 1-type real hy-

persurface of a Grassmannian with constant nonzero mean curvature α can

have at most three distinct principal curvatures, all of them constant, whose

values are computed in terms of α, the type-eigenvalue λ, and the dimension

(Theorem 3.5). The minimal hypersurfaces of type 1 are mass-symmetric.

They exist in the real projective space as the projective spaces of dimension

one less (the totally geodesic case) or, otherwise, the type-eigenvalue is fixed

in each Grassmannian. The situation in rank-1 Grassmannians (projective

spaces) is well understood and 1-type hypersurfaces in these spaces were

classified in [9], [11], [12]. What these hypersurfaces are in Grassmannians

of rank ≥ 2 is presently unclear, but the investigations in this paper set the

stage for their eventual classification. At the end of the article we give sev-

eral sharp upper bounds on the first nonzero eigenvalue of certain compact

submanifolds of Grassmannians.
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2. Preliminaries

Let F denote one of the fields R (real numbers), C (complex numbers),

H (algebra of quaternions) and let d = dimRF. For any integers m ≥ 3

and 1 ≤ k ≤ m − 1 let l = m − k and let UF(m) denote the F−unitary

group, i.e. the group of matrices preserving the standard F−Hermitian

scalar product 〈z, w〉 =
∑m

k=1 z̄kwk in Fm (thus one of O(m), U(m), or

Sp(m), corresponding to the three cases R, C, H). In our paper [10] we con-

sidered the embeddings of real, complex, and quaternion Grassmannians

GkFm = UF(m)/UF(k) × UF(l) of k−dimensional F−planes into a suitable

Euclidean space H(m) of F-Hermitian matrices by identifying an F-plane

with the projection operator onto it. The standard Euclidean metric in

H(m) is 〈A, B〉 = 1
2Re trF(AB), which turns it into the Euclidean space

ENof dimension N = m+d
(

m
2

)

. Note that ‘Re’ is actually needed only in the

quaternion case because of the absence of commutativity in the skew-field

H. The Grassmannian is a smooth symmetric Einstein space of real dimen-

sion g = dkl. We denote by Φ this embedding which is UF(m)−equivariant,

where the action of UF(m) in H(m) is by conjugation. The image of the

Grassmannian is given by

Φ(GkF
m) = {P ∈ H(m)|P 2 = P, trFP = k},

which sits minimally in the hypersphere SN−1
C (R) whose center is

C = kI/m and radius R =
√

kl/2m. It also belongs to the hyper-

sphere centered at the origin (i.e. zero matrix) of radius
√

k/2 (since

〈P, P 〉 = 1
2Re trP 2 = k/2) and lies in the hyperplane {trA = k}, which

has I as its normal vector and is at a distance k/
√

2m from the origin.

The tangent and the normal space of the Grassmannian at an arbitrary

point P, together with the representative vectors at P0 :=

(

Ik O

O O

)

, the

point we will refer to as the ‘origin’, are given respectively by

TP G = {X ∈ H(m) |XP + PX = X},
(

O B

B∗ O

)

, B ∈ Mk×l(F)

T⊥
P (G) = {Z ∈ H(m) |ZP = PZ},

(

C O

O D

)

, C ∈ H(k), D ∈ H(l)

As we know, the second fundamental form σ and the shape operator ĀZ

have the following expressions [10]:

σ(X, Y ) = (XY + Y X)(I − 2P ) ,

ĀZX = (XZ − ZX)(I − 2P ) ,
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for vector fields X, Y tangent to the Grassmannian and a vector field Z

normal to it. Moreover σ is parallel, i.e. ∇̄σ = 0, and the vectors P and I

are normal to the Grassmannian. Thus

〈σ(X, Y ), P 〉 = −〈Y, ∇̃XP 〉 = −〈X, Y 〉 and 〈σ(X, Y ), I〉 = 0, (2.1)

the connection being that of the ambient Euclidean space.

Since X(I − 2P ) = −(I − 2P )X and (I − 2P )2 = I one immediately gets

ĀP = −I and ĀI = 0. (2.2)

With the induced metric from H(m), a Grassmannian has the sectional

curvature K̄ given by K̄(X, Y ) = 1
2 Re tr [X2Y 2 + Y X2Y − 2(XY )2] for an

orthonormal pair of tangent vectors{X, Y }, which in the case of F = R or

C reduces to K̄(X, Y ) = tr [X2Y 2 − (XY )2]. Since for Hermitian matrices

tr (X2Y 2) ≥ tr (XY )2 with equality if and only if X and Y commute (proof

by diagonalizing X ; a similar inequality holds in the quaternionic case),

the sectional curvature of the Grassmannian is nonnegative. In rank-1

Grassmannians K̄ is strictly positive. For the range of possible values of K̄

see [19] and [1].

The Grassmannian GkF
m, which we will often denote simply by G, when

the rank and the dimensions are understood or not at issue, is a smooth

symmetric Einstein space of real dimension g = dkl. It is simply-connected

when F = C or H and doubly covered by the Grassmannian of oriented

planes when F = R. By choosing a suitable orthonormal basis {εi} = {Eu
ar}

of TPo
G as in [10] we compute

∑

i

(Xε2i + ε2i X) = mdX and
∑

i

εiXεi = (2 − d)X,

so that the Ricci tensor of the Grassmannian equals

Q̄(X) =
∑

i

(Xε2i + ε2i X − 2εiXεi) = (md + 2d − 4)X, (2.3)

and the (non-normalized) scalar curvature is constant,

τ̄ = tr Q̄ = (md + 2d − 4)g.

3. Submanifolds of the Grassmannians of type 1

Let us consider an isometric immersion x : Mn → GkFm of a connected

Riemannian n−manifold into a Grassmannian and the associated immer-

sion x̃ = Φ◦x : Mn → H(m) into the Euclidean matrix space. The notation

will be as follows: we use ∇, Aξ, D, h, H, respectively, for the Levi-Civita
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connection, the shape operator in the direction of a normal vector ξ, the

connection in the normal bundle, the second fundamental form, and the

mean curvature vector related to the submanifold M and the immersion x.

The same symbols with bar will denote the corresponding objects related to

G and the embedding Φ, whereas those symbols with tilde will denote the

corresponding objects related to the immersion x̃ and the ambient matrix

space EN . As usual, we denote by σ the second fundamental form of G in

EN . Since all immersions are isometric we use 〈 , 〉 for the metric through-

out. Typically {ei} and {er} denote, respectively, orthonormal bases of

tangent and normal spaces of M in G at a general point. For such a basis

the shape operator Aer
is abbreviated to Ar. Γ(B) denotes the set of all

(local) smooth sections of a bundle B. We work in the smooth category,

i.e. all tensors, vector fields, immersions, etc. are assumed smooth and all

manifolds connected.

According to [7], the immersion x̃ above is said to be of finite type if the

immersion vector can be decomposed into a sum of finitely many vector-

eigenfunctions of the Laplacian on M. In particular, x̃ is of 1-type if and

only if

x̃ = x̃0 + x̃t, x̃0 = const, ∆x̃t = λx̃t, (3.1)

where x̃t 6= const and λ ∈ R. For a compact submanifold, x̃0 is the center of

mass and the number t is called the order of the immersion if λ is the t−th

nonzero eigenvalue. A compact submanifold lying in a certain hypersphere

is said to be mass-symmetric in that hypersphere if its center of mass co-

incides with the center of the hypersphere. Even for noncompact 1-type

submanifold, it is easy to see that the 1-type decomposition (3.1) is unique,

with the exception of null 1-type submanifolds (those satisfying ∆x̃t = 0),

for which x̃0 and x̃t are not uniquely determined. Since a spherical sub-

manifold cannot be null, we say that such a submanifold is mass-symmetric

when x̃0 is exactly the center of the hypersphere.

The study of finite-type (specifically 1-type) submanifolds of projective

spaces FPm−1 = G1Fm has been very fruitful (see [11], [12]), and it seems

interesting (albeit more challenging) to extend this study to Grassmannians

of arbitrary rank. The main difficulty here, in this more general setting, is

that the embedding Φ is not constant isotropic, which precludes using some

nice formula for the shape operator Āσ(X,Y ) in the direction of the second

fundamental form, such as the one available for the projective spaces [12].

As we know, the embedding Φ is not constant isotropic in the sense that

‖σ(X, X)‖ has the same value for all unit tangent vectors X ∈ TpG and
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all points p ∈ G. However, a vestige of isotropy is retained in the following

lemma.

Lemma 3.1 Let X be a unit vector field parallel along a geodesic of G.

Then ‖σ(X, X)‖ is constant along that geodesic.

Proof. Let Y denote the unit tangent of a geodesic in question. Since

〈σ(X, X), σ(X, X)〉 =
1

2
Re tr [σ(X, X)]2 = 2Re trX4,

we get

Y (‖σ(X, X)‖2) = 2Re tr [∇̃Y X4] = 8Re tr [(∇̃Y X)X3]

= 8Re tr [σ(Y, X)X3] = 16〈σ(Y, X), X3〉 = 0,

since X3 is again tangent (cf. [10, Prop. 5]), proving the claim.

Thus, going along radial geodesics we can extend X at a point to a local field

parallel along these geodesics. Unfortunately, ‖σ(X, X)‖ varies depending

on X.

Regarding 1-type submanifolds of G we have the following characterization:

Theorem 3.1 Let x : Mn → G be an isometric immersion of a connected

Riemannian n−manifold into a Grassmannian. Then the associated im-

mersion x̃ : Mn → H(m) is of 1-type if and only if there exists a nonzero

constant λ such that for every tangent vector X ∈ Γ(TM) we have:

(i) nAHX − nDXH +
∑

i Āσ(ei,ei)X = λX

(ii)
∑

r σ(2ArX + (trAr)X, er) = 0.

Proof. Using (3.1) we get

∆x̃ = −nH −
∑

i

σ(ei, ei) = λ(x̃ − x̃0). (3.2)

Since 〈σ(ei, ei), x̃〉 = −1, we see that λ 6= 0. Differentiating (3.2) with

respect to an arbitrary tangent vector field X ∈ Γ(TM) one gets

nAHX−nDXH−nσ(X, H)+
∑

i

Āσ(ei,ei)X−
∑

i

D̄Xσ(ei, ei) = λX. (3.3)

Since σ is parallel we have
∑

i D̄Xσ(ei, ei) = 2
∑

r σ(ArX, er) and also

H = 1
n

∑

r(tr Ar)er.Thus, by separating parts tangent to G and normal to
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G in (3.3) we get (i) and (ii). Conversely, let (i) and (ii) hold for some

λ 6= 0 and define x̃0 = x̃ − (1/λ)∆x̃. Then one easily verifies that

∇̃X x̃0 = X +
1

λ
∇̃X [nH +

∑

i

σ(ei, ei)] = 0,

so x̃0 is constant and ∆x̃t = λx̃t, where x̃t = x̃− x̃0, which is precisely the

1-type condition (3.1) above.

Let {εj}g
j=1 be an orthonormal basis of G. In [10] we computed the mean

curvature vector of the embedding Φ to be

H̄P =
2m

kl

(

k

m
I − P

)

= −2m

kl

−→
CP. (3.4)

where the vector
−→
CP joins the center C = k

mI of the sphere in which G

is minimal and a point P. Hence, the mean curvature of G in H(m) is
√

2m/kl. Moreover, from the above expression we get

I =
m

k
P +

1

2dk

g
∑

j=1

σ(εj , εj), (3.5)

where {εi} is an arbitrary orthonormal basis of TP G.

Analyzing the conditions (i) and (ii) of Theorem 3.1 for the benefit of

extracting some information about the geometry of a 1-type submanifold

is essential, but highly non-trivial. We shall first give some examples.

Examples

1. According to the result of Brada and Niglio ([4], [5]), compact minimal

1-type submanifolds of the real Grassmannian G(k, l) := GkRm (where

l := m − k) are isometric to the products G(k1, l1) × · · · × G(ks, ls), with

k1 + l1 = · · · = ks + ls and
∑s

i=1 ki ≤ k,
∑s

i=1 li ≤ l, embedded in a

natural way. Here, compactness is not essential and the same classification

(and the proof) holds when a submanifold is assumed merely complete,

as well as the corresponding local version in general. Note, however, that

their embedding into the Euclidean space differs from ours by an isometry

composed with a homothety.

2. More generally, consider an orthogonal decomposition Fm = V1 ⊕ V2 ⊕
· · · ⊕ Vs into F−linear subspaces of respective dimensions m1, m2, · · · , ms,
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with m1 + m2 + · · · + ms = m, and consider the Grassmannians

Gk1
V1, Gk2

V2, · · · , Gks
Vs of F−planes in V1, V2, · · · , Vs of respective di-

mensions k1, k2, · · · , ks, such that k1 + k2 + · · · + ks = k. Then the image

of the embedding

x : Gk1
V1 × Gk2

V2 × · · · × Gks
Vs −→ GkF

m by

(π1, π2, ..., πs) −→ π1 ⊕ π2 ⊕ · · · ⊕ πs (3.6)

is a submanifold of GkFm in which each Gkj
Vj , identified with a leaf of the

canonical foliation is totally geodesic. Then x̃ = diag (Φ1, Φ2, ..., Φs), where

Φj : Gkj
Fmj(Vj) → H(m) is the canonical 1-type embedding described

before. Moreover, Φj =
kj

mj
Imj

+ Φtj
with ∆Φtj

= 2dmjΦtj
(cf. [10])

where the Laplacian is defined on the corresponding factor-Grassmannian.

Then letting Ij stand for the identity matrix of order mj , we have

∆(x̃ − x̃0) = diag (∆Φ1, ..., ∆Φs) = diag (2dm1Φt1 , ..., 2dmsΦts
)

= 2d diag (m1(Φ1 −
k1

m1
I1), ..., ms(Φs −

ks

ms
Is))

= 2d diag (m1Φ1, ..., msΦs) − 2d diag (k1I1, ..., ksIs).

If the product submanifold is to be of 1-type than this further must equal

λ (x̃ − x̃0) = λdiag (Φ1, ..., Φs) − λx̃0, for some constant λ and a constant

vector(matrix) x̃0. This holds if and only if m1 = m2 = ... = ms =: r and

m = rs. In addition, the product submanifold is mass-symmetric if

2d diag (k1I1, ..., ksIs) = λx̃0 = 2dr
k

m
I,

which implies k1 = k2 = ... = ks =: q and k = qs, so that m/r = k/q.

3. Consider the complex Grassmannian GkCm where the complex struc-

ture at the origin is given by J

(

O B

B∗ O

)

=

(

O iB

(iB)∗ O

)

, thus equal by

equivariancy to JX = i(I − 2P )X for a tangent vector X at a point P. As

usual, i =
√
−1 and ∗ denotes the conjugate transpose. One easily verifies

that σ(JX, JY ) = σ(X, Y ). Let Mn be a totally real minimal submanifold

of GkCm of real dimension half that of the Grassmannian (that is, a min-

imal Lagrangian submanifold). Then such submanifold is mass-symmetric

and of 1-type. Namely,

∆

(

x̃ − k

m
I

)

= ∆x̃ = −nH̃ = −
n

∑

i=1

σ(ei, ei) =
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= −1

2

n
∑

i=1

[σ(ei, ei) + σ(Jei, Jei)] = −n
1

2n

2n
∑

i=1

σ(εi, εi)

= −nH̄ =
2mn

k(m − k)

(

x̃ − k

m
I

)

.

Thus, if we set x̃t = x̃ − k
mI, since n = k(m − k) we have ∆x̃t = 2mx̃t,

which shows that Mn is mass-symmetric and of 1-type and that 2m is an

eigenvalue of the Laplacian. Therefore for compact minimal Lagrangian

submanifold of GkCm it follows λ1 ≤ 2m.

4. In the quaternionic Grassmannian GkHm of real dimension 4kl one

introduces local quaternionic structures J1, J2 and J3 in a similar way and

shows that σ(JqX, JqY ) = σ(X, Y ), q = 1, 2, 3. Then a minimal totally real

submanifold Mn of dimension n = kl (a minimal quaternion-Lagrangian

submanifold) is also of type 1 since

∆

(

x̃ − k

m
I

)

= −1

4

n
∑

i=1

[σ(ei, ei) +

3
∑

q=1

σ(Jqei, Jqei)]

= −n
1

4n

4n
∑

i=1

σ(εi, εi) = 2m

(

x̃ − k

m
I

)

.

As before, for compact M we have 2m ∈ Spec (M).

5. Let n ≡ 0 (mod 3) and let Mn be a minimal anti-Lagrangian submani-

fold of GkHm of dimension n = 3p = 3kl. Here, anti-Lagrangian means that

the normal space T⊥M of M of dimension p, spanned by an orthonormal

basis {ξr}, is mapped by the quaternionic structure of G onto the tangent

space of M. We show that these submanifolds are also mass-symmetric and

of type 1. Indeed,

∆

(

x̃ − k

m
I

)

= −
3p
∑

i=1

σ(ei, ei) = −
p

∑

r=1

3
∑

q=1

σ(Jqξr, Jqξr)

= −3

4

m
∑

i=1

σ(εi, εi) = −3pH̄ = 6m

(

x̃ − k

m
I

)

.

6. In each of the projective spaces (rank-1 Grassmannians) FPm = G1Fm+1

the author has determined the real hypersurfaces of type 1 as follows (see

[9], [11], [12]):
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In RPm it is a totally geodesic RPm−1; in CPm it is a geodesic hyper-

sphere (distance hypersphere) of radius r = cot−1
(√

1
2m+1

)

; in HPm it is

a geodesic hypersphere of radius r = cot−1
(√

3
4m+1

)

. In the last two cases

these geodesic spheres posses an interesting property - they are the maxi-

mal stable geodesic hyperspheres with respect to the variations preserving

the enclosed volume (see [11], [12]).

The problem we want to address in this paper is the study of 1-type sub-

manifolds of higher-rank Grassmannians. In particular, find and study

some examples of real hypersurfaces in GkFm which are of 1-type.

If we replace X in (i) of the Theorem 3.1 with 2ArX and (tr Ar)X, respec-

tively, and take the inner product with er we get

−2n〈DArXH, er〉 +
∑

i

〈σ(ei, ei), σ(2ArX, er)〉 = 0

and

−n(trAr)〈DXH, er〉 +
∑

i

〈σ(ei, ei), σ((tr Ar)X, er)〉 = 0.

Add the two formulas, sum on r, and use (ii) to get

n〈DXH, H〉 + 2
∑

r

〈DArXH, er〉 = 0.

If the normal vector en+1 is chosen to be parallel to H, then the mean

curvature α is defined (up to a sign) by H = αen+1. With ∇α denoting the

gradient of the mean curvature, the above can be written in the form

nX〈H, H〉 = 〈2nα∇α, X〉
= −4

∑

i

〈Dei
H, h(X, ei)〉

= −4〈h(X,∇α), en+1〉 − 4α
∑

i

〈Dei
en+1, h(X, ei)〉

= −4〈An+1(∇α), X〉 − 4α
∑

r

ωr
n+1(ArX),

where ωr
n+1 are the corresponding connection 1-forms. Therefore,
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2An+1(∇α) + nα∇α + 2α

g
∑

r=n+2

(ωr
n+1 ◦ Ar)

] = 0, (3.7)

where ω] represents the metric dual vector field of a 1-form ω. For a hyper-

surface, this implies that ∇α is a principal direction.

We now turn to the case of real hypersurfaces. Let x : Mn → G be a

real hypersurface (n = g − 1) of type 1 in H(m) via x̃, let ξ be a local

unit normal vector field, and A the corresponding shape operator. Then

by using (2.2) and (3.5) we reformulate Theorem 1 as follows

Theorem 3.2 A real hypersurface Mn with the mean curvature function α

in a Grassmannian Gk(Fm) is of 1-type if and only if for every X ∈ Γ(TM)

we have

(i) Āσ(ξ,ξ)X = nαAX + (2md − λ)X − n〈X,∇α〉ξ
(ii) σ(2AX + nαX, ξ) = 0,

where λ is a nonzero constant.

Setting X = ∇α in (i) and using (3.7) we get

Āσ(ξ,ξ)∇α = (2md − λ − n2α2/2)∇α − n|∇α|2ξ, (3.8)

Āσ(ξ,ξ)X = (2md − λ + nαµ)X, for X ⊥ ∇α andX ∈ Vµ, (3.9)

where Vµ represents the eigenspace of an eigenvalue (principal curvature)

µ. From (i) we get

〈Āσ(ξ,ξ)ξ, X〉 = −n〈∇α, X〉 (3.10)

and from (i), (3.4), and (3.5)

(nα)2 + n(2md − λ) =

n
∑

i=1

〈σ(ξ, ξ), σ(ei, ei)〉

= 〈σ(ξ, ξ),

g
∑

i=1

σ(εi, εi) − σ(ξ, ξ)〉

= 〈σ(ξ, ξ), gH̄〉 − ‖σ(ξ, ξ)‖2

= 2md − 〈Āσ(ξ,ξ)ξ, ξ〉.
Therefore,

Āσ(ξ,ξ)ξ = [nλ − 2(n − 1)md − (nα)2] ξ − n∇α. (3.11)
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We now exploit various components of the 1-type equation (3.2) which we

rewrite as ∆x̃−λx̃ = −λx̃0. Denote the vector field on the left hand side by

L. We use (i), (2.2), and the equation nH̃ = nαξ + 2md( k
mI − x̃)− σ(ξ, ξ),

which follows from (3.5), to get

0 = 〈∇̃XL, σ(Y, ξ)〉 = −〈∇̃X(nH̃), σ(Y, ξ)〉
= −X〈nH̃, σ(Y, ξ)〉 + 〈nH̃, ∇̃Xσ(Y, ξ)〉
= X〈σ(ξ, ξ), σ(Y, ξ)〉 − 〈nH̃, Āσ(Y,ξ)X〉

+〈nH̃, σ(∇XY, ξ)〉 + 〈AX, Y 〉〈nH̃, σ(ξ, ξ)〉 − 〈nH̃, σ(Y, AX)〉
= −n〈Y,∇X(∇α)〉 − nα〈σ(X, ξ), σ(Y, ξ)〉 − 〈AX, Y 〉‖σ(ξ, ξ)‖2

+nα〈AX, AY 〉 + (2md − λ)〈X, AY 〉 .

By using (3.11) we finally obtain

nα〈σ(X, ξ), σ(Y, ξ)〉 = [2mdn − (n + 1)λ + (nα)2]〈AX, Y 〉
+nα〈AX, AY 〉 − n〈Y,∇X(∇α)〉,

(3.12)

where the last term is readily recognized as a multiple of the Hessian,

Hessα(X, Y ) =: XY α − (∇XY )α.

Similarly, from

0 = 〈∇̃XL, σ(Y, Z)〉 = −X〈nH̃, σ(Y, Z)〉 + 〈nH̃, ∇̃Xσ(Y, Z)〉
we can obtain

α〈σ(X, ξ), σ(Y, Z)〉 = α〈(∇XA)Y, Z〉 + 〈AX, Y 〉〈Z,∇α〉
+〈AY, Z〉〈X,∇α〉 + 〈AX, Z〉〈Y,∇α〉.

(3.13)

The other components of ∇̃XL give no additional information.

Theorem 3.3 For a 1-type hypersurface Mn of GkFm with the mean cur-

vature function α, the following conditions hold:

(i) A(∇α) = −nα
2 ∇α .

(ii) Let D = {∇α}⊥ be the (n − 1)− dimensional distribution that is

perpendicular to ∇α on an open set where ∇α 6= 0. Then D is

completely integrable and its integral manifolds have flat normal

connection as submanifolds of GkFm.
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(iii) ∆α = α(λ − trA2 − md − 2d + 4).

(iv) If M has constant nonzero mean curvature then its scalar curvature

is also constant.

(v) If M is compact, trA2 is constant, and α does not change sign, then

α = const.

Proof. (i) follows from (3.7). Therefore on an open (possibly empty) set

U = {∇α 6= 0} the gradient of the mean curvature gives one of the prin-

cipal directions. The hypersurfaces of Euclidean space satisfying condition

(i) are called H-hypersurfaces and were studied is some detail by Hasa-

nis and Vlachos. The property (ii) is basically proved in [13, p. 149],

formulated there for hypersurfaces of Euclidean space but applicable also

for Grassmannians (and in general). Namely, let X, Y ∈ Γ(D). Differen-

tiating 〈X,∇α〉 = 0 and 〈Y,∇α〉 = 0 respectively along Y, X one gets

〈∇Y X,∇α〉 + Hessα(Y, X) = 0 and 〈∇XY,∇α〉 + Hessα(X, Y ) = 0. Sub-

tracting the two equations and using the symmetry of the Hessian we have

[X, Y ] = ∇Y X − ∇XY ∈ D, which means that D is an involutive distri-

bution and thus, by the theorem of Frobenius, integrable. Every integral

submanifold N through a point in U has codimension 2 in G and its normal

space is spanned by ξ and en := ∇α/|∇α|. In either case, because en is an

eigenvector of the shape operator one proves ∇⊥
Xξ = ∇⊥

Xen = 0, so that

the normal connection ∇⊥ of N is flat [13]. Furthermore, from the Gauss

equation

nαR̄(ξ, X, ξ, Y ) = nα〈σ(ξ, X), σ(ξ, Y )〉 − nα〈σ(ξ, ξ), σ(X, Y )〉

combining Theorem 3.2 (i) and (3.12) it follows

nαR̄(ξ, X, ξ, Y ) = nα〈AX, AY 〉 + [2mdn − (n + 1)λ]〈AX, Y 〉
−nα(2md − λ)〈X, Y 〉 − nHessα(X, Y ).

Then setting X = Y = ei and summing on i, using the Einstein property

(2.3) and formula (3.11), we get (iii). Parts (iv) and (v) follow from (iii),

the Gauss equation, and the Hopf’s lemma.

From (3.12) it follows that if α = 0 (the minimal case) then either A = 0

or λ = 2mdn/(n + 1). However, the first possibility is easily resolved since

there are no totally geodesic real hypersurfaces of a Grassmannian except

in the case of a real projective space whose 1-type hypersurfaces are exactly
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the totally geodesic projective subspaces of dimension one less ([6], [9], [16],

[18]). In other cases, when M is not totally geodesic, the type-eigenvalue

is fixed, as given above. Moreover, we have the following result

Theorem 3.4 A minimal hypersurface Mn of GkFm whose unit normal

is ξ is of 1-type in EN with the type-eigenvalue λ if and only if either Mn

is (a portion of) a totally geodesic RPm−2 ⊂ RPm−1 = G1Rm in the case

F = R, or else F ∈ {C, H}, k = l, m = 2k is even, and the following

conditions hold:

(i) λ = 4n
k and Mn is mass-symmetric in SN−1

I/2 (
√

m
8 );

(ii) σ(ξ, ξ) = 2
k (I − 2x̃), i.e. ξ2 = 1

k I.

Proof. The statement of the part when F = R (the totally geodesic case)

is clear from the above discussion and the result of [5]. When α = 0,

the two conditions of Theorem 3.2 reduce to Āσ(ξ,ξ)X = (2md − λ)X and

σ(AX, ξ) = 0, for every X ∈ Γ(TM). It follows therefore,

∇̃σ(ξ, ξ) = −Āσ(ξ,ξ)X + D̄Xσ(ξ, ξ) = (λ − 2md)X.

Since ∇̃X x̃ = X, x̃ being the position vector in EN , we have

∇̃X [σ(ξ, ξ) − (λ − 2md)x̃] = 0.

Thus, the bracketed expression represents a constant vector field K along

M normal to the Grassmannian and σ(ξ, ξ) = (λ − 2md)x̃ + K. Hence,

Āσ(ξ,ξ)X = (2md − λ)X + ĀKX

for all X ∈ Γ(TG). If M is not totally geodesic, then λ = 2mdn
n+1 so that (3.11)

yields Āσ(ξ,ξ)ξ = (2md−λ)ξ. Therefore, ĀKX = (XK−KX)(I−2P ) = 0,

i.e. XK = KX for every X ∈ Γ(TG). This is equivalent to K = ρI for some

constant ρ. Namely, since the Grassmannian is a symmetric space on which

the group UF(m) acts transitively and the embedding Φ is equivariant,

without loss of generality we may assume that the point P0 =

(

Ik O

O O

)

is

in M. At that point we have

X =

(

O B

B∗ O

)

, B ∈ Mk×l(F) and K =

(

C O

O D

)

, C ∈ H(k), D ∈ H(l).

The equality XK = KX implies BD = CB for every matrix B ∈ Mk×l(F).

If we denote with indexed lowercase letters the elements of the correspond-

ing matrices then
∑l

r=1 birdrj =
∑k

s=1 cisbsj holds for every 1 ≤ i ≤ k,
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1 ≤ j ≤ l, and every choice of bij . Fix i and j and choose bij = 1, all

other b′s= 0. Then djj = cii for every i and j in their ranges. Take next

bir = 1, r 6= j, for any chosen 1 ≤ r ≤ l, set all other b′s zero to get

drj = 0, for all r 6= j. Similarly, cis = 0 for s 6= i. It follows, therefore,

that both C and D are diagonal matrices with identical diagonal entries at

every position. In other words, K = ρIm and since K is constant so is ρ,

hence this holds at every point of G. Therefore,

σ(ξ, ξ) =

(

2mdn

n + 1
− 2md

)

x̃ + ρI,

and taking the inner product with I we get ρ = 2dk
n+1 and

σ(ξ, ξ) =
2dk

n + 1

(

I − m

k
x̃
)

.

In light of the formula (3.5) this is equivalent to

nσ(ξ, ξ) =

n
∑

i=1

σ(ei, ei) = nH̃.

Additionally, from the expression for σ we get ξ2 = 1
l (I + l−k

k x̃), since

dkl = n + 1. At point P0 we have ξ =

(

O B

B∗ O

)

, for some B ∈ Mk×l(F)

and thus

ξ2 =

(

BB∗ 0

0 B∗B

)

=
1

l

[(

Ik O

O Il

)

+
l − k

k

(

Ik O

O O

)]

=

(

1
k Ik O

O 1
l Il

)

,

implying BB∗ = 1
k Ik and B∗B = 1

l Il. Computing BB∗B two ways

we conclude k = l. Therefore, m = 2k is even and ξ2 = 1
k Im. Since

n + 1 = dkl, m = 2k, k = l, the value λ = 2mdn
n+1 simplifies to

λ = 2md − 8

m
=

4n

k
and therefore

σ(ξ, ξ) =
2

k
(I − 2x̃). (3.14)

Note that this condition implies the condition σ(AX, ξ) = 0, since differen-

tiating (3.14) yields

∇̃Xσ(ξ, ξ) = −Āσ(ξ,ξ)X − 2σ(AX, ξ) = −4

k
X,
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which gives σ(AX, ξ) = 0 and Āσ(ξ,ξ)X = 4
kX, the both conditions of The-

orem 3.2 with the prescribed value of λ given above, proving the converse.

Finally, when k = l and m = 2k, from before we have

n
∑

i=1

σ(ei, ei) = nσ(ξ, ξ) = −4n

k
(x̃ − I/2).

On the other hand,

∆(x̃ − I/2) = ∆x̃ = −nH̃ = −
n

∑

i=1

σ(ei, ei) =
4n

k
(x̃ − I/2).

If we put x̃t = x̃− I/2, then x̃ = I
2 + x̃t and ∆xt = 4n

k xt, giving the 1-type

decomposition. Moreover, the center of mass x̃0 = I/2 is at the same time

the center of the sphere SN−1
kI/m(

√

kl
2m ) containing the Grassmannian, so M

is mass-symmetric in that sphere.

Because of the Hopf’s lemma, when ∆α does not change sign on a compact

hypersurface M it follows that α = const. In view of (iii) of Theorem 3.3

that happens when α does not change sign and λ−trA2 remains sufficiently

large or sufficiently small, for example when trA2 is constant.

Let us assume now that α = const 6= 0. Then, from (3.12) by replacing

Y with AY + nα
2 Y and referring to the property (ii) of Theorem 3.2, we

obtain

aA3X + bA2X + cAX = 0, (3.15)

where

a = nα, b = 2mdn − (n + 1)λ +
3

2
(nα)2, and

c =
nα

2
[2mdn − (n + 1)λ + (nα)2]

are all constant. Therefore, a 1-type real hypersurface of G with constant

nonzero mean curvature can have at most three distinct principal curva-

tures, all of them constant. As a matter of fact, if κ is a principal curvature

it satisfies the equation κ(aκ2 + bκ + c) = 0 whose solutions are

κ1 = 0, κ2 = −nα

2
, and κ3 =

1

nα
[(n + 1)λ− 2mdn− (nα)2]. (3.16)

A Grassmannian can have a totally umbilical submanifold only if

codim M ≥ rank G [6, p. 71], thus such hypersurfaces exist only in

the projective spaces and moreover only as a totally geodesic RPm−2 in
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RPm−1 = G1Rm ([9], [16], [18]). Therefore considering real hypersurfaces

of Grassmannians with constant nonzero mean curvature we have

Theorem 3.5 A 1-type hypersurface of GkFm with constant nonzero mean

curvature α can have only two or three distinct principal curvatures, all of

them constant, chosen from the three values given above. If it has three

distinct principal curvatures they are the three given in (3.16) and if it has

only two constant principal curvatures one of them is equal to κ3 above.

Note that the values κi above, i = 2, 3, agree with the values of principal

curvatures of 1-type hypersurfaces in the complex and quaternionic pro-

jective spaces found in [11] and [12] when k = 1. Unlike 1-type geodesic

hyperspheres in the complex and quaternionic projective spaces (which do

have constant mean curvature), the candidates for 1-type hypersurfaces

with constant mean curvature are likely not to be found among geodesic

spheres in higher-rank Grassmannians, since they do not have constant

mean curvature in general. This follows from the classical result saying

that a symmetric space is harmonic when and only when it has rank one.

One characterization of harmonic spaces is that small geodesic spheres have

constant mean curvature a. On the other hand, some geodesic spheres still

may be candidates for a 1-type hypersurfaces among non-constant mean

curvature hypersurfaces. These investigations will be carried out in an-

other paper.

Let us now consider submanifolds for which x̃ is mass-symmetric and of

1-type. In our case, mass-symmetric means that x̃0 = k
mI, which is the

center of the sphere containing the Grassmannian. Recall that in the case

of compact M, x̃0 is the center of mass. From (3.2) we get

−nH −
∑

i

σ(ei, ei) = λ

(

x̃ − k

m
I

)

. (3.17)

Since x̃ and I are normal to the Grassmannian we get immediately H = 0,

i.e. such a submanifold must be minimal. Further, taking the inner product

of (3.17) with x̃ and using (2.1) we get λ = 2mn
kl , thus the conditions which

characterize submanifolds that are mass-symmetric and of 1-type are H = 0

and
n

∑

i=1

σ(ei, ei) =
2mn

kl

(

k

m
I − x̃

)

. (3.18)

aFor these remarks I am indebted to Jürgen Berndt.
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When F = R, Brada and Niglio ([4], [5]) classified 1-type minimal sub-

manifolds of the real Grassmannian GkRm, showing that they must be

isometric to (open portions) of the products of lower dimensional Grass-

mannians satisfying some dimension restrictions (see Example 1). Those

products that are mass-symmetric in SN−1
C satisfy m1 = m2 = ... = ms

and k1 = k2 = ... = ks as in Example 2. Thus we have

Corollary 3.1 The only mass-symmetric 1-type submanifolds of GkRm are

(open portions of) the canonically embedded products

Gk1
R

m1 × · · · × Gks
R

ms

in which all mi have the same value r, all ki have the same value q, and

m = rs, k = qs.

The Examples 2-5 provide minimal mass-symmetric submanifolds of type

1 in GkCm and GkHm.

4. Some eigenvalue estimates

We now give some estimates of the first nonzero eigenvalue λ1 of the Laplace

operator on a compact submanifold M of volume V in GkFm. Note first that

for a compact minimal Lagrangian and quaternion-Lagrangian submanifold

M of GkCm and GkHm respectively, one has from Examples 3 and 4 that

2m ∈ Spec (M), thus for those submanifolds λ1 ≤ 2m. Also Example 5

yields λ1 ≤ 6m for a compact minimal anti-Lagrangian submanifold of

GkHm. In each case the equality is achieved when the order of the immersion

is 1.

Since

〈∆x̃, x̃〉 = −
∑

i

〈σ(ei, ei), x̃〉 = n and

〈∆x̃, ∆x̃〉 = n2〈H, H〉 +
∑

i,j

〈σ(ei, ei), σ(ej , ej)〉,

by using the L2−product (·, ·) on M , we have

(∆x̃, ∆x̃) ≥ λ1(∆x̃, x̃) = λ1

∫

M

〈∆x̃, x̃〉 = nλ1V

and thus

λ1 ≤ n

V

∫

M

α2 dV +
1

nV

∫

M

‖
∑

i

σ(ei, ei)‖2 dV.
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If Mn is a real hypersurface of dimension n = g − 1 = dkl− 1, by means of

(2.1) and (3.5) we further compute

‖
∑

i

σ(ei, ei)‖2 = ‖2dkI − 2dmx̃ − σ(ξ, ξ)‖2

= 2d2mkl − 4dm + ‖σ(ξ, ξ)‖2

= 2dm(n − 1) + 2Re tr ξ4

≤ 4 + 2dm(n − 1),

by the Cauchy-Schwarz inequality as in he proof of Prop. 5 (iii) in [10].

Hence

λ1 ≤ 2dm(n − 1)

n
+

n

V

∫

M

α2 dV +
2

nV

∫

M

tr ξ4 dV

≤ 4 + 2dm(n − 1)

n
+

n

V

∫

M

α2 dV.

This upper bound is consistent with those found in the projective spaces

(see [9], [12]).

We can also consider the following inequality for a submanifold of the low

order p, defined as the order of the smallest nonzero eigenvalue of the Lapla-

cian in the spectral decomposition of x̃ into (nonzero) vector eigenfunctions.

nV = (dx̃, dx̃) = (x̃, ∆x̃) =
∑

t≥p

λt‖x̃t‖2

≥ λp

∑

t≥p

‖x̃t‖2 = λp(‖x̃‖2 − ‖x̃0‖2)

= λp

(
∫

M

1

2
tr x̃2dV −

∫

M

〈x̃0, x̃0〉dV

)

= λp(k/2 − |x̃0|2)V.

Thus λp ≤ 2n
k−2|x̃0|2

, the equality taking place when x̃ is of type 1 (See [8] for

related inequalities involving the center of mass). Note that the center of

mass satisfies tr x̃0 = k and k2

2m ≤ |x̃0|2 < k
2 , since the Grassmannian lies in

the plane {trA = k} whose distance to the origin is k/
√

2m. In particular,

if M is mass-symmetric submanifold of GkFm then x̃0 = k
mI and we have

the following estimate of λ1.

Corollary 4.1 Let Mn be a compact connected submanifold of GkFm of

real dimension n which is mass-symmetric and of the low order p via x̃.
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Then

λ1 ≤ λp ≤ 2mn

kl
,

and the second inequality becomes an equality if and only if M is a mass-

symmetric submanifold of type 1.

This generalizes a result of B. Y. Chen [7, pp. 320-321]. Examples 2-

5 give examples of submanifolds for which the second inequality becomes

an equality. On the other hand, characterizing submanifolds (1-type and

mass-symmetric) for which the second inequality turns to equality is dif-

ficult (save for the real case which is resolved in the Corollary 1), espe-

cially in the quaternionic case where things are not clear even when k = 1,

i.e. in the quaternionic projective space. We note that a characteriza-

tion of mass-symmetric 1-type submanifolds in HPm = G1Hm+1 satisfying

λp = 2n(m+1)
m which is given in [7, p. 321] is incomplete since it leaves out

the minimal anti-Lagrangian submanifolds and the totally complex ones

[12]. We can show, however, that the dimension of such submanifold neces-

sarily satisfies m ≤ n ≤ 3m. Namely, from (3.18) with m → m + 1, k = 1,

and l = m, by taking the inner product with itself and using [12, formula

(7)] we get

n(n + 1) +

3
∑

q=1

∑

i

|(Jqei)T |2 =
n2(m + 1)

m
.

If SqX := (JqX)T , the tangent part of JqX, then it follows that
∑3

q=1 ‖Sq‖2 = n(n−m)
m ≥ 0 and hence n ≥ m. In the same vein, from

(2.2) and (3.18) one gets

n
∑

i=1

Āσ(ei,ei) =
2(m + 1)n

m
I.

Applying this to a unit normal basis vector er and using formula (8) of [12]

one gets
∑3

q=1 Jq(Jqer)T = − n
mer. Therefore,

3
∑

q=1

∑

r

〈Jq(Jqer)N , er〉 =
n − 3m

m

∑

r

〈er, er〉,

and finally

3
∑

q=1

∑

r

|(Jqer)N |2 =
3m − n

m
(4m − n) ≥ 0,
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proving the claim. Equalities n = m, n = 2m, n = 3m take place,

for example, for minimal Lagrangian, totally complex, and minimal anti-

Lagrangian submanifolds of HPm respectively.
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