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We study the differential geometric properties of n-dimensional real submanifolds
M of complex space forms M , whose maximal holomorphic tangent subspace is
(n− 1)-dimensional. On these manifolds there exists an almost contact structure
F which is naturally induced from the ambient space. Using certain condition on
the induced almost contact structure F and on the second fundamental form h
of these submanifolds, which is sufficient for F to be the contact one, we give a
classification of such submanifolds M and we obtain new characterizations of some
model spaces in complex space forms.

1. Introduction

The study of real hypersurfaces of Kählerian manifolds has been an im-
portant subject in geometry of submanifolds, especially when the ambient
space is a complex space form. One of the first results in this way (see
[31]) was to state that any real hypersurface M of a complex space form
M(c) with holomorphic sectional curvature c 6= 0 is not totally umbilical.
This is a direct consequence of classical Codazzi’s equation for such a hy-
persurface. On the other hand, Kon (resp. Montiel), in [17] (resp. [19]),
stated that there are no Einstein real hypersurfaces in M(c) for c > 0 (resp.
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c < 0). Therefore, there exist problems in describing the differential geo-
metric properties of hypersurfaces in complex space forms for c 6= 0. This
situation has been improved since, for example, H. B. Lawson in [18] in-
troduced the notion of “generalized equators” MC

p,q in a complex projective
space, which naturally generalize the equatorial hypersurfaces of spheres.
Following the idea of constructing a circle bundle over a real hypersurface,
which is compatible with the Hopf fibration, he introduced the notion of
MC

p,q. Consequently, the study of hypersurfaces of complex space forms has
involved finding sufficient conditions for a hypersurface to be one of the
“standard examples”. For example, Takagi in [27] and [28] classified con-
nected complete real hypersurfaces in a complex projective space with two
or three constant principal curvatures and Montiel in [19] gave a complete
classification of the real hypersurfaces of complex hyperbolic space with at
most two principal curvatures at each point. In this paper, in Section 4 we
recall the construction of some of these hypersurfaces and in Sections 6 and
7 we derive new characterizations of these various examples.

Another important notion is that of (almost) contact manifold. A dif-
ferential manifold Mn is said to be contact if it admits a linear functional
η on the tangent bundle satisfying η ∧ (dη)

n−1
2 6= 0 (n is odd). The inves-

tigation of this as an intrinsic condition has received considerable study,
see for example [2], [3]. In the case when Mn is a real hypersurface of
an almost Hermitian manifold M , the maximal holomorphic subspace is
necessarily (n−1)–dimensional and M is equipped with an almost contact
metric structure (ϕ, η, U) naturally induced by the almost Hermitian struc-
ture on M . This fact was established by Tashiro in [29] and it was a fertile
field for many authors ([6], [17], [26]). Moreover, it is natural to ask: when
is a real hypersurface of a complex space form extrinsically contact? Such
investigations have been carried out successfully for real hypersurfaces of
complex Euclidean space ([22]), of complex projective space ([17]) and of
complex hyperbolic space ([33]). Furthermore, in [22] the second author of
this paper obtained one interesting algebraic condition for induced almost
contact metric structure ϕ to be a contact metric structure, when the am-
bient space is a Kähler manifold: Aϕ + ϕA = 2ρϕ, where A is the shape
operator and ρ can be shown to be a constant.

However, for arbitrary codimension p, there are only a few recent results
([8], [11], [12], [24]). The purpose of the present paper is to generalize
the problem by studying CR submanifolds of maximal CR dimension: if
Mn is a real submanifold of the complex manifold (M

n+p
, g) with complex

structure J and the Hermitian metric g, where n > 1, in [30] Tashiro showed



159

that if the maximal holomorphic subspace of each tangent space of Mn is
(n − 1)-dimensional, the submanifold is necessarily odd-dimensional and
it admits a naturally induced almost contact metric structure (F, u, U, g).
Under this hypothesis, there exists a unit vector field ξ normal to M such
that JTx(M) ⊂ Tx(M) ⊕ span{ξx}, for any x ∈ M and M is called a
CR submanifold of maximal CR dimension. Our purpose here is to study
these submanifolds when M is a complex space form, which additionally
satisfy the condition h(FX, Y ) − h(X, FY ) = g(FX, Y )η, η ∈ T⊥(M)
on the naturally induced almost contact structure F and on the second
fundamental form h. Hence we generalize the results which are valid for
real hypersurfaces by giving a classification of such submanifolds. We also
derive new characterizations of some spaces from the well-known Takagi’s
and Montiel’s list. Moreover, recalling from [8] that the induced almost
contact structure (F, u, U, g) is contact if and only if there exists function
ρ 6= 0 which satisfies the relation FA + AF = ρF , where A is the shape
operator with respect to distinguished normal vector field ξ , it follows that
the considered condition is also sufficient for M to be the contact manifold.

2. Almost contact metric manifold and contact metric
manifold

A differentiable manifold M2m+1 is said to have an almost contact structure
if it admits a (non-vanishing) vector field U (the so-called characteristic
vector field), a one-form η and a (1, 1)-tensor field ϕ (frequently considered
as a field of endomorphisms on the tangent spaces at all points) satisfying

η(U) = 1, ϕ2 = −I + η ⊗ U, (1)

where I denotes the field of identity transformations of the tangent spaces
at all points. These conditions imply that ϕU = 0 and η ◦ ϕ = 0, and
that the endomorphism ϕ has rank 2m at every point in M . A manifold
M , equipped with an almost contact structure (U, η, ϕ) is called an almost
contact manifold and will be denoted by (M,U, η, ϕ) .

Suppose that M2m+1 is a manifold carrying an almost contact structure.
A Riemannian metric g on M satisfying

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ) (2)

for all vector fields X and Y is called compatible with (or associated to) the
almost contact structure, and (U, η, ϕ, g) is said to be an almost contact
metric structure on M . It is known that an almost contact manifold always
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admits at least one compatible metric. Note that putting Y = U in (2)
yields

η(X) = g(X, U) (3)

for all vector fields X tangent to M , which means that η is the metric dual
of the characteristic vector field U . Further, substituting X = U in (3), we
see from (1) that U is a vector field of unit length.

It can be shown (see for example [2], [3], [25]) that the conditions (1)
are equivalent to the fact that the structural group of the tangent bundle
TM of M is reducible to U(n) × 1, i.e., that one can construct an open
covering {Uα}α∈I of M2m+1, together with orthonormal frame fields which
transform in the intersections Uα ∩ Uβ by the action of U(n) × 1. (This
alternative definition of almost contact manifolds was first given by J. Gray
in [15].)

If (M, U, η, ϕ, g) is an almost contact metric manifold, we can define a
two-form φ on M by

φ(X, Y ) = g(X, ϕY ) (4)

for all vector fields X and Y on M . This two-form φ is called the funda-
mental two-form or Sasaki form of (M, U, η, ϕ, g) . The Sasaki form of any
almost contact metric manifold satisfies

η ∧ φm 6= 0. (5)

It turns out that condition (5) is characteristic for almost contact manifolds.
This yields a third definition of an almost contact manifold: a manifold M of
dimension 2m+1 carries an almost contact structure if and only if it admits
a global one-form η and a global two-form φ satisfying (5) everywhere on
M .

A manifold M2m+1 is said to be a contact manifold if it carries a global
one-form η such that

η ∧ (dη)m 6= 0 (6)

everywhere on M . The one-form η is called the contact form. It is obvious
from the above discussion that a contact manifold can always be equipped
with an almost contact structure (U, η, ϕ) . For a proof, we refer to [2] or
[3].

Let g be a Riemannian metric on M which is compatible with this almost
contact structure and define the Sasaki form φ as in (4). If φ satisfies the
equation

φ = dη, (7)
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then (ξ, η, ϕ, g, φ) is called a contact metric structure and (M, ξ, η, ϕ, g, φ)
is a contact metric manifold. We note that there always exists such a
compatible metric.

3. Real hypersurfaces in complex space forms and induced
almost contact structure

Since in the present paper we use some results from the real hypersur-
face theory of complex space forms and moreover, as a real hypersurface
of almost Hermitian manifold is a typical example of CR submanifolds of
maximal CR dimension, in this section we review some fundamental defi-
nitions and necessary results on real hypersurfaces of complex space forms.
For more details and proofs we refer to [7] and [20].

Let M(c) be a space of constant holomorphic sectional curvature 4c with
complex dimension m (real dimension 2m), with almost complex structure
J and Levi-Civita connection ∇. For an immersed manifold ı : M2m−1 →
M , the Levi-Civita connection ∇ of the induced metric g and the shape
operator A of the immersion are characterized respectively by

∇XY = ∇XY + g(AX, Y )ξ ,

∇Xξ = −AX,

for a local choice of a unit normal ξ, where we omit to mention ı, for brevity
of notation. Let us define a skew symmetric (1, 1)-tensor field ϕ from the
tangential projection of J by

JX = ϕX + g(X,U)ξ ,

for any vector field X tangent to M , where we put Jξ = −U . Using this
relation and the Hermitian property, it follows

ϕ2X = −X + g(X, U)U.

Moreover, it is easy to check that

g(ϕX, ϕY ) = g(X, Y )− g(X, U)g(Y, U), ϕU = 0.

Noting that ϕ2 = −I on U⊥ = {X ∈ TM : g(X, U) = 0} we see that ϕ has
rank 2m − 2 and that kerϕ = span{U}. Such a ϕ determines an almost
contact metric structure described in Section 2 (see [2], [3], [29] for more
details) and U⊥ is called the holomorphic distribution.

Of course, in general, one cannot expect that this induced almost con-
tact metric structure (ϕ, ξ, η, g) is a contact metric structure. One of the
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conditions, when the ambient space is Kähler, was obtained by the second
author of this paper in [22]:

Theorem 3.1 Let M2m−1 be a hypersurface of a Kähler manifold M
2m

,
(ϕ, ξ, η) its induced almost contact structure and A its Weingarten map.
Then (ϕ, ξ, η) is a contact structure if and only if there exists a non-zero
valued function ρ such that Aϕ + ϕA = 2ρϕ.

It can be shown that ρ is constant. Contact metric hypersurfaces are
contact hypersurfaces on which ρ = 1.

In the next section we give a detailed construction of some important
examples of contact hypersurfaces in complex space forms.

4. Certain examples of contact hypersurfaces in complex
space forms

Since one of the purposes of this paper is to give new characterizations of
some “model spaces” (“standard examples”) of hypersurfaces in complex
space forms, whose naturally induced almost contact structure is contact, in
this section we explain their construction and we recall some properties of
these spaces. These examples are so important that they have a standard
nomenclature. In complex projective space they divide into five types,
A-E, while complex hyperbolic space has just two types; and types are
further subdivided. All of these examples are tubes of some sort and we
will use these descriptive names for the purposes of identification, without a
justification of these names (see [6], [20], [34] for more details). In complex
projective space CPm, the list is as follows

(A1) Geodesic spheres.
(A2) Tubes over totally geodesic complex projective spaces CP k, where

1 ≤ k ≤ m− 2.
(B) Tubes over the complex quadrics.
(C) Tubes over the Segre embedding of CP 1 × CP l where 2l + 1 = m

and m ≥ 5.
(D) Tubes over the Plücker embedding of the complex Grassmann ma-

nifold G2,5, which occur only for m = 9.
(E) Tubes over the canonical embedding of the Hermitian symmetric

space SO(10)/U(5), which occur only for m = 15.
This list consists precisely of the homogeneous real hypersurfaces in

CPm as determined by Takagi [26], and is often referred to as “Takagi’s
list”.
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Moreover, in [17] Kon proved

Theorem 4.1 Let M2m−1 be a connected complete real hypersurface in
complex projective space CPm, m ≥ 3. If ϕA+Aϕ = kϕ for some constant
k 6= 0, then M is congruent to a geodesic sphere or to a tube over the
complex quadric.

Using Theorem 3.1, it follows that these hypersurfaces (Type A1 and
Type B) are contact.

In complex hyperbolic space the list is as follows:
(A0) Horospheres.
(A1) Geodesic spheres and tubes over totally geodesic complex hyper-

bolic hyperplanes.
(A2) Tubes over totally geodesic CHk, where 1 ≤ k ≤ m− 2.
(B) Tubes over totally real hyperbolic space RHm.
These hypersurfaces are homogeneous, but there is yet no classification

theorem for homogeneous hypersurfaces in CHm. This classification was
begun by S. Montiel [19] and we refer to the list as “Montiel’s list”.

Let us recall one of the classification theorems, proved by Vernon in
[33], which gives a characterization of contact hypersurfaces in CHm:

Theorem 4.2 Let M be a complete connected contact hypersurface of
CHm(−4), m ≥ 3. Then M is congruent to one of the following:

(i) A tube of radius r > 0 around a totally geodesic, totally real hyper-
bolic space form Hm(−1);

(ii) A tube of radius r > 0 around a totally geodesic complex hyperbolic
space form CHm−1(−4);

(iii) A geodesic hypersphere of radius r > 0, or
(iv) A horosphere.

Since in Section 6 and Section 7 we will characterize certain subsets of
these lists, we continue this section with the construction and some features
of these spaces.

Complex projective space CPm can be regarded as a projection from
the sphere S2m+1 with the fibre S1. H.B. Lawson ([18)] was first to exploit
this idea to study a hypersurface in CPm by lifting it to an S1-invariant
hypersurface of the sphere. Therefore, let us consider a Hermitian bilinear
form on the complex vector space Cm+1 given by

G(z, w) =
m∑

k=0

zkw̄k
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for all z = (z0, z1, . . . , zm) and w = (w0, w1, . . . , wm) in Cm+1 and let
< z,w > be the real part of G(z, w). Let then π be the canonical projection
of the (2m + 1)-sphere S2m+1(r) of radius r > 0, defined by

S2m+1(r) = {z ∈ Cm+1| < z, z >= r2},

to complex projective space CPm, π : S2m+1 → CPm. We now consider a
hypersurface M in CPm. Then M ′ = π−1M is an S1-invariant hypersur-
face in S2m+1. More information about the geometry of hypersurfaces and
their lifts and the relationship between them can be found in [20] and its
references.

In particular, we now discuss the Type A1 and Type B hypersurfaces
in complex projective space. Let r be a positive constant and c = 1

r2 . Let
us choose b so that 0 < b < r and

M ′ = {z = (z1, z2) ∈ Cm+1 : G1(z1, z1) = r2 − b2, G2(z2, z2) = b2},

where G1 and G2 are the restrictions of G to Cp+1 and Cq+1, respectively,
where Cm+1 = Cp+1 × Cq+1, p, q ≥ 0 and p + q = m− 1 > 0. Then M ′ is
the Cartesian product of spheres whose radii have been chosen so that M ′

lies in S2m+1, i.e. M ′2m = S2p+1((r2 − b2)
1
2 ) × S2q+1(b). One can prove

that πM ′ is a hypersurface in CPm, denoted by M2p+1,2q+1. If we write
b = r sin u, we can choose u so that 0 < u < π

2 . There is only one kind of
Type A1 hypersurface since tubes over complex projective hyperplanes are
also geodesic spheres. Namely, the geodesic spheres (Type A1) in complex
projective space have two distinct principal curvatures: 1

r cot u of multi-
plicity 2m− 2 and 2

r cot 2u of multiplicity 1. The Type A2 hypersurface in
complex projective space have three distinct principal curvatures: − 1

r tanu

of multiplicity 2p, 1
r cot u of multiplicity 2q and 2

r cot 2u of multiplicity 1,
where p, q ≥ 0 and p + q = m − 1 > 0. Type B hypersurfaces, i.e. tubes
around the complex quadric, form a one-parameter family and are defined
as M = πM ′ where

M ′ = {z ∈ Cm+1 : 〈z, z〉 = r2, |G(z, z̄)|2 = t}.

Type B hypersurfaces are also tubes over totally geodesic real projective
spaces RPm. The parameter u is chosen so that the tubes have radius
ru. Then the tubes over the complex quadric have radius r(π

4 − u). Type
B hypersurfaces in complex projective space have three distinct principal
curvatures: − 1

r cot u of multiplicity m−1, 1
r tanu of multiplicity m−1 and

2
r tan 2u of multiplicity 1.
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We continue this section with examples of real hypersurfaces in complex
hyperbolic space. For z = (z0, z1, . . . , zm), w = (w0, w1, . . . , wm), in Cm+1,
let us consider the Hermitian form F given by

F (z, w) = −z0w̄0 +
m∑

k=1

zkw̄k.

Then the inner product < z, w >= Re F (z, w) is an indefinite metric of
index 2 on Cm+1. The hypersurface H2m+1

1 defined by

H2m+1
1 (r) = {z ∈ Cm+1| < z, z >= −r2}

is the well-known anti-De Sitter space of radius r in Cm+1 and we will
denote it by H. Further, we denote by CHm the image of H2m+1

1 by
the canonical projection π to complex projective space, π : H2m+1

1 (r) →
CHm ⊂ CPm. Thus, topologically, CHm is an open subset of CPm. How-
ever, as Riemannian manifolds, they have quite different structures. It is
well-known that H2m+1

1 is a principal S1-bundle over CHm with projection
π.

Let us recall that if M is a hypersurface in CHm, then M ′ = π−1M is a
S1-invariant hypersurface in H. Further, let r be a positive number and let
the holomorphic curvature of CHm be 4c = − 4

r2 . First, let us introduce the
“horospheres”, which form a one-parameter family, parametrized by t > 0.
Since it can be verified that

M ′ = {z ∈ Cm+1 : 〈z, z〉 = −r2, |z0 − z1| = t}
is a Lorentz hypersurface of H, then the horosphere (Type A0) is defined
by M = πM ′ and it is a hypersurface in CHm and a routine calculation
yields that it has two distinct principal curvatures: 1

r of multiplicity 2m−2
and 2

r of multiplicity 1. Further, tubes around complex hyperbolic spaces,
(Types A1, A2), also form a one-parameter family, parametrized initially
by b > 0 and later by u. Let

M ′ = {z = (z1, z2) ∈ Cm+1 : F1(z1, z1) = −(b2 + r2), F2(z2, z2) = b2},
where F1 and F2 are the restrictions of F to Cp+1 and Cq+1, respectively,
where Cm+1 = Cp+1×Cq+1, p, q ≥ 0 and p+q = m−1 > 0. Then M ′ is the
Cartesian product of an anti-de Sitter space and a sphere whose radii have
been chosen so that M ′ lies in H, i.e. M ′2m = H2p+1

1 ((b2+r2)
1
2 )×S2q+1(b).

The hypersurface πM ′ is denoted by M2p+1,2q+1. Let b = r sinhu. When
p = 0, M is a geodesic hypersphere with principal curvatures 1

r coth u,
of multiplicity 2m − 2, and α = 2

r coth 2u of multiplicity 1, where the
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radius of the sphere is ru. When q = 0, M is a tube of radius ru over a
complex hyperbolic hyperplane with two principal curvatures 1

r tanh u, of
multiplicity 2m−2, and 2

r coth 2u of multiplicity 1. These are the Type A1
hypersurfaces.

The Type A2 hypersurfaces in complex hyperbolic space have three
distinct principal curvatures: 1

r tanh u of multiplicity 2p, 1
r coth u of multi-

plicity 2q and 2
r coth 2u of multiplicity 1. They are tubes of radius ru about

complex hyperbolic spaces of codimension greater than 1.
Further, tubes around real hyperbolic space RHm, known as Type B hy-

persurfaces, form a one-parameter family, parametrized by t > r4. Namely,

M ′ = {z ∈ Cm+1 : 〈z, z〉 = −r2, |F (z, z̄)|2 = t}
is a hypersurface in H and it can be verified that πM ′ is a hypersurface in
CHm. A routine calculation yields that it has three principal curvatures:
1
r coth u of multiplicity m− 1, 1

r tanh u of multiplicity m− 1 and 2
r tanh 2u

of multiplicity 1.
Finally, let M be a Euclidean space E2m, i.e. a Kähler manifold with

vanishing holomorphic sectional curvature and let us consider contact hy-
persurfaces of a Euclidean space. In [22] the second author of this paper
showed that a hypersphere S2m−1 of Cm and the product manifold of a
(m − 1) dimensional sphere Sm−1 with a m-dimensional Euclidean space
Em are contact hypersurfaces in E2m. A natural question is to determine in
which other cases the induced almost contact metric structure of hypersur-
faces is contact metric and a complete classification is given in [22]. First,
it was shown that a contact hypersurface of a Euclidean space admits at
most two distinct principal curvatures. If the hypersurface admits only one
principal curvature, it is a totally umbilical hypersurface and therefore it
is a portion of a (2m − 1)-dimensional sphere. The case with two distinct
principal curvatures implies that the contact hypersurface is locally isomet-
ric with an open submanifold of Sm−1 × Em. Consequently, for a suitable
orthonormal frame, the shape operators of these hypersurfaces have the fol-
lowing matrix representation: diag(λI2m−1), diag(λIm−1, 0), respectively.

5. A class of submanifolds of an almost Hermitian manifold

In this section we recall some general preliminary facts concerning CR sub-
manifolds.

Let (M, ḡ, J) be an (n+p)–dimensional almost Hermitian manifold and
let M be a connected n–dimensional submanifold of M with induced metric
g and n > 1. For x ∈ M we denote by TxM and T⊥x M the tangent space



167

and the normal space of M at x, respectively. Further, let the maximal
J-invariant subspace of the tangent space Tx(M) at x ∈ M , called the
holomorphic tangent space at x, has constant dimension for any x ∈ M .
Then the submanifold M is called the Cauchy-Riemann submanifold or
briefly CR submanifold and the constant complex dimension of the holo-
morphic tangent space is called the CR dimension of M (see [21], [32]).
Another definition of a CR submanifold was given by Bejancu in [1]: A
submanifold M of (M, J) is called a CR submanifold if it is endowed with
a pair of mutually orthogonal and complementary distributions (∆, ∆⊥)
such that for any x ∈ M we have J∆x = ∆x and J∆⊥

x ⊂ T⊥x (M). It is
easily seen that if M is a CR submanifold in the sense of Bejancu, M is
also a CR submanifold in the sense of original definition. In the case when
M is a CR submanifold of CR dimension n−1

2 , these definitions coincide,
dim ∆⊥ = 1 and M is called a CR submanifold of maximal CR dimension.
On the other hand, see [9], when the CR dimension is less than n−1

2 , the
converse is wrong.

Let us mention here that the notion of a CR-manifold is also very im-
portant. The geometry of CR-manifolds goes back to Poincaré and received
a great attention in works of É. Cartan, Tanaka, Moser, Chern and oth-
ers. Let M be an n-dimensional C∞ manifold and TCM its complexified
tangent bundle, i.e., TCp M = TpM ×R C ' TpM ⊕ iTpM . Let H be a C∞

complex subbundle of complex dimension l. A CR-manifold, as introduced
by Greenfield in [14], of real dimension n and CR-dimension l is a pair
(M,H) such that Hp ∩ Hp = 0 and H is involutive, i.e., for vector fields
X,Y ∈ H, [X, Y ] ∈ H. It is interesting to renew here the relation between
CR-manifold and CR submanifold. Namely, let M be a submanifold of a
Hermitian manifold (M, J, g), i.e. the almost complex structure J is in-
tegrable. Then the theorem of Blair and Chen in [4] states that if M is
a Hermitian manifold and M a CR-submanifold, in the sense of Bejancu,
then M is a CR-manifold.

Further, let M be a CR submanifold of CR dimension n−1
2 , that is,

at each point x of M the tangent space Tx(M) satisfies dim(JTx(M) ∩
Tx(M)) = n− 1 . It is easy to verify that the following spaces are examples
of CR submanifolds of maximal CR dimension of complex manifolds M :

-real hypersurfaces of almost Hermitian manifolds M ;
-real hypersurfaces M of complex submanifolds M ′ of almost Hermitian

manifolds M ;
-F ′-invariant submanifolds of real hypersurfaces M ′ of almost Hermitian

manifolds M , where F ′ is an almost contact metric structure naturally
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induced by the almost Hermitian structure on M .
In the rest of the paper we discuss CR submanifolds of maximal CR

dimension. This implies that M is odd–dimensional and that there exists a
unit vector field ξ normal to M such that JTx(M) ⊂ Tx(M)⊕span{ξx}, for
any x ∈ M . Hence, for any X ∈ T (M), choosing a local orthonormal basis
ξ, ξ1, . . . , ξp−1 of vectors normal to M , we have the following decomposition
into tangential and normal components:

JıX = ı FX + u(X)ξ , (8)

Jξ = −ı U + Pξ, (9)

Jξa = −ı Ua + Pξa (a = 1, . . . , p− 1), (10)

where F and P are skew–symmetric endomorphisms acting on the tangent
bundle T (M) and on the normal bundle T⊥(M), respectively, U , Ua, a =
1, . . . , p−1 are tangent vector fields and u is one-form on M . Furthermore,
using (8)- (10), the Hermitian property of J implies

g(U,X) = u(X) , Ua = 0 (a = 1, . . . , p− 1), (11)

F 2X = −X + u(X)U, (12)

u(FX) = 0 , FU = 0 , P ξ = 0 . (13)

Hence, relations (9) and (10) may be written in the form

Jξ = −ıU , Jξa = Pξa (a = 1, . . . , p− 1) . (14)

Moreover, these relations imply that (F, u, U, g) defines an almost contact
metric structure on M (see Section 2 and [2], [3], [30]).

Now, we suppose that the ambient manifold M is a Kähler manifold.
As stated before, the submanifold M is odd–dimensional and say dim M =
n = 2l + 1. If on M there exists a function ρ which takes a value zero
nowhere, satisfying

du(X, Y ) = ρg(FX, Y ), (15)

for any tangent vector fields X, Y, that is, for the Kähler form ω of M

du(X, Y ) = ρω(ıX, ıY ) = ρ(ω ◦ ı)(X, Y ) ,

then, since F has rank 2l, we easily obtain

u ∧ du ∧ · · · ∧ du︸ ︷︷ ︸
l

6= 0 ,

which shows that u is a contact form of M and M is a contact manifold.
In this sense we call the submanifold M , whose induced almost contact
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structure (F, u, U, g) satisfies (15), a contact submanifold. From now on
we suppose that the dimension of the contact submanifold M is greater
than 3. Then, using (15), we conclude (see [8] and [22] for the hypersurface
case) that the almost contact structure (F, u, U, g) is contact if and only
if there exists a function ρ which takes a value zero nowhere and satisfies
relation:

FA + AF = ρF . (16)

6. Certain condition and classification theorems

In this section we treat CR submanifolds Mn of maximal CR dimension of
complex space forms M

n+p
. Using the certain condition on the naturally

induced almost contact structure F and on the second fundamental form
h of these submanifolds, we obtain new characterizations of model spaces
discussed in section 4. Moreover, we prove that this condition is sufficient
for F to be the contact structure and we determine all CR submanifolds
which satisfy this condition. Namely, we study CR submanifolds Mn of CR
dimension n−1

2 of complex space forms M
n+p

under the assumption that

h(FX, Y )− h(X,FY ) = g(FX, Y )η, η ∈ T⊥(M) (17)

for all X, Y ∈ T (M). Since F is a skew-symmetric endomorphism acting
on T (M), using relation h(X, Y ) = g(AX,Y )ξ +

∑p−1
a=1 g(AaX, Y )ξa and

setting

η = ρξ +
p−1∑
a=1

ρaξa,

it follows that relation (17) is equivalent to

AFX + FAX = ρFX, (18)

AaFX + FAaX = ρaFX, (19)

for all a = 1, . . . , p−1, where A, Aa are the shape operators for the normals
ξ, ξa, respectively.

Using relation (16) it follows that CR submanifolds of maximal CR
dimension of Kähler manifolds which satisfy the condition (17) are contact
submanifolds. Moreover, in [8], Lemma 3.1., we proved that ρ 6= 0 is
constant. In the rest of the paper we will assume that ρ 6= 0, since the case
ρ = 0 reduces the condition (17) to h(FX, Y ) − h(X, FY ) = 0, which we
considered in [10]. Further, it follows that if the condition (17) is satisfied,
then ρa = 0, a = 1, . . . , p− 1.
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Using relations (12) and (13), it is easy to check that if the condition (18)
is satisfied, then U is the eigenvector of the shape operator A with respect
to distinguished normal vector field ξ , at any point of M . Moreover, if
the ambient space is a complex Euclidean space and the condition (17) is
satisfied, then this eigenvalue is constant.

Further, using Gauss and Weingarten formulae, Gauss equation, a rou-
tine, but long, calculation yields the following important information on
the vector field ξ:

Lemma 6.1 Let M be a complete CR submanifold of maximal CR di-
mension of a complex space form. If the condition (17) is satisfied, then
the distinguished normal vector field ξ is parallel with respect to the normal
connection.

For the complete proof of this lemma we refer to [11] and [12]. Moreover,
if ρ 6= 2λ, where λ is the eigenvalue corresponding to the eigenvector of the
shape operator A, orthogonal to U , the condition (17) together with the
fact that the distinguished normal vector field ξ is parallel with respect to
the normal connection, implies

Lemma 6.2 Let M be a complete n–dimensional CR submanifold of CR
dimension n−1

2 of a complex projective space (resp. complex Euclidean
space). If the condition (17) is satisfied and ρ 6= 2λ, where λ is the eigen-
value corresponding to the eigenvector of the shape operator A, orthogonal
to U , then Aa = 0, a = 1, . . . , p − 1, where A, Aa are the shape operators
for the normals ξ, ξa, respectively.

Therefore, it follows FAa = 0, a = 1, . . . , p−1 and the orthogonal com-
plement of JN0(x) ∩N0(x) in T⊥(M), where N0(x) = {ξ ∈ T⊥x (M)|Aξ =
0}, is spanned by ξ. Since ξ is parallel with respect to the normal con-
nection, by Lemma 6.1, we can apply the codimension reduction theorem
for real submanifolds of complex projective space, [23], (resp. complex Eu-
clidean space, [13]) and conclude that there exists real (n + 1)-dimensional
totally geodesic complex projective subspace (resp. totally geodesic com-
plex Euclidean space) of CP

n+p
2 (resp. C

n+p
2 ), such that M is its real

hypersurface:

Theorem 6.1 ([11], [12]) Let M be a complete n–dimensional CR subma-
nifold of CR dimension n−1

2 of a complex projective space CP
n+p

2 (resp.
complex Euclidean space C

n+p
2 ). If the condition (17) is satisfied and ρ 6=

2λ, where λ is the eigenvalue corresponding to the eigenvector of the shape
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operator A, orthogonal to U , then there exists a totally geodesic complex
projective subspace CP

n+1
2 of CP

n+p
2 (complex Euclidean subspace C

n+1
2

of C
n+p

2 ) such that M is its real hypersurface.

This codimension reduction theorem and the ”classical” facts from the
hypersurface theory are the main tools in the proof of our results, since,
using Theorem 6.1, CR submanifolds Mn of maximal CR dimension of com-
plex projective space CP

n+p
2 (resp. complex Euclidean space C

n+p
2 ) which

satisfy the condition (17) for ρ 6= 2λ, can be regarded as real hypersurfaces
of CP

n+1
2 (resp. C

n+1
2 ), which are totally geodesic. Therefore, by utilizing

the well-known formulas for the immersion and using the corresponding
results for real hypersurfaces of complex projective space (Theorem 4.1)
and of complex Euclidean space (M. Okumura [22] and É. Cartan [5]), we
conclude:

Theorem 6.2 [11] Let M be a complete n–dimensional CR submanifold
of maximal CR dimension of a complex projective space CP

n+p
2 . If the

condition

h(FX, Y )− h(X,FY ) = g(FX, Y )η, η ∈ T⊥(M)

is satisfied, where F and h are the induced almost contact structure and the
second fundamental form of M , respectively, then F is a contact structure
and M is congruent to a geodesic sphere or to a tube over the complex
quadric, or there exists a geodesic hypersphere of CP

n+p
2 such that M is

its invariant submanifold.

Theorem 6.3 [12] Let M be a complete n–dimensional CR submanifold
of maximal CR dimension of a complex Euclidean space C

n+p
2 . If the con-

dition

h(FX, Y )− h(X,FY ) = g(FX, Y )η, η ∈ T⊥(M)

is satisfied, where F is the induced almost contact structure and h is the sec-
ond fundamental form of M , then F is a contact structure and there exists
a geodesic hypersphere Sn+p−1( 1

|α| ) of C
n+p

2 such that M is an invariant
submanifold of S, or M is congruent to one of the following:

Sn, S
n−1

2 × En+1
2 ,

where Sn denotes an n-dimensional sphere and En is an n-dimensional
Euclidean space.
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For the proofs in the case when ρ = 2λ, we refer to [11] and [12].

7. CR submanifolds of complex hyperbolic space satisfying
certain condition

In this section we continue our study by considering the case when M

is a complete n–dimensional CR submanifold of CR dimension n−1
2 of a

complex hyperbolic space CH
n+p

2 which satisfies the condition (17). We
use the results obtained in [11] and [12], which are recalled in section 6: if
the condition (17) is satisfied, then the naturally induced almost contact
structure F is a contact structure, the distinguished normal vector field ξ

is parallel with respect to the normal connection and U is an eigenvector of
the shape operator A with respect to ξ , at any point of M . In this section
we classify all such submanifolds of complex hyperbolic space which satisfy
the condition (17), for ρ 6= 2λ, where λ is the eigenvalue corresponding
to the eigenvector of the shape operator A, orthogonal to U . However,
according to our knowledge, the case ρ = 2λ is still unsolved.

Let Mn be a CR submanifold of CR dimension n−1
2 of complex hy-

perbolic space CH
n+p

2 which satisfies the condition (17) and let ρ 6= 2λ.
Using the same computations as in the case of complex projective space
and complex Euclidean space, we conclude that Aa = 0, a = 1, . . . , p − 1,
and hence, the following lemma holds:

Lemma 7.1 Let M be a complete n–dimensional CR submanifold of CR
dimension n−1

2 of a complex hyperbolic space CH
n+p

2 . If the the condition
(17) is satisfied and ρ 6= 2λ, where λ is the eigenvalue corresponding to
the eigenvector of the shape operator A, orthogonal to U , then Aa = 0,
a = 1, . . . , p− 1, where Aa, are the shape operators for the normals ξa.

Making use of this result, we prove

Theorem 7.1 Let M be a complete n–dimensional CR submanifold of
maximal CR dimension of a complex hyperbolic space CH

n+p
2 . If the condi-

tion (17) is satisfied and ρ 6= 2λ, where λ is the eigenvalue corresponding to
the eigenvector of the shape operator A, orthogonal to U , then there exists
a totally geodesic complex hyperbolic subspace CH

n+1
2 of CH

n+p
2 such that

M is a real hypersurface of CH
n+1

2 .

Proof. For N0(x) = {ξ ∈ T⊥x (M)|Aξ = 0}, Lemma 7.1 implies that
N0(x) = span{ξ1(x), . . . , ξp−1(x)}. If H0(x) denotes the maximal J-
invariant subspace of N0(x), that is, H0(x) = JN0(x) ∩ N0(x), by the
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second equation of (14), we obtain JN0(x) = N0(x) and consequently,
H0(x) = span{ξ1(x), . . . , ξp−1(x)}. Hence the orthogonal complement
H1(x) of H0(x) in T⊥(M) is spanned by ξ, which is parallel with respect
to the normal connection. Therefore, we can apply the codimension reduc-
tion theorem for real submanifolds of complex hyperbolic space ([16]) and
conclude that there exists real (n+1)-dimensional totally geodesic complex
hyperbolic space CH

n+1
2 , such that M is its real hypersurface.

Further, using Theorem 7.1, the submanifold M can be regarded as
a real hypersurface of CH

n+1
2 , which is totally geodesic submanifold in

CH
n+p

2 . Denoting by ı1 the immersion of M into CH
n+1

2 , and by ı2 the to-
tally geodesic immersion of CH

n+1
2 into CH

n+p
2 , from the Gauss equation,

it follows that

∇′ı1X ı1Y = ı1∇XY + g(A′X,Y )ξ′,

where A′ is the corresponding shape operator and ξ′ is a unit normal vector
field to M in CH

n+1
2 . By composing the totally geodesic immersion ı2 with

the immersion ı1 and using the Gauss equation we compute

∇ı2·ı1X ı2 · ı1Y = ı2(ı1∇XY + g(A′X, Y )ξ′), (20)

since CH
n+1

2 is totally geodesic in CH
n+p

2 . Further, comparing relation
(20) with the well-known Gauss formula, we conclude that ξ = ı2ξ

′ and
A = A′. Since CH

n+1
2 is a complex submanifold of CH

n+p
2 , with the

induced complex structure J ′, we have Jı2X
′ = ı2J

′X ′, X ′ ∈ T (CH
n+1

2 ).
Thus, from (8) it follows that

JıX = ı2J
′ı1X = ıF ′X + ν′(X)ı2ξ′ = ıF ′X + ν′(X)ξ

and therefore, we conclude that F = F ′ and ν′ = u. As the condition (18)
implies that F is a contact structure , Mn can be regarded as a contact
hypersurface of CH

n+1
2 and Theorem 4.2 (see also [33], pg. 221) implies

the following classification:

Theorem 7.2 Let M be a complete n–dimensional CR submanifold of
maximal CR dimension of a complex hyperbolic space CH

n+p
2 . If the con-

dition (17) is satisfied and ρ 6= 2λ, where λ is the eigenvalue corresponding
to the eigenvector of the shape operator A, orthogonal to U , and F and h

are the induced almost contact structure and the second fundamental form
of M , respectively, then F is a contact structure and M is congruent to one
of the following:

(i) A tube of radius r > 0 around a totally geodesic, totally real hyper-
bolic space form H

n+1
2 (−1);
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(ii) A tube of radius r > 0 around a totally geodesic complex hyperbolic
space form CH

n−1
2 (−4);

(iii) A geodesic hypersphere of radius r > 0, or
(iv) A horosphere.
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