GENERALIZED ORTHOGONAL PROJECTIONS AND SHORTED OPERATORS

GUSTAVO CORACH, ALEJANDRA MAESTRIPIERI AND DEMETRIO STOJANOFF

Dedicated to the memory of our friend Chicho Guadalupe

ABSTRACT. Let \mathcal{H} be a Hilbert space, $L(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} and $\langle , \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ the bounded sesquilinear form induced by a selfadjoint $A \in L(\mathcal{H}), \langle \xi, \eta \rangle_A = \langle A\xi, \eta \rangle, \, \xi, \eta \in \mathcal{H}$. Given $T \in L(\mathcal{H}), T$ is *A*-selfadjoint if $AT = T^*A$. If $S \subseteq \mathcal{H}$ is a closed subspace, we study the set of *A*-selfadjoint projections onto S,

 $\mathcal{P}(A,\mathcal{S}) = \{ Q \in L(\mathcal{H}) : Q^2 = Q, \ R(Q) = \mathcal{S}, \ AQ = Q^*A \}$

for different choices of A, mainly under the hypothesis that $A \ge 0$. In this paper we study the close relationship between the existence and properties of A-selfadjoint projections onto S and the shorted operator (also called Schur complement) $A_{/S}$ of A to S and the S-compression $A_S = A - A_{/S}$.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space, \mathcal{S} a closed subspace of \mathcal{H} and A a bounded linear positive (semidefinite) operator on \mathcal{H} . The pair (A, \mathcal{S}) is said to be *compatible* if there exists a bounded linear (not necessarily selfadjoint) projection Q which maps \mathcal{H} onto \mathcal{S} such that AQ is selfadjoint. Thus, if

$$\mathcal{P}(A,\mathcal{S}) = \{ Q \in L(\mathcal{H}) : Q^2 = Q, \ R(Q) = \mathcal{S}, \ AQ = Q^*A \},\$$

then (A, S) is compatible if and only if $\mathcal{P}(A, S)$ is not empty. In a recent paper [7] the authors introduced and studied this notion (see also Hassi and Nordström [13]). In particular it was shown that there exists a strong relationship between compatibility, the projections of $\mathcal{P}(A, S)$ and the shorted operator $A_{/s}$ of Krein [15] and Anderson-Trapp [2].

This paper is devoted to refine several results of [7], providing new formulae and properties of the so called *minimal projection* $P_{A,S}$ of $\mathcal{P}(A,S)$, and new characterization of compatible pairs, in order to apply them to shorted operators and compressions.

Observe that the elements of $\mathcal{P}(A, \mathcal{S})$ are selfadjoint for the sesquilinear form defined by A. Therefore, the usual best approximation properties of selfadjoint

²⁰⁰⁰ Mathematics Subject Classification. 47A64, 47A07 and 46C99.

Key words and phrases. Orthogonal projection, Schur complement, shorted operators, compression, abstract splines.

Partially supported by CONICET (PIP 4463/96), Universidad de Buenos Aires (UBACYT TX92 and TW49) and UNLP.

projections can be extended to the elements of $\mathcal{P}(A, \mathcal{S})$. Let us mention the following application of the notion of compatibility and A-selfadjoint projections to approximation theory.

Given two Hilbert spaces \mathcal{H} and \mathcal{H}_1 , $T \in L(\mathcal{H}, \mathcal{H}_1)$, \mathcal{S} a closed subspace of \mathcal{H} and $\xi \in \mathcal{H}$, an *abstract spline* or a (T, \mathcal{S}) -spline interpolant to ξ is any element of the set

$$\operatorname{sp}(T, \mathcal{S}, \xi) = \{ \eta \in \xi + \mathcal{S} : \|T\eta\| = \min_{\sigma \in \mathcal{S}} \|T(\xi + \sigma)\| \}.$$

It turns out that, if $A = T^*T$, then (A, S) is compatible if and only if $\operatorname{sp}(T, S, \xi)$ is not empty for any $\xi \in \mathcal{H}$ and, in that case, $\operatorname{sp}(T, S, \xi) = \{(1 - Q)\xi : Q \in \mathcal{P}(A, S)\}$ for any $\xi \in \mathcal{H} \setminus S$. Moreover, the vector of $\operatorname{sp}(T, S, \xi)$ with minimal norm is exactly $(1 - P_{A,S})\xi$, where $P_{A,S}$ is a distinguished element of $\mathcal{P}(A, S)$ defined in section 4 which is called the *minimal projection*. See [8] for proofs of these and related facts.

The notion of *shorted operator* of A to S, introduced by M. G. Krein [15] as part of the theory of extensions of Hermitian operators, was later rediscovered by W. N. Anderson and G. E. Trapp [1], [2], who applied it in electrical network theory.

In finite dimensional spaces, the shorted operator is one of the various manifestations of the Schur complement of a matrix. Given a block matrix

$$A = \left(\begin{array}{cc} B & C \\ D & E \end{array}\right),$$

with B invertible, then $E - DB^{-1}C$ is the Schur complement of B in A. This definition is due to E. Haynsworth [14], but it has appeared in several disguised forms since the beginning of the theory of matrices. The reader is referred to the nice surveys by R. W. Cottle [6] and D. Carlson [5] for many properties and applications. The notion was generalized in several directions. In particular, T. Ando [3] introduced, simultaneously with a generalization of the Schur complement, the concept of S-compression A_S of an operator A in the case of a finite dimensional space. In Ando's definition, if S is a subspace of \mathcal{H} and A is an operator on \mathcal{H} of the form $A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$, with B invertible on S, then

$$A_{/s} = \begin{pmatrix} 0 & 0 \\ 0 & E - DB^{-1}C \end{pmatrix} \text{ and } A_{s} = \begin{pmatrix} B & C \\ D & DB^{-1}C \end{pmatrix}.$$

W. N. Anderson [1] showed that if $A = \begin{pmatrix} B & C \\ C^* & D \end{pmatrix}$ is a $n \times n$ positive semidefinite matrix and B is a square $k \times k$ submatrix, then the operator

$$A_{/s} = \left(\begin{array}{cc} 0 & 0\\ 0 & E - DB^{\dagger}C \end{array}\right),$$

where B^{\dagger} is the Moore-Penrose pseudoinverse of B and S the subspace of \mathbb{C}^n generated by the fist k canonical vectors, has the following interpretation in electrical network theory: if A is the impedance matrix of a resistive *n*-port network, then $A_{/s}$ is the impedance matrix of the network obtained by shorting the first k ports. He proved that

$$A_{/s} = \max\{X \in \mathbb{C}^{n \times n} : 0 \le X \le A \quad \text{and} \quad R(X) \subseteq S^{\perp}\}$$

and used this property to extend the notion to Hilbert space positive operators:

Definition 1.1. Let $A \in L(\mathcal{H})^+$ and let $S \subseteq \mathcal{H}$ be a closed subspace. Then 1. The shorted operator of A by S is defined by

 $A_{/s} = \max\{X \in L(\mathcal{H})^+ : X \le A \quad and \quad R(X) \subseteq \mathcal{S}^\perp\}$

where the maximum is taken for the natural order relation in $L(\mathcal{H})^+$ (see [2]).

2. The S-compression A_S of A is defined as $A_S = A - A_{/_S}$.

The following general properties about the range and kernel of $A_{/s}$ and A_s are proved in section 2:

- 1. $\overline{\ker A + S} \subseteq \ker A_{/s} \subseteq A^{-1/2}(\overline{A^{1/2}(S)}).$
- 2. ker $A_{/s} = \ker A + S$ if and only if $A^{1/2}(S)$ is closed in R(A).
- 3. $A(\mathcal{S}) \subseteq R(A_{\mathcal{S}}) \subseteq \overline{A(\mathcal{S})}$ and both inclusions may be strict.
- 4. ker $A_{\mathcal{S}} = A^{-1}(\mathcal{S}^{\perp}) = A(\mathcal{S})^{\perp}$.

The following list contains some of the results of the paper relating the compatibility of the pair (A, S) with the properties of $A_{/s}$ and A_S :

1. If (A, \mathcal{S}) is compatible, and $E \in \mathcal{P}(A, \mathcal{S})$, then

$$A_{\mathcal{S}} = AE$$
 and $A_{/\mathcal{S}} = A(1-E).$

- 2. (A, S) is compatible if and only if $A_{/S} = \min\{R^*AR : R^2 = R, \ker R = S\}$ (see 5.1).
- 3. (A, \mathcal{S}) is compatible if and only if

$$\ker A_{/_{\mathcal{S}}} = \mathcal{S} + \ker A \quad \text{and} \quad R(A_{/_{\mathcal{S}}}) \subseteq R(A).$$

In this case, $R(A_{/s}) = R(A) \cap S^{\perp}$ (see 5.4).

- 4. (A, S) is compatible if and only if $R(A_S) = A(S)$ (see 5.5).
- 5. $R(A_{/s}) \subseteq R(A)$ if and only if the pair $(A, \ker A_{/s})$ is compatible (see 5.2).

Section 2 contains some properties of shorted operators and compressions we shall use later. In section 3 we present several results about A-selfadjoint operators and compatibility, for A a positive (semidefinite) operator. In section 4 we define and show formulas and properties of the minimal projection $P_{A,S}$ of $\mathcal{P}(A,S)$. In section 5 we get the mentioned characterizations of compatibility for a pair (A, S), in terms of the properties of shorted operators and compressions. Section 6 contains some examples.

2. Preliminaries

In this paper \mathcal{H} denotes a Hilbert space, $L(\mathcal{H})$ is the algebra of all linear bounded operators on \mathcal{H} , $L(\mathcal{H})^+$ is the subset of $L(\mathcal{H})$ of all (selfadjoint) positive operators, $GL(\mathcal{H})$ is the group of all invertible operators in $L(\mathcal{H})$ and $GL(\mathcal{H})^+ = GL(\mathcal{H}) \cap$ $L(\mathcal{H})^+$ (positive invertible operators). For every $C \in L(\mathcal{H})$ its range is denoted by R(C) and its nullspace by ker C. Denote by \mathcal{Q} (resp., \mathcal{P}) the set of all projections (resp., selfadjoint projections) in $L(\mathcal{H})$:

$$\mathcal{Q} = \mathcal{Q}(L(\mathcal{H})) = \{ Q \in L(\mathcal{H}) : Q^2 = Q \}, \quad \mathcal{P} = \mathcal{P}(L(\mathcal{H})) = \{ P \in \mathcal{Q} : P = P^* \}.$$

The nonselfadjoint elements of Q will be called *oblique projections*.

Along this note we use the fact that every $P \in \mathcal{P}$ induces a representation of elements of $L(\mathcal{H})$ by 2×2 matrices: if $T \in L(\mathcal{H})$ decomposes as

$$T = PTP + PT(1 - P) + (1 - P)TP + (1 - P)T(1 - P),$$

then T is represented by the matrix $\begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$, where for example $T_1 = PTP$, which is alternatively viewed as an element of $L(\mathcal{H})$ or $L(P(\mathcal{H}))$. Under this representation P can be identified with

$$\left(\begin{array}{cc}I_{P(\mathcal{H})} & 0\\0 & 0\end{array}\right) = \left(\begin{array}{cc}1 & 0\\0 & 0\end{array}\right)$$

and all idempotents Q with the same range as P have the form

$$Q = \left(\begin{array}{cc} 1 & x \\ 0 & 0 \end{array}\right)$$

for some $x \in L(\ker P, R(P))$.

Now we state the well known criterium due to Douglas [11] about ranges and factorizations of operators:

Theorem 2.1. Let $A, B \in L(\mathcal{H})$. Then the following conditions are equivalent:

- 1. $R(B) \subseteq R(A)$.
- 2. There exists a positive number λ such that $BB^* \leq \lambda AA^*$.
- 3. There exists $D \in L(\mathcal{H})$ such that B = AD.

Moreover, the operator D is unique if it satisfies the conditions

B = AD, ker $D = \ker B$ and $R(D) \subseteq \overline{R(A^*)}$.

In this case $||D||^2 = \inf\{\lambda : BB^* \le \lambda AA^*\}$ and A is called the **reduced** solution of the equation AX = B.

We state the following elementary result because we shall use it several times in this paper.

Lemma 2.2. Let $A \in L(\mathcal{H})^+$. Then

1. ker $A = \ker A^{1/2}$.

2.
$$R(A) \subseteq R(A^{1/2}) \subseteq \overline{R(A)}$$

3. If $R(A) \subseteq R(A) \subseteq R(A)$.

Proof. Item 1 and 2 are easy to see. If $R(A) = R(A^{1/2})$ and $\xi \in (\ker A)^{\perp}$, then there exists $\rho \in (\ker A)^{\perp}$ such that $A^{1/2}\xi = A\rho$. Therefore $A^{1/2}\rho = \xi$ and $R(A^{1/2})$ is closed. \Box

Shorted operator and compressions.

2.3. As before, let $P \in \mathcal{P}$ be the orthogonal projection onto the closed subspace $\mathcal{S} \subseteq \mathcal{H}$. The classical notion of Schur complement of a matrix (see [6] and [5] for concise surveys on the subject) has been extended to positive Hilbert space operators by M. G. Krein [15] and, later and independently, by W. N. Anderson and G. E.

Trapp [2] defining what is called the *shorted operator*: if $A \in L(\mathcal{H})^+$ then there exists

$$A_{/_{\mathcal{S}}} = \max\{X \in L(\mathcal{H})^+ : X \le A \quad \text{and} \quad R(X) \subseteq \mathcal{S}^{\perp}\}$$

where the maximum is taken for the natural order relation in $L(\mathcal{H})^+$ (see [2]). $A_{/s}$ is called the *shorted operator* of A to S^{\perp} . $\Sigma : \mathcal{P} \times L(\mathcal{H})^+ \to L(\mathcal{H})^+$, $(P, A) \mapsto A_{/s}$. Next we collect some results of Anderson-Trapp and E. L. Pekarev [19] which are relevant in this paper.

Theorem 2.4. Let $A \in L(\mathcal{H})^+$ with matrix representation $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$.

1. $R(b) \subseteq R(a^{1/2})$ and if $d \in L(S^{\perp}, S)$ is the RS of the equation $a^{1/2} x = b$ then

$$A_{/s} = \left(\begin{array}{cc} 0 & 0\\ 0 & c - d^*d \end{array}\right)$$

2. If $\mathcal{M} = \overline{A^{1/2}(\mathcal{S})}$ and $P_{\mathcal{M}}$ is the orthogonal projection onto \mathcal{M} then

$$A_{/s} = A^{1/2} (1 - P_{\mathcal{M}}) A^{1/2}.$$

- 3. $A_{/S}$ is the infimum of the set $\{R^*AR : R \in \mathcal{Q}, \text{ ker } R = S\}$; in general, the infimum is not attained.
- 4. $R(A) \cap S^{\perp} \subseteq R(A_{/s}) \subseteq R(A_{/s}^{1/2}) = R(A^{1/2}) \cap S^{\perp}$; in general, the inclusions are strict.

The reader is referred to [2] and [19] for proofs of these facts.

Corollary 2.5. Let $A \in L(\mathcal{H})^+$. Then

- 1. $\overline{\ker A + S} \subseteq \ker(A_{/s}) = A^{-1/2}(\overline{A^{1/2}(S)}).$
- 2. ker $A_{/S} = \ker A + S$ if and only if $A^{1/2}(S)$ is closed in $R(A^{1/2})$.

Proof.

1. By Theorem 2.4, if $\mathcal{M} = \overline{A^{1/2}(S)}$, then $A_{/s} = A^{1/2}(1 - P_{\mathcal{M}})A^{1/2}$. Hence both ker A and S are included in ker $A_{/s}$. On the other hand,

$$\ker A_{/_{\mathcal{S}}} = \ker A^{1/2} (1 - P_{\mathcal{M}}) A^{1/2} = \ker (1 - P_{\mathcal{M}}) A^{1/2} = A^{-1/2} (\mathcal{M}).$$

2. It is clear that $A^{1/2}(\mathcal{S})$ is closed in $R(A^{1/2})$ if and only if $\mathcal{M} \cap R(A^{1/2}) = A^{1/2}(\mathcal{S})$ if and only if $A^{-1/2}(\mathcal{M}) = A^{-1/2}(A^{1/2}(\mathcal{S})) = \ker A + \mathcal{S}$.

Definition 2.6. Let $A \in L(\mathcal{H})^+$, $P \in \mathcal{P}$ and $\mathcal{S} = R(P)$. The positive operator $A_{\mathcal{S}} := A - A_{/\mathcal{S}}$

will be called the S-compression of A.

Remark 2.7. Let $A \in L(\mathcal{H})^+$, $P \in \mathcal{P}$ and $\mathcal{S} = R(P)$. Using Theorem 2.4 and Proposition 5.1, one can easily deduce the following properties of $A_{\mathcal{S}}$:

1. $(A_{\mathcal{S}})_{/_{\mathcal{S}}} = 0.$

2. If $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$ and d is the reduced solution of the equation $a^{1/2}x = b$, then

$$A_{\mathcal{S}} = \begin{pmatrix} a & b \\ b^* & d^*d \end{pmatrix} = \begin{pmatrix} a^{1/2} & 0 \\ d^* & 0 \end{pmatrix} \begin{pmatrix} a^{1/2} & d \\ 0 & 0 \end{pmatrix}.$$

- 3. $A_{\mathcal{S}} = A^{1/2} P_{\mathcal{M}} A^{1/2}$, where $\mathcal{M} = \overline{A^{1/2}(\mathcal{S})}$. 4. ker $A_{\mathcal{S}} = A^{-1}(\mathcal{S}^{\perp})$. Indeed, since $\mathcal{M}^{\perp} = A^{-1/2}(\mathcal{S}^{\perp})$, then

$$\ker A_{\mathcal{S}} = \ker P_{\mathcal{M}} A^{1/2} = A^{-1/2}(\mathcal{M}^{\perp}) = A^{-1/2}(A^{-1/2}(\mathcal{S}^{\perp})) = A^{-1}(\mathcal{S}^{\perp}).$$

5. $A(\mathcal{S}) \subseteq R(A_{\mathcal{S}}) \subseteq A(\mathcal{S})$ and the inclusions may be strict. Indeed,

$$A(\mathcal{S}) = A_{\mathcal{S}}(\mathcal{S}) \subseteq R(A_{\mathcal{S}}) \subseteq (\ker A_{\mathcal{S}})^{\perp} = (A^{-1}(\mathcal{S}^{\perp}))^{\perp} = \overline{A(\mathcal{S})}.$$

See Example 6.9 in order to see an example of strict inclusions.

3. A-selfadjoint projections and compatibility

Throughout, \mathcal{S} is a closed subspace of \mathcal{H} and P is the orthogonal projection onto \mathcal{S} . As we said in the introduction, we consider a bounded sesquilinear form $\langle , \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ determined by a positive operator $A \in L(\mathcal{H}): \langle \xi, \eta \rangle_A = \langle A\xi, \eta \rangle$, $\xi, \eta \in \mathcal{H}$. This form induces the notion of A-orthogonality. For example, easy computations show that the A-orthogonal of \mathcal{S} is

$$\mathcal{S}^{\perp_A} := \{ \xi : \langle A\xi, \eta \rangle = 0 \ \forall \eta \in \mathcal{S} \} = A^{-1}(\mathcal{S}^{\perp}) = A(\mathcal{S})^{\perp}$$

Given $T \in L(\mathcal{H})$, an operator $W \in L(\mathcal{H})$ is called an A-adjoint of T if

$$\langle T\xi,\eta\rangle_A = \langle \xi,W\eta\rangle_A, \quad \xi,\ \eta\in\mathcal{H},$$

or, which is the same, if $T^*A = AW$. Therefore, the existence of an A-adjoint W of T is equivalent to $R(T^*A) \subseteq R(A)$. In particular, if $Q \in \mathcal{Q}$, then the existence of an A-adjoint of Q is also equivalent to

(1)
$$R(A) = R(A) \cap \ker Q^* \oplus R(A) \cap R(Q^*) = R(A) \cap (\ker Q)^{\perp} \oplus R(A) \cap R(Q)^{\perp}$$

Observe that T may have no A-adjoint, only one or many of them. We shall not deal in this paper with the general problem of existence and uniqueness of A-adjoint operators. Instead, we shall study the existence and uniqueness of A-selfadjoint projections, i.e., $Q \in \mathcal{Q}$ such that $AQ = Q^*A$. Among them, we are interested in those whose range is exactly \mathcal{S} . Thus, the main goal of the paper is the study of the set

$$\mathcal{P}(A,\mathcal{S}) = \{ Q \in \mathcal{Q} : R(Q) = \mathcal{S}, AQ = Q^*A \}$$

for different choices of A.

We shall state all the results for positive operators, though some of them are still true in a more general case. For general results on A-selfadjoint operators the reader is referred to the papers by Lax [16] and Dieudonné [10]; a recent paper by Hassi and Nordström [13] contains many interesting results on A-selfadjoint projections.

The following lemma gives equivalent conditions for a projection to be A- selfadjoint. Observe that they are similar to those for a selfadjoint projection.

Lemma 3.1. Let $A \in L(\mathcal{H})^+$ and $Q \in \mathcal{Q}$. Then the following conditions are equivalent:

- 1. Q is A-selfadjoint.
- 2. ker $Q \subseteq R(Q)^{\perp_A}$.
- 3. *Q* is an *A*-contraction, i.e. $\langle Q\xi, Q\xi \rangle_A \leq \langle \xi, \xi \rangle_A$ $\xi \in \mathcal{H}$.

Proof. $\mathbf{1} \leftrightarrow \mathbf{2}$: If $Q \in \mathcal{P}(A, \mathcal{S})$ and $\xi, \eta \in \mathcal{H}$, then

(2)
$$\langle A\eta, Q\xi \rangle = \langle Q^*A\eta, \xi \rangle = \langle AQ\eta, \xi \rangle = \langle Q\eta, A\xi \rangle,$$

so ker $Q \subseteq A^{-1}(S^{\perp})$. The converse can be proved in a similar way.

1 ↔ 3: First observe that condition 3 is equivalent to $Q^*AQ \leq A$. Now suppose that $Q^*AQ \leq A$. Then, by Theorem 2.1, the reduced solution D of the equation $A^{1/2}X = Q^*A^{1/2}$ satisfies $||D|| \leq 1$. We shall see that $D^2 = D$. Indeed, note that $AD^2 = Q^*A^{1/2}D = (Q^*)^2A^{1/2} = Q^*A^{1/2}$. Also

$$\ker Q^* A^{1/2} = \ker D \subseteq \ker D^2 \subseteq \ker AD^2 = \ker Q^* A^{1/2}$$

and $R(D^2) \subseteq R(D) \subseteq \overline{R(A^*)}$. Thus, D^2 is a reduced solution of $AX = Q^* A^{1/2}$ and, by uniqueness, $D^2 = D$. Since ||D|| = 1, it must be $D^* = D$. Since $Q^*A = A^{1/2}DA^{1/2}$, we conclude that $Q^*A = AQ$. Conversely, note that $AQ = Q^*AQ \ge 0$ and, if E = 1 - Q, then also $AE = E^*AE$. Therefore, $A = A(Q + E) = Q^*AQ + E^*AE \ge Q^*AQ$.

Throughout, we use the matrix representation determined by P. Given $A \in L(\mathcal{H})^+$, $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$, where a = PAP, b = PA(I-P) and c = (I-P)A(I-P).

Definition 3.2. Let $A \in L(\mathcal{H})^+$ and $S \subseteq \mathcal{H}$ a closed subspace. The pair (A, S) is said to be compatible if there exists an A-selfadjoint projection with range S, i.e. if $\mathcal{P}(A, S)$ is not empty.

Now, we state equivalent conditions to compatibility, in terms of the matrix representation given by P. Let $A \in L(\mathcal{H})^+$ with matrix representation $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$.

Proposition 3.3. Given $A \in L(\mathcal{H})^+$, the following conditions are equivalent:

- 1. The pair (A, S) is compatible.
- 2. R(PA) = R(PAP) or equivalently $R(b) \subseteq R(a)$.
- 3. The equation ax = b admits a solution.

Proof. $\mathbf{2} \leftrightarrow \mathbf{3}$: Apply Theorem 2.1.

1 ↔ **3:** Recall that a = PAP and b = PA(1 - P). If Y is a solution to (PAP)X = PA(1 - P), consider y = PY(1 - P) and $Q = \begin{pmatrix} 1 & y \\ 0 & 0 \end{pmatrix}$. Easy computations shows that $Q \in \mathcal{P}(A, \mathcal{S})$. Conversely if $Q \in \mathcal{P}(A, \mathcal{S})$, $Q = \begin{pmatrix} 1 & q \\ 0 & 0 \end{pmatrix}$ then writing the equality $AQ = Q^*A$ in matrix form, we get that q is a solution to ax = b.

Remark 3.4. Let $A \in L(\mathcal{H})^+$, $P \in \mathcal{P}$ with $R(P) = \mathcal{S}$. Then,

- 1. If R(PAP) is closed, the pair (A, S) is compatible. Indeed, if $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$ then, by Theorem 2.4, $R(b) \subseteq R(a^{1/2})$. But if R(PAP) is closed, $R(a^{1/2}) = R(a)$. Then, by Proposition 3.3, the pair (A, S) is compatible. In particular:
- 2. If dim $\mathcal{H} < \infty$ then every pair (A, \mathcal{S}) is compatible.
- 3. If dim $\mathcal{S} < \infty$ then (A, \mathcal{S}) is compatible.
- 4. If $A \in GL(\mathcal{H})^+$, then $R(PAP) = \mathcal{S}$, so that (A, \mathcal{S}) is compatible. In this case, the unique projection $P_{A,\mathcal{S}}$ onto \mathcal{S} which is A-selfadjoint, is determined (see [4]) by the formulae

(3)
$$P_{A,S} = P(1+P-A^{-1}PA)^{-1} = \left(PAP + (1-P)A(1-P)\right)^{-1}PA$$

Example 3.5. Let $A \in L(\mathcal{H})^+$ and consider

$$M = \begin{pmatrix} A & A^{1/2} \\ A^{1/2} & I \end{pmatrix} = \begin{pmatrix} A^{1/2} & 0 \\ I & 0 \end{pmatrix} \begin{pmatrix} A^{1/2} & I \\ 0 & 0 \end{pmatrix} \in L(\mathcal{H} \oplus \mathcal{H})^+.$$

If $S = H \oplus \{0\}$, then, by Lemma 2.2, the pair (M, S) is compatible if and only if R(A) is closed.

Now we give equivalent conditions to compatibility, in this case in terms of subspaces.

Proposition 3.6. Given $A \in L(\mathcal{H})^+$, the following conditions are equivalent:

- 1. The pair (A, S) is compatible.
- 2. $\mathcal{S} + \mathcal{S}^{\perp_A} = \mathcal{H}.$
- 3. $R(A^{1/2}) = A^{1/2}(\mathcal{S}) \oplus (A^{1/2}(\mathcal{S})^{\perp} \cap R(A^{1/2})).$
- 4. If $\mathcal{M} = \overline{A^{1/2}(\mathcal{S})}$, then $R(P_{\mathcal{M}}A^{1/2}) \subseteq R(A^{1/2}P)$.

Proof. $\mathbf{1} \leftrightarrow \mathbf{2}$: follows from Lemma 3.1 with R(Q) = S.

 $\begin{aligned} \mathbf{2} &\leftrightarrow \mathbf{3} \text{: If } \mathcal{H} = \mathcal{S} + \mathcal{S}^{\perp_A} \text{ then applying } A^{1/2} \text{ to both sides of the equality we get} \\ \text{that } A^{1/2}(\mathcal{H}) &= A^{1/2}(\mathcal{S}) + A^{1/2}(A^{-1}(\mathcal{S}^{\perp})) \text{ or } R(A^{1/2}) = A^{1/2}(\mathcal{S}) + A^{-1/2}(\mathcal{S}^{\perp}) \cap \\ R(A^{1/2}) &= A^{1/2}(\mathcal{S}) \oplus A^{1/2}(\mathcal{S})^{\perp} \cap R(A^{1/2}). \text{ Conversely, from } R(A^{1/2}) = A^{1/2}(\mathcal{S}) \oplus \\ A^{1/2}(\mathcal{S})^{\perp} \cap R(A^{1/2}) \text{ we get that } \mathcal{H} = \mathcal{S} + A^{-1}(\mathcal{S}^{\perp}) + \ker A^{1/2} = \mathcal{S} + A^{-1}(\mathcal{S}^{\perp}). \end{aligned}$

 $\mathbf{3} \leftrightarrow \mathbf{4}$: If $y \in R(A^{1/2})$ then $y = y_1 + y_2$ for unique $y_1 \in A^{1/2}(\mathcal{S})$ and $y_2 \in A^{1/2}(\mathcal{S})^{\perp}$, but then $P_{\mathcal{M}}(y) = y_1 \in R(A^{1/2}P)$. The converse is similar. \Box

Remark 3.7. If the pair (A, S) is compatible it follows from item 3 of Proposition 3.6 that $A^{1/2}(S)$ is closed in $R(A^{1/2})$. Observe that in this case if $\mathcal{M} = \overline{A^{1/2}(S)}$ then

 $R(A^{1/2}) = \mathcal{M} \cap R(A^{1/2}) \oplus \mathcal{M}^{\perp} \cap R(A^{1/2}).$

Conversely if $R(A^{1/2}) = \mathcal{M} \cap R(A^{1/2}) \oplus \mathcal{M}^{\perp} \cap R(A^{1/2})$ and $A^{1/2}(\mathcal{S})$ is closed in $R(A^{1/2})$ then (A, \mathcal{S}) is compatible.

Proposition 3.8. Let $A \in L(\mathcal{H})^+$, $P \in \mathcal{P}$ and $\mathcal{S} = R(P)$. Then

- 1. $(A^2_{/s})^{1/2} \leq A_{/s}$.
- 2. If A(S) is closed in R(A), then $A^{1/2}(S)$ is closed in $R(A^{1/2})$.

3. If (A, S) is compatible, then A(S) is closed in R(A).

Proof.

- 1. $A^2_{/_{\mathcal{S}}} \leq A^2$ implies that $(A^2_{/_{\mathcal{S}}})^{1/2} \leq A$. But $R((A^2_{/_{\mathcal{S}}})^{1/2}) \subseteq \mathcal{S}^{\perp}$.
- 2. Using Corollary 2.5, the fact that $A(\mathcal{S})$ is closed in R(A) implies that

$$\ker A^2_{/_{\mathcal{S}}} = \ker A^2 + \mathcal{S} = \ker A + \mathcal{S}.$$

Using item 1, we can deduce that ker $A_{/s} \subseteq \ker A + S$, so that $A^{1/2}(S)$ is closed in $R(A^{1/2})$, again by Corollary 2.5.

3. Assume that (A, \mathcal{S}) is compatible. By equation (1), if $Q \in \mathcal{P}(A, \mathcal{S})$, then

 $R(A) = R(A) \cap R(Q^*) \oplus R(A) \cap \ker Q^*.$

Therefore $A(S) = R(AQ) = R(Q^*A) = R(Q^*) \cap R(A)$ is closed in R(A).

Lemma 3.9. If $A \in L(\mathcal{H})^+$ then

- 1. The following conditions are equivalent:
 - (a) R(PAP) is closed.
 - (b) $A^{1/2}(\mathcal{S})$ is closed.
 - (c) A(S) is closed.
- 2. If R(PAP) is closed, then the pair (A, S) is compatible.
- 3. If the pair (A, S) is compatible, then $S + \ker A$ is closed.

Proof.

1. Since $A^{1/2}(S) = R(A^{1/2}P)$ and $PAP = (A^{1/2}P)^*A^{1/2}P$, we get that (a) is equivalent to (b). Suppose that R(PAP) is closed. Note that A(S) = R(AP) and R(AP) is closed if and only if R(PA) is closed if and only if $R(PA^2P)$ is closed. Note that $(PAP)^2 \leq PA^2P$ and

$$\ker(PAP)^2 = \ker PA^2P = \mathcal{S}^{\perp} \oplus (\mathcal{S} \cap \ker A).$$

Since $PA^2P \ge (PAP)^2 > 0$ in $(\ker(PAP)^2)^{\perp}$ we get that $R(PA^2P)$ is closed. The reverse implication is easy to see.

- 2. See Remark 3.4.
- 3. If (A, S) is compatible, then, by item 3 of Proposition 3.6, $A^{1/2}(S)$ is closed in $R(A^{1/2})$ and then $S + \ker A = A^{-1/2}(A^{1/2}(S))$ is closed.

The condition "A(S) closed in R(A)" (or equivalently "A(S) closed" when A has closed range), which is necessary for the pair (A, S) to be compatible (by Proposition 3.8), turns out to be sufficient when A has closed range, as we will see in the following proposition.

Proposition 3.10. If $A \in L(\mathcal{H})^+$ has closed range then the following conditions are equivalent:

- 1. The pair (A, S) is compatible.
- 2. R(PAP) is closed.
- 3. $S + \ker A$ is closed.

Proof. By Lemma 3.9, we know that $2 \to 1 \to 3$. If $\mathcal{S} + \ker A$ is closed then $P_{R(A)}(\mathcal{S})$ is closed. Therefore $A(\mathcal{S}) = A(P_{R(A)}(\mathcal{S}))$ which is closed because $P_{R(A)}(\mathcal{S}) \subseteq R(A)$ is closed.

Remark 3.11. If $A, B \in L(\mathcal{H})^+$ have both the same closed range, then ker A =ker B and, by Proposition 3.10, (A, \mathcal{S}) is compatible if and only if (B, \mathcal{S}) is compatible. Moreover, $\mathcal{P}(A, \mathcal{S})$ and $\mathcal{P}(B, \mathcal{S})$ are *parallel* affine manifolds by Remark 4.2 above.

For positive injective operators the following equivalences hold:

Proposition 3.12. If $A \in L(\mathcal{H})^+$ is injective then the following conditions are equivalent:

- 1. The pair (A, S) is compatible.
- 2. $S \oplus S^{\perp_A} = \mathcal{H}$. 3. $S^{\perp} \oplus \overline{A(S)}$ is closed.

Proof. $\mathbf{1} \leftrightarrow \mathbf{2}$: follows from Proposition 3.6 and the fact that $S \cap S^{\perp_A} = \{0\}$ when A is injective.

 $\mathbf{2} \leftrightarrow \mathbf{3}$: First observe that, if $\mathcal{W} = \overline{A(\mathcal{S})}$, then $\mathcal{S}^{\perp} + \mathcal{W}$ is always a dense set when A is injective because $\overline{S^{\perp} + W} = (S \cap A(S)^{\perp})^{\perp} = \mathcal{H}$. Then $S^{\perp} + \mathcal{W} = \mathcal{H}$ if and only if $\mathcal{S}^{\perp} + \mathcal{W}$ is closed. The equivalence follows by using the general fact that given closed subspaces \mathcal{M} and \mathcal{N} then $\mathcal{M} \oplus \mathcal{N} = \mathcal{H}$ if and only if $\mathcal{M}^{\perp} \oplus \mathcal{N}^{\perp} = \mathcal{H}$.

Remark 3.13. Given two subspaces \mathcal{S}, \mathcal{T} , the cosine of the Friedrichs angle between them is defined by

 $c(\mathcal{S},\mathcal{T}) = \sup\{|\langle \xi,\eta\rangle| : \xi \in \mathcal{S} \cap (\mathcal{S} \cap \mathcal{T})^{\perp}, \ \|\xi\| \le 1, \ \eta \in \mathcal{T} \cap (\mathcal{S} \cap \mathcal{T})^{\perp}, \ \|\eta\| \le 1\}.$

It is well known that $c(\mathcal{S}, \mathcal{T}) < 1$ if and only if $\mathcal{S} + \mathcal{T}$ is closed. Then compatibility in the case of a closed range operator or in the injective case is related to an angle condition between two subspaces:

- 1. If $A \in L(\mathcal{H})^+$ has closed range, then (A, \mathcal{S}) is compatible if and only if $c(\mathcal{S}, \ker A) < 1$ (see Proposition 3.10).
- 2. If $A \in L(\mathcal{H})^+$ is injective, then, by Proposition 3.12, (A, \mathcal{S}) is compatible if and only if $c(\mathcal{S}^{\perp}, \overline{A(\mathcal{S})}) < 1$.

4. The minimal projection

Let $A \in L(\mathcal{H})^+$ and $\mathcal{S} \subseteq \mathcal{H}$ a closed subspace such that the pair (A, \mathcal{S}) is compatible. Using Lemma 3.1 or Proposition 3.6, it is clear that $\mathcal{P}(A, \mathcal{S})$ is a singleton if and only if ker $A \cap S = \{0\}$. If this is no the case, there exists a projection in $\mathcal{P}(A, \mathcal{S})$ with optimal properties:

Definition 4.1. Let $A \in L(\mathcal{H})^+$ and suppose that the pair (A, \mathcal{S}) is compatible. If $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix} and \ d \in L(\mathcal{S}^{\perp}, \mathcal{S}) \ is \ the \ reduced \ solution \ of \ the \ equation \ ax = b,$ we define the following oblique projection onto \mathcal{S} :

$$P_{A,\mathcal{S}} = \left(\begin{array}{cc} 1 & d \\ 0 & 0 \end{array}\right).$$

Remark 4.2. Let $A \in L(\mathcal{H})^+$ and suppose that (A, \mathcal{S}) is compatible. Denote by $\mathcal{N} = A^{-1}(S^{\perp}) \cap \mathcal{S} = \ker A \cap \mathcal{S}.$ Then $P_{A,\mathcal{S}} \in \mathcal{P}(A,\mathcal{S}), \ker P_{A,\mathcal{S}} = A^{-1}(\mathcal{S}^{\perp}) \ominus \mathcal{N}$ and $\mathcal{P}(A, \mathcal{S})$ is an affine manifold that can be parametrized as

$$\mathcal{P}(A,\mathcal{S}) = P_{A,\mathcal{S}} + L(\mathcal{S}^{\perp},\mathcal{N}),$$

where $L(\mathcal{S}^{\perp}, \mathcal{N})$ is viewed as a subspace of $L(\mathcal{H})$. Observe that $\mathcal{P}(A, \mathcal{S})$ has a unique element $(P_{A,S})$ if and only if $\mathcal{N} = \{0\}$, i.e. if $\mathcal{S} \oplus A^{-1}(\mathcal{S}^{\perp}) = \mathcal{H}$.

Moreover $P_{A,S}$ has minimal norm in $\mathcal{P}(A,S)$. Nevertheless, $P_{A,S}$ is not in general the unique $Q \in \mathcal{P}(A, \mathcal{S})$ that realizes the minimum. For a proof of these facts see 3.6 of [7].

Proposition 3.3 shows that the pair (A, \mathcal{S}) is compatible if and only if $R(PA) \subseteq$ R(PAP). Therefore, if (A, \mathcal{S}) is compatible, it is natural to look at the reduced solution Q of the equation

$$(4) (PAP)X = PA$$

and its relation with $P_{A,S}$. Observe that $R(Q) \subseteq \overline{R(PAP)}$ which can be strictly included in \mathcal{S} , so that, in general, $Q \neq P_{A,\mathcal{S}}$. Nevertheless:

Proposition 4.3. Let $A \in L(\mathcal{H})^+$ such that the pair (A, \mathcal{S}) is compatible. Let Q be the reduced solution of the equation (4). Let $\mathcal{N} = \ker A \cap \mathcal{S}$. Then $Q = P_{A, \mathcal{S} \cap \mathcal{N}}$ and

$$P_{A,\mathcal{S}} = P_{\mathcal{N}} + Q.$$

Proof. Let $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$. In $L(\mathcal{S})$, ker $a = \mathcal{N}$ and $\overline{R(a)} = \overline{R(a^{1/2})} = \mathcal{S} \ominus \mathcal{N}$. Note that $R(Q) \subseteq \overline{R(a)}$. Also ker $Q = \ker(PA) = A^{-1}(\mathcal{S}^{\perp})$. If $\xi \in \mathcal{S} \ominus \mathcal{N}$, then $a(Q\xi) = (PAP)Q\xi = PA\xi = PAP\xi = a(\xi).$

Since a is injective in $\mathcal{S} \ominus \mathcal{N}$, we can deduce that $Q\xi = \xi$ for all $\xi \in \mathcal{S} \ominus \mathcal{N}$. Now, the compatibility of (A, \mathcal{S}) implies that $\mathcal{S} + A^{-1}(\mathcal{S}^{\perp}) = \mathcal{H}$. Also $A^{-1}(\mathcal{S}^{\perp}) \cap \mathcal{S} =$ $\ker A \cap \mathcal{S} = \mathcal{N}. \text{ Therefore } A^{-1}(\mathcal{S}^{\perp}) \oplus (\mathcal{S} \oplus \mathcal{N}) = \mathcal{H}. \text{ Then } Q^2 = Q \text{ and } R(Q) = \mathcal{S} \oplus \mathcal{N}.$ Note that

$$\ker Q = A^{-1}(\mathcal{S}^{\perp}) \subseteq A^{-1}((\mathcal{S} \ominus \mathcal{N})^{\perp}) = R(Q)^{\perp_A},$$

so that Q is A-selfadjoint by Lemma 3.1. On the other hand, $(\mathcal{S} \ominus \mathcal{N}) \cap \ker A = \{0\}$, so that Q is the unique element of $P(A, \mathcal{S} \ominus \mathcal{N})$, by Remark 4.2. Observe that $\mathcal{N} \subseteq \ker A \subseteq A^{-1}(\mathcal{S}^{\perp})$. Therefore

$$(P_{\mathcal{N}} + Q)^2 = P_{\mathcal{N}} + Q, \quad R(P_{\mathcal{N}} + Q) = \mathcal{S} \quad \text{and}$$

 $\ker(P_{\mathcal{N}} + Q) = (A^{-1}(\mathcal{S}^{\perp})) \ominus \mathcal{N}.$

These formulae clearly implies that $P_{\mathcal{N}} + Q = P_{A,\mathcal{S}}$ (see Remark 4.2).

By Proposition 3.6, the pair (A, \mathcal{S}) is compatible if and only if $R(P_{\mathcal{M}}A^{1/2}) \subseteq$ $R(A^{1/2}P)$ or equivalently if equation $A^{1/2}PX = P_{\mathcal{M}}A^{1/2}$ admits a solution. Moreover, equation (4) and equation $A^{1/2}PX = P_{\mathcal{M}}A^{1/2}$ have the same reduced solution as we will see in the following proposition.

617

Proposition 4.4. Let $A \in L(\mathcal{H})^+$ such that the pair (A, S) is compatible. Let $\mathcal{M} = \overline{A^{1/2}(S)}$ and $\mathcal{N} = \ker A \cap S$. Consider Q the reduced solution of the equation (5) $(A^{1/2}P)X = P_{\mathcal{M}}A^{1/2}.$

Then $Q = P_{A,S \ominus N}$ and $P_{A,S} = P_N + Q$. In particular, if $A^{1/2}(S)$ is closed and ker $A \cap S = \{0\}$, then

(6)
$$P_{A,S} = (A^{1/2}P)^{\dagger} P_{\mathcal{M}} A^{1/2} = (A^{1/2}P)^{\dagger} A^{1/2}$$

where $(A^{1/2}P)^{\dagger}$ denotes the Moore-Penrose pseudoinverse of $(A^{1/2}P)$.

Proof. We will prove that equations (4) and (5) have the same RS. Denote $B = A^{1/2}$. Recall that $\mathcal{M} = \overline{B(S)} = B^{-1}(S^{\perp})^{\perp}$. Observe that

(7)
$$BP_{\mathcal{M}}B = AP_{A,\mathcal{S}} = APP_{A,\mathcal{S}}$$

In fact, for $\xi \in \mathcal{H}$, let $\eta = P_{A,S}\xi$ and $\rho = \xi - \eta \in A^{-1}(S^{\perp})$; then $B\eta \in \mathcal{M}$ and $B\rho \in B^{-1}(S^{\perp}) = \mathcal{M}^{\perp}$. Hence $BP_{\mathcal{M}}B\xi = A\eta = AP_{A,S}\xi$. By Proposition 4.3, the projection $Q = P_{A,S} - P_{\mathcal{N}}$ is the reduced solution of the equation PAPX = PA. We shall see that Q is the reduced solution of the equation (5). First note that, by equation (7), $BP_{\mathcal{M}}B = (AP)P_{A,S} = (AP)Q$, so $B(P_{\mathcal{M}}B - BPQ) = 0$. But $R(P_{\mathcal{M}}B - BPQ) \subseteq \overline{R(B)} = (\ker B)^{\perp}$. Hence Q is a solution of (5). Note that $\ker P_{\mathcal{M}}B = B^{-1}(B^{-1}(S^{\perp})) = A^{-1}(S^{\perp}) = \ker Q$ by Proposition 4.3. Finally,

$$\overline{R((BP)^*)} = \overline{R(PB)} = \overline{R(PAP)} = \mathcal{S} \ominus \mathcal{N} = R(Q).$$

The first equality of equation (6) follows directly. The second, from the fact that

$$(A^{1/2}P)^{\dagger}P_{\mathcal{M}} = (A^{1/2}P)^{\dagger}.$$

	L		

Formula (6), for operators with closed range, is due to Golomb [12].

Corollary 4.5. Consider $A \in L(\mathcal{H})^+$ injective such that the pair (A, \mathcal{S}) is compatible. Then, with the same notations as in Proposition 4.4,

$$P_{A,\mathcal{S}} = A^{-1/2} P_{\mathcal{M}} A^{1/2}.$$

5. The relationship with shorted operators

As before, let $P \in \mathcal{P}$ be the orthogonal projection onto the closed subspace $\mathcal{S} \subseteq \mathcal{H}$. The following proposition relates, when (A, \mathcal{S}) is compatible, the shorted operator $A_{/\mathcal{S}}$ defined in section 2.3 with the elements of $\mathcal{P}(A, \mathcal{S})$.

Proposition 5.1. Let $A \in L(\mathcal{H})^+$ such that the pair (A, S) is compatible. Let $E \in \mathcal{P}(A, S)$ and Q = 1 - E. Then

- 1. $A_{/s} = AQ = Q^*AQ$.
- 2. $A_{/S} = \min\{R^*AR : R \in \mathcal{Q}, \ker R = S\}$. Actually, this property is equivalent to the compatibility of the pair (A, S).
- 3. $R(A_{/s}) = R(A) \cap S^{\perp}$.
- 4. ker $A_{/s} = \ker A + S$.

Proof.

1. Note that $0 \leq AQ = Q^*AQ \leq A$, by Lemma 3.1. Also $R(AQ) = R(Q^*A) \subseteq R(Q^*) = S^{\perp}$. Given $X \leq A$ with $R(X) \subseteq S^{\perp}$, then, since ker Q = S, we have that

$$X = Q^* X Q \le Q^* A Q = A Q,$$

where the first equality can be easily checked because $X = \begin{pmatrix} 0 & 0 \\ 0 & x \end{pmatrix}$.

- 2. By item 1, $Q^*AQ = A_{/s}$ and ker Q = S. So the minimum is attained at Q by Theorem 2.4. On the other hand, if the minimum is attained at some projection Y, then $Y^*AY = A_{/s} \leq A$ implies that Y is A-selfadjoint, by Lemma 3.1. Therefore $1 Y \in \mathcal{P}(A, S)$.
- 3. Clearly the equation $A_{/s} = AQ$ implies that $R(A_{/s}) \subseteq R(A) \cap S^{\perp}$. The other inclusion always holds by Theorem 2.4.
- 4. It follows from Remark 3.7 and Corollary 2.5

The condition $R(A_{/s}) \subseteq R(A)$, which is necessary for compatibility, implies that some subspace bigger than \mathcal{S} (actually ker $A_{/s}$) is A-compatible:

Proposition 5.2. Let $A \in L(\mathcal{H})^+$ such that $R(A_{/S}) \subseteq R(A)$. Denote ker $A_{/S} = \mathcal{T}$. Then

1. $A_{/\tau} = A_{/s}$.

2. The pair (A, \mathcal{T}) is compatible.

3. Let Q be the reduced solution of the equation $AX = A_{/s}$. Then

$$1 - Q = P_{A,\mathcal{T}}.$$

Proof. Item 1 follows directly from the definition of shorted operator. Condition $R(A_{/s}) \subseteq R(A)$ implies, by Douglas theorem, that the set

$$\Delta = \left\{ Q \in L(\mathcal{H}) : AQ = A_{/s} \text{ and } \ker Q = \mathcal{T} \right\}$$

is not empty. Let $Q \in \Delta$. Clearly Q verifies that ker $Q = \mathcal{T}$ and $Q^*A = AQ$, because $A_{/s}$ is selfadjoint. In order to prove that $1 - Q \in \mathcal{P}(A, \mathcal{T})$, it just remain to show that $Q^2 = Q$. Let us first prove that, if $\mathcal{Z} = A^{-1/2}(\mathcal{S}^{\perp}) = A^{1/2}(\mathcal{S})^{\perp}$, then Q is a solution of the equation $A^{1/2}X = P_{\mathcal{Z}}A^{1/2}$. Recall that $A_{/s} = A^{1/2}P_{\mathcal{Z}}A^{1/2}$, so $A^{1/2}(A^{1/2}Q - P_{\mathcal{Z}}A^{1/2}) = 0$. Then, if $\xi \in \mathcal{H}$, $P_{\mathcal{Z}}A^{1/2}\xi = A^{1/2}Q\xi + \eta$ with $\eta \in \ker A^{1/2} = R(A^{1/2})^{\perp} \subseteq \mathcal{Z}$. So that

$$\|\eta\|^2 = \langle P_{\mathcal{Z}}A^{1/2}\xi, \eta \rangle - \langle A^{1/2}Q\xi, \eta \rangle = \langle A^{1/2}\xi, P_{\mathcal{Z}}\eta \rangle = \langle A^{1/2}\xi, \eta \rangle = 0.$$

Therefore $A^{1/2}Q = P_{\mathbb{Z}}A^{1/2}$. Note that also $A^{1/2}Q^2 = (P_{\mathbb{Z}})^2 A^{1/2} = P_{\mathbb{Z}}A^{1/2}$, so $A^{1/2}(Q^2 - Q) = 0$. Let $\rho \in R(Q)$. Then $Q\rho - \rho \in \ker A \cap R(Q)$. If $Q\rho - \rho = Q\omega$, for some $\omega \in \mathcal{H}$, then $0 = AQ\omega = A_{/s}\omega$. So $\omega \in \ker A_{/s} = \mathcal{T} = \ker Q$. Therefore $Q\rho = \rho$ for every $\rho \in R(Q)$. This clearly implies that $Q^2 = Q$ and $1 - Q \in \mathcal{P}(A, \mathcal{T})$, showing item 2.

Denote by Q_o the reduced solution of $AX = A_{/s}$. Then $R(Q_o) \subseteq \overline{R(A)} = (\ker A)^{\perp}$. Also $\ker Q_o = \ker A_{/s} = \mathcal{T}$ so that $1 - Q_o \in \mathcal{P}(A, \mathcal{T})$ and $R(Q_o) \subseteq A^{-1}(\mathcal{T}^{\perp})$. Then $R(1 - Q_o) = \mathcal{T} = R(P_{A,\mathcal{T}})$ and

$$\ker(1-Q_o) = R(Q_o) \subseteq A^{-1}(\mathcal{T}^{\perp}) \cap (\ker A)^{\perp}$$
$$\subseteq A^{-1}(\mathcal{T}^{\perp}) \cap (\mathcal{T} \cap \ker A)^{\perp} = \ker P_{A,\mathcal{T}}$$

by Remark 4.2. Therefore it must be $P_{A,T} = 1 - Q_o$.

Remark 5.3.

- 1. Observe that if A has closed range then (A, S) is compatible if and only if $ker(A_{/S}) = S + ker A$. Indeed, (A, S) is compatible if and only if $A^{1/2}(S)$ is closed (see Proposition 3.10) if and only if $A^{1/2}(S)$ is closed in $R(A^{1/2})$ (because $R(A^{1/2}) = R(A)$ is closed) if and only if $R(A_{/S}) = S + ker A$ (see Corollary 2.5). Note that $R(A_{/S}) = R(A) \cap S^{\perp}$ if R(A) closed.
- 2. If A is injective, using Propositions 5.1 and 5.2, one gets that (A, S) is compatible if and only if $R(A_{/s}) = R(A) \cap S^{\perp}$ and $\ker(A_{/s}) = S$ (see also 5.5 of [7]).

Now we state a general result:

Theorem 5.4. Let $A \in L(\mathcal{H})^+$ and S a closed subspace of \mathcal{H} . Then (A, S) is compatible if and only if $R(A_{/S}) = R(A) \cap S^{\perp}$ and ker $A_{/S} = \ker A + S$.

Proof. One implication is stated in Proposition 5.1. Conversely, if $R(A_{/s}) = R(A) \cap S^{\perp}$ and ker $A_{/s} = \ker A + S = \mathcal{T}$ then, by Proposition 5.2, pair (A, \mathcal{T}) is compatible, or equivalently $\mathcal{T} + A^{-1}(\mathcal{T}^{\perp}) = \mathcal{H}$. But

$$\ker A \subseteq A^{-1}(\mathcal{S}^{\perp}) = A(\mathcal{S})^{\perp} = A(\mathcal{T})^{\perp} = A^{-1}(\mathcal{T}^{\perp}).$$

so that $\mathcal{S} + A^{-1}(\mathcal{S}^{\perp}) = \mathcal{H}$. Then (A, \mathcal{S}) is compatible.

Compressions. Let $A \in L(\mathcal{H})^+$ and $S \subseteq \mathcal{H}$ a closed subspace. Recall from Definition 2.6, that the *compression* of A by S is $A_S = A - A_{/S}$. Using Proposition 5.1, if (A, S) is compatible, then $A_S = AP_{A,S}$. So that $R(A_S) = A(S)$. In the next Proposition we shall see that this equality actually characterizes compatibility:

Proposition 5.5. Let $A \in L(\mathcal{H})^+$, $P \in \mathcal{P}$ and $\mathcal{S} = R(P)$. Then

- 1. The pair (A, S) is compatible if and only if $R(A_S) = A(S)$.
- 2. If (A, S) is compatible and Y is the reduced solution of the equation $(AP)X = A_S$ and $\mathcal{N} = \ker A \cap S$, then $Y = P_{A,S \ominus \mathcal{N}}$ and

$$P_{A,\mathcal{S}} = Y + P_{\mathcal{N}}.$$

Proof. If (A, S) is compatible then from the properties of A_S above, $R(A_S) = A(S)$. Conversely, $R(A_S) = A(S)$ implies that the equation $APX = A_S$ admits a solution (apply Douglas' theorem). Denote by Y the reduced solution of the equation $APX = A_S$. Then

(8)
$$\ker Y = \ker A_{\mathcal{S}} = A(\mathcal{S})^{\perp} \quad \text{and}$$

(9)
$$R(Y) \subseteq (\ker AP)^{\perp} = (\mathcal{S}^{\perp} + \mathcal{N})^{\perp} = \mathcal{S} \ominus \mathcal{N} \subseteq \mathcal{S}.$$

So that PY = Y and $A_{\mathcal{S}} = AY = Y^*A$, which means that Y is A-selfadjoint. On the other hand, because $A|_{\mathcal{S}} = A_{\mathcal{S}}|_{\mathcal{S}}$ and the fact that $A|_{\mathcal{S} \ominus \mathcal{N}}$ is injective, we can deduce that $Y\xi = \xi$ for every $\xi \in \mathcal{S} \ominus \mathcal{N}$, which means that $Y^2 = Y$. Then Y^2 is the reduced solution and $Y = Y^2$. So $\mathcal{H} = R(Y) + \ker Y \subseteq \mathcal{S} + A(\mathcal{S})^{\perp}$ and the pair (A, \mathcal{S}) is compatible. Using formulae (8) and (9), item 2 follows as in the proof of Proposition 4.3.

6. Some examples

Example 6.1. Given a positive injective operator $A \in L(\mathcal{H})$ with non-closed range. Let $\xi \in R(A^{1/2})$ and let P_{ξ} be the orthogonal projection onto the subspace $\langle \xi \rangle$ generated by ξ . Then $R(P_{\xi}) \subseteq R(A^{1/2})$, so that, by Douglas' theorem, $P_{\xi} \leq \lambda A$ for some positive number λ which we can suppose equal to 1, by changing A by λA . It is well known that this implies that the operator $B \in L(\mathcal{H} \oplus \mathcal{H})$ defined by

$$B = \left(\begin{array}{cc} A & P_{\xi} \\ P_{\xi} & A \end{array}\right)$$

is positive. By Lemma 2.2, R(A) is strictly contained in $R(A^{1/2})$. Suppose that $\xi \in R(A^{1/2}) \setminus R(A)$. Let $\mathcal{S} = \mathcal{H}_1 = \mathcal{H} \oplus 0$. Then $\mathcal{S}^{\perp} = \mathcal{H}_2 = 0 \oplus \mathcal{H}$. We shall see that B is injective, ker $B_{/s} = \mathcal{S}$, moreover $B(\mathcal{S})$ is closed in R(B) (this condition is necessary for compatibility and it implies that $B^{1/2}(\mathcal{S})$ is closed in $R(B^{1/2})$ i.e. ker $B_{/s} = \mathcal{S}$, by Proposition 3.8), but the pair (B, \mathcal{S}) is incompatible. Indeed, it is clear that B does not verify condition of P_{\xi} = $A^{1/2}X$. Then $B_{/s} = \begin{pmatrix} 0 & 0 \\ 0 & A - D^*D \end{pmatrix}$. Note that ker D = ker P_x implies $DP_{\xi} = D$. So $D^*D = P_{\xi}D^*D$. Then, if $0 \oplus \eta \in \ker B_{/s}$,

$$A\eta = D^* D\eta = P_{\xi} D^* D\eta = \lambda \xi \text{ for some } \lambda \in \mathbb{R} \Rightarrow \eta = 0$$

because $\xi \notin R(A)$ and A is injective. So ker $B_{/s} = S$. Also

$$B(\omega \oplus \eta) = 0 \oplus 0 \Rightarrow A\omega + P_{\xi} \ \eta = 0 = A\eta + P_{\xi} \ \omega \Rightarrow A\omega = A\eta = 0 \Rightarrow \omega = \eta = 0,$$

so that B is injective. Finally, $\mathcal{H} \oplus \langle \xi \rangle \cap R(B) = B(\mathcal{H} \oplus 0)$, because if $\omega \neq 0$, then $A\omega \notin \langle \xi \rangle$ and $B(\eta \oplus \omega) \notin \mathcal{H} \oplus \langle \xi \rangle$ for every $\eta \in \mathcal{H}$. Therefore $B(\mathcal{S})$ is closed in R(B).

Remark 6.2. Let $P \in \mathcal{P}$, $R(P) = \mathcal{S}$ and $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix} \in L(\mathcal{H})^+$. It is well known that the positivity of A implies that $R(b) \subseteq R(a^{1/2})$. Therefore it is true, without restrictions on A, that if dim $\mathcal{S} < \infty$, then the pair (A, \mathcal{S}) is compatible, since in this case R(a) = R(PAP) must be closed, so $R(b) \subseteq R(a^{1/2}) = R(a)$ and Proposition 3.3 can be applied. On the other hand, if dim $\mathcal{S}^{\perp} < \infty$ and R(A) is closed then, by Proposition 3.10, (A, \mathcal{S}) is compatible. However, if R(A) is not closed, then Example 6.3 shows that the result fails in general. **Example 6.3.** Let $A \in L(\mathcal{H})^+$ be injective non invertible. Let $\xi \in \mathcal{H} \setminus R(A)$ a unit vector. Denote by \mathcal{S}^{\perp} the subspace generated by ξ , $P = P_{\mathcal{S}}$ and $P_{\xi} = 1 - P$. If

$$A = \left(\begin{array}{cc} a & b \\ b^* & c \end{array}\right)$$

in terms of P and $A\xi = \lambda \xi + \eta$ with $\eta \in S$, then $\lambda = \langle A\xi, \xi \rangle \neq 0$ and $\eta \neq 0$ (otherwise $\xi \in R(A)$). Therefore $c = \lambda P_{\xi}$ and $b(\mu\xi) = \mu\eta, \ \mu \in \mathbb{C}$.

Suppose that $\eta \in R(a)$, i.e., there exists $\nu \in S$ which verifies $a\nu = b\xi$. Then $PA(\nu - \xi) = a\nu - b\xi = 0$, so $A(\nu - \xi)$ is a multiple of ξ , which must be 0 ($\xi \notin R(A)$). So $\nu = \xi$, a contradiction. Therefore $R(b) \not\subseteq R(a)$ and the pair (A, S) is incompatible.

Let d be the reduced solution of the equation $a^{1/2}x = b$. The facts that $\eta \notin R(a)$ and that $a^{1/2}$ is injective in S clearly implies that $R(a^{1/2}) \cap R(d) = \{0\}$. Consider now the operator

$$B = \left(\begin{array}{cc} a & b \\ b^* & dd^* \end{array}\right) \ge 0.$$

Then the pair (B, S) is also incompatible and $B_{/s} = 0$. But in this case B is injective. Indeed,

$$B = \begin{pmatrix} a & a^{1/2}d \\ d^*a^{1/2} & dd^* \end{pmatrix} = \begin{pmatrix} a^{1/2} & 0 \\ d^* & 0 \end{pmatrix} \begin{pmatrix} a^{1/2} & d \\ 0 & 0 \end{pmatrix}$$

and therefore

$$\ker B = \ker \begin{pmatrix} a^{1/2} & d \\ 0 & 0 \end{pmatrix} = \{0\}$$

because $R(a^{1/2}) \cap R(d) = \{0\}$, $a^{1/2}$ is injective in S and d is injective in S^{\perp} . This example shows the intrinsic necessarity of the condition ker $A_{/S} = S$ in the equivalence given in Theorem 5.4: if A is injective, the pair (A, S) is compatible $\iff R(A_{/S}) \subseteq R(A)$ and ker $A_{/S} = S$. In fact the example shows that $R(A_{/S}) \subseteq R(A)$ does not imply ker $A_{/S} = S$ neither in the injective case. In this sense this example complements Example 6.1.

6.4. Two positive operators $A, B \in L(\mathcal{H})$ are in the same "Thompson component", if

$$A \sim B \iff R(A^{1/2}) = R(B^{1/2}) \iff \lambda A \le B \le \mu A$$

for some constants λ, μ in \mathbb{R}_+ . A natural question is: given \mathcal{S} a closed subspace of \mathcal{H} , is it true that (A, \mathcal{S}) is compatible if and only if (B, \mathcal{S}) is compatible? This is true for closed range operators by Remark 3.11. Unfortunately, in general the answer is no, as we shall see in the following example. We first need a lemma:

Lemma 6.5. Let $A, B \in L(\mathcal{H})^+$.

- 1. If R(A) = R(B) then $R(A^t) = R(B^t)$ for $0 \le t \le 1$. In particular $A \sim B$.
- 2. If $A \in L(\mathcal{H})^+$ and R(A) is not closed, then there exists $B \in L(\mathcal{H})^+$ such that $A \sim B$ but $R(A) \neq R(B)$.

Proof.

- 1. By Douglas theorem, R(A) = R(B) implies that there exist $\lambda, \mu > 0$ such that $\lambda A^2 \leq B^2 \leq \mu A^2$. Then, by Löwner theorem [17], $\lambda^t A^{2t} \leq B^{2t} \leq \mu^t A^{2t}$ and $R(A^t) = R(B^t)$, for $0 \leq t \leq 1$. Taking t = 1/2 one gets that $A \sim B$.
- 2. Denote $C = A^{1/2}$. If $G \in GL(\mathcal{H})^+$, then $R(C) = R(CG^{1/2}) = R((CGC)^{1/2})$. We claim that G can be chosen in such a way that $R(A) \neq R(CGC)$. Indeed, take $\xi \in R(C) \setminus R(A)$, $\eta \in (\ker C)^{\perp}$ such that $C\eta = \xi$, and $\rho \in R(C)$ such that $\langle \rho, \eta \rangle > 0$ (recall that R(C) is dense in $(\ker C)^{\perp}$). Choose $G \in GL(\mathcal{H})^+$ such that $G\rho = \eta$. This can be done working separately in the subspace \mathcal{Z} generated by ρ and η , and in \mathcal{Z}^{\perp} . The condition $\langle \rho, \eta \rangle > 0$ is sufficient by an easy 2×2 argument. Then $\xi = C\eta = CG\rho \in R(CGC) \setminus R(A)$. Take B = CGC.

Example 6.6. Let $A \in L(\mathcal{H})^+$ injective but not invertible. Suppose that $A \sim B$ and $\lambda A \leq B \leq \mu A$ with $\lambda < 1 < \mu$. By last lemma, we can also suppose that $R(A) \neq R(B)$. So there exists $\xi \in R(A) \setminus R(B) \subseteq R(A^{1/2}) = R(B^{1/2})$. Let P_{ξ} be the orthogonal projection onto the subspace generated by ξ . Then $R(P_{\xi}) \subseteq$ $R(A^{1/2}) = R(B^{1/2})$. So that, by Douglas theorem, we can suppose $2P_{\xi} \leq A$ and $2P_{\xi} \leq B$. As in Example 6.1, the operators $M_A, M_B \in L(\mathcal{H} \oplus \mathcal{H})$ defined by

$$M_A = \begin{pmatrix} A & P_{\xi} \\ P_{\xi} & A \end{pmatrix}, \quad M_B = \begin{pmatrix} B & P_{\xi} \\ P_{\xi} & B \end{pmatrix}$$

are positive. Let $S = \mathcal{H}_1 = \mathcal{H} \oplus 0$. Then $S^{\perp} = \mathcal{H}_2 = 0 \oplus \mathcal{H}$. In Example 6.1 it is shown that M_B is injective but the pair (M_B, S) is incompatible. On the other hand, since $\xi \in R(A)$, then the pair (M_A, S) is compatible. We shall see that $M_A \sim M_B$, thus contradicting the previous conjecture. Indeed, note that

$$2P_{\xi} \leq A ext{ and } rac{1}{\mu} B \leq A \quad \Rightarrow \quad 2A - rac{1}{\mu} B \geq 2P_{\xi} \geq \left(2 - rac{1}{\mu}\right) P_{\xi}.$$

Therefore

$$2M_A = 2 \begin{pmatrix} A & P_{\xi} \\ P_{\xi} & A \end{pmatrix} \ge \frac{1}{\mu} \begin{pmatrix} B & P_{\xi} \\ P_{\xi} & B \end{pmatrix} = \frac{1}{\mu} M_B$$

Analogously $2P_{\xi} \leq B$ and $\lambda A \leq B$ implies that $2B - \lambda A \geq 2P_{\xi} \geq (2 - \lambda)P_{\xi}$. Therefore

$$2M_B = 2 \begin{pmatrix} B & P_{\xi} \\ P_{\xi} & B \end{pmatrix} \ge \lambda \begin{pmatrix} A & P_{\xi} \\ P_{\xi} & A \end{pmatrix} = \lambda M_A.$$

Example 6.7. Let $\mathcal{A} = \{(A, P) \in L(\mathcal{H})^+ \times \mathcal{P} : \text{ the pair } (A, S) \text{ is compatible}\}$. If dim $\mathcal{H} = \infty$, then the space \mathcal{A} is neither open nor closed in $L(\mathcal{H})^+ \times \mathcal{P}$. Indeed, the proper subset $GL(\mathcal{H})^+ \times \mathcal{P} \subseteq \mathcal{A}$ of \mathcal{A} is dense in $L(\mathcal{H})^+ \times \mathcal{P}$, so \mathcal{A} is not closed. On the other hand, let A be a positive injective operator in $L(\mathcal{H})$ with non-closed range and $\xi \in R(A^{1/2})$. Consider the operator $B \in L(\mathcal{H} \oplus \mathcal{H})$ defined in Example 6.1. If $\mathcal{S} = \mathcal{H}_1 = \mathcal{H} \oplus 0$, then (B, \mathcal{S}) is compatible if and only if $\xi \in R(A)$. It is easy to see that some $\xi \in R(A)$ can be approached by elements of $R(A^{1/2}) \setminus R(A)$ and so, the

compatible pair (B, \mathcal{S}) can be approached by non compatible pairs. Since $\mathcal{H} \oplus \mathcal{H}$ is isomorphic to \mathcal{H} , this shows that \mathcal{A} is not open in $L(\mathcal{H})^+ \times \mathcal{P}$.

Example 6.8. Consider the map $\alpha : \mathcal{A} \to \mathcal{Q}$ given by $\alpha(A, P) = P_{A,S}$, where \mathcal{A} is the set defined in Example 6.7. We shall see that α is not continuous. Indeed, fix $\mathcal{S} \subseteq \mathcal{H}$ and consider $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$, such that R(b) = R(a) is a closed subspace \mathcal{M} properly included in \mathcal{S} . Denote by $\mathcal{N} = \mathcal{S} \ominus \mathcal{M}$ and consider the projection $P_{\mathcal{N}}$ and some element $u \in L(\mathcal{S}^{\perp}, \mathcal{N}) \subseteq L(\mathcal{H}), u \neq 0$. Consider, for every $n \in \mathbb{N}$,

$$A_{n} = A + \frac{1}{n} (P_{\mathcal{N}} + u)^{*} (P_{\mathcal{N}} + u)$$

= $A + \frac{1}{n} \begin{pmatrix} 1 & 0 & u \\ 0 & 0 & 0 \\ u^{*} & 0 & u^{*}u \end{pmatrix} \overset{\mathcal{N}}{\mathcal{S}^{\perp}}$
= $\begin{pmatrix} \frac{1}{n} & 0 & \frac{1}{n} & u \\ 0 & a & b \\ \frac{1}{n} & u^{*} & b^{*} & c + \frac{1}{n} & u^{*}u \end{pmatrix} \ge A \ge 0$

It is clear that $A_n \to A$. Note that a is invertible in $L(\mathcal{M})$. Then, by Remark 4.2,

$$P_{A,S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a^{-1}b \\ 0 & 0 & 0 \end{pmatrix} \begin{array}{c} \mathcal{N} \\ \mathcal{M} \\ \mathcal{S}^{\perp} \end{array}$$

Note that $a + \frac{1}{n} P_{\mathcal{N}}$ is invertible in $L(\mathcal{S})$. Then, by equation (3),

$$P_{A_n,\mathcal{S}} = \begin{pmatrix} n & 0 & 0\\ 0 & a^{-1} & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{n} & 0 & \frac{1}{n}u\\ 0 & a & b\\ \frac{1}{n}u^* & b^* & c + \frac{1}{n}u^*u \end{pmatrix} = \begin{pmatrix} 1 & 0 & u\\ 0 & 1 & a^{-1}b\\ 0 & 0 & 0 \end{pmatrix} \stackrel{\mathcal{N}}{\mathcal{S}^{\perp}}$$

for all $n \in \mathbb{N}$. Therefore $\alpha(A_n, P) = P_{A_n, S} \not\rightarrow P_{A, S} = \alpha(A, P)$. Remark that the sequence $\alpha(A_n, P)$ converges (actually, it is constant) to $P_{A, S} + u$, which belongs to $\mathcal{P}(A, S)$ by Remark 4.2. Also, it is easy to see that, for every $n \in \mathbb{N}$, $(A_n)_{/S} = A_{/S}$.

Example 6.9. Let $A \in L(\mathcal{H})^+$ and

$$M = \begin{pmatrix} A & A^{1/2} \\ A^{1/2} & I \end{pmatrix} = \begin{pmatrix} A^{1/2} & 0 \\ I & 0 \end{pmatrix} \begin{pmatrix} A^{1/2} & I \\ 0 & 0 \end{pmatrix} \in L(\mathcal{H} \oplus \mathcal{H})^+$$

like in Example 3.5. Denote by $S = \mathcal{H} \oplus \{0\}$ and by $N = \begin{pmatrix} A^{1/2} & I \\ 0 & 0 \end{pmatrix}$. Since $M = N^*N$, then ker $M = \ker N = \{\xi \oplus -A^{1/2}\xi : \xi \in \mathcal{H}\}$ which is the graph of $-A^{1/2}$. Note that $R(N) = (R(A^{1/2}) + R(I)) \oplus \{0\} = S$, so that R(M) is also closed. Also $M_{/s} = \begin{pmatrix} 0 & 0 \\ 0 & P_{\ker A} \end{pmatrix}$, because the reduced solution of the equation $A^{1/2}X = A^{1/2}$ is $D = P_{R(A)}$.

If A is injective not inversible, then (M, \mathcal{S}) is not compatible (because R(A) is properly included in $R(A^{1/2})$). Also $M = M_{\mathcal{S}}$ and $M(\mathcal{S}) \neq R(M_{\mathcal{S}})$. Hence in this example $R(M_{\mathcal{S}}) = \overline{M(\mathcal{S})}$ while $M(\mathcal{S})$ is not closed (see Proposition 5.5).

References

- [1] W. N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971), 520–525.
- [2] W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60 - 71.
- [3] T. Ando, Generalized Schur complements, *Linear Algebra Appl.* 27 (1979), 173–186.
- [4] E. Andruchow, G. Corach and D. Stojanoff, Geometry of oblique projections, Studia Math. **137** (1999), 61–79.
- [5] D. Carlson, What are Schur complements, anyway?, Linear Algebra Appl. 74 (1986), 257–275.
- [6] R. W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974), 189-211.
- [7] G. Corach, A. Maestripieri and D. Stojanoff, Schur complements and oblique projections, Acta Sci. Math. (Szeged) 67 (2001), 439–459.
- [8] G. Corach, A. Maestripieri and D. Stojanoff, Oblique projections and abstract splines, preprint.
- [9] F. Deutsch, The angle between subspaces in Hilbert space, in Approximation theory, wavelets and applications (S. P. Singh, ed.), Kluwer, Netherlands (1995), 107–130.
- [10] J. Dieudonné, Quasi-hermitian operators, in Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1961), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford (1961), 115–122.
- [11] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
- [12] M. Golomb, Splines, n-widths and optimal approximations, MRC Technical Summary Report **784**, 1967.
- [13] S. Hassi, K. Nordström, On projections in a space with an indefinite metric, Linear Algebra Appl. 208/209 (1994), 401-417.
- [14] E. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), 73-81.
- [15] M. G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N.S.) **20(62)** (1947), 431–495
- [16] P. D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633–647.
- [17] K. Löwner, Uber monotone Matrixfunktionen, Math. Zeit. 38 (1934), 177–216.
- [18] Z. Pasternak-Winiarski, On the dependence of the orthogonal projector on deformations of the scalar product, Studia Math. 128 (1998), 1–17.
- [19] E. L. Pekarev, Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1992), 147-163.
- [20] V. Ptak, Extremal operators and oblique projections, *Časopis Pěst. Math.* **110** (1985), 343– 350.
- [21] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc. 14 (1963), 438-443.

DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE INGENIERÍA, UNIVERSIDAD DE BUENOS AIRES E-mail address: gcorach@ciudad.com.ar

INSTITUTO DE CIENCIAS, UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO, SAN MIGUEL, AR-GENTINA

E-mail address: amaestri@ungs.edu.ar

DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD NACIONAL de La Plata, La Plata, Argentina

E-mail address: demetrio@mate.unlp.edu.ar URL: http://www.mate.unlp.edu.ar/~demetrio/ 625