GENERALIZED ORTHOGONAL PROJECTIONS AND SHORTED OPERATORS

GUSTAVO CORACH, ALEJANDRA MAESTRIPIERI AND DEMETRIO STOJANOFF
Dedicated to the memory of our friend Chicho Guadalupe

Abstract

Let \mathcal{H} be a Hilbert space, $L(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} and $\langle,\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ the bounded sesquilinear form induced by a selfadjoint $A \in L(\mathcal{H}),\langle\xi, \eta\rangle_{A}=\langle A \xi, \eta\rangle, \xi, \eta \in \mathcal{H}$. Given $T \in L(\mathcal{H}), T$ is A-selfadjoint if $A T=T^{*} A$. If $\mathcal{S} \subseteq \mathcal{H}$ is a closed subspace, we study the set of A-selfadjoint projections onto \mathcal{S}, $$
\mathcal{P}(A, \mathcal{S})=\left\{Q \in L(\mathcal{H}): Q^{2}=Q, R(Q)=\mathcal{S}, A Q=Q^{*} A\right\}
$$ for different choices of A, mainly under the hypothesis that $A \geq 0$. In this paper we study the close relationship between the existence and properties of A-selfadjoint projections onto \mathcal{S} and the shorted operator (also called Schur complement) $A_{/ \mathcal{S}}$ of A to \mathcal{S} and the \mathcal{S}-compression $A_{\mathcal{S}}=A-A_{/ \mathcal{S}}$.

1. Introduction

Let \mathcal{H} be a Hilbert space, \mathcal{S} a closed subspace of \mathcal{H} and A a bounded linear positive (semidefinite) operator on \mathcal{H}. The pair (A, \mathcal{S}) is said to be compatible if there exists a bounded linear (not necessarily selfadjoint) projection Q which maps \mathcal{H} onto \mathcal{S} such that $A Q$ is selfadjoint. Thus, if

$$
\mathcal{P}(A, \mathcal{S})=\left\{Q \in L(\mathcal{H}): Q^{2}=Q, R(Q)=\mathcal{S}, A Q=Q^{*} A\right\}
$$

then (A, \mathcal{S}) is compatible if and only if $\mathcal{P}(A, \mathcal{S})$ is not empty. In a recent paper [7] the authors introduced and studied this notion (see also Hassi and Nordström [13]). In particular it was shown that there exists a strong relationship between compatibility, the projections of $\mathcal{P}(A, \mathcal{S})$ and the shorted operator $A_{/ \mathcal{S}}$ of Krein [15] and Anderson-Trapp [2].

This paper is devoted to refine several results of [7], providing new formulae and properties of the so called minimal projection $P_{A, \mathcal{S}}$ of $\mathcal{P}(A, \mathcal{S})$, and new characterization of compatible pairs, in order to apply them to shorted operators and compressions.

Observe that the elements of $\mathcal{P}(A, \mathcal{S})$ are selfadjoint for the sesquilinear form defined by A. Therefore, the usual best approximation properties of selfadjoint

[^0]projections can be extended to the elements of $\mathcal{P}(A, \mathcal{S})$. Let us mention the following application of the notion of compatibility and A-selfadjoint projections to approximation theory.

Given two Hilbert spaces \mathcal{H} and $\mathcal{H}_{1}, T \in L\left(\mathcal{H}, \mathcal{H}_{1}\right), \mathcal{S}$ a closed subspace of \mathcal{H} and $\xi \in \mathcal{H}$, an abstract spline or a (T, \mathcal{S})-spline interpolant to ξ is any element of the set

$$
\operatorname{sp}(T, \mathcal{S}, \xi)=\left\{\eta \in \xi+\mathcal{S}:\|T \eta\|=\min _{\sigma \in \mathcal{S}}\|T(\xi+\sigma)\|\right\}
$$

It turns out that, if $A=T^{*} T$, then (A, \mathcal{S}) is compatible if and only if $\operatorname{sp}(T, \mathcal{S}, \xi)$ is not empty for any $\xi \in \mathcal{H}$ and, in that case, $\operatorname{sp}(T, \mathcal{S}, \xi)=\{(1-Q) \xi: Q \in \mathcal{P}(A, \mathcal{S})\}$ for any $\xi \in \mathcal{H} \backslash \mathcal{S}$. Moreover, the vector of $\operatorname{sp}(T, \mathcal{S}, \xi)$ with minimal norm is exactly $\left(1-P_{A, \mathcal{S}}\right) \xi$, where $P_{A, \mathcal{S}}$ is a distinguished element of $\mathcal{P}(A, \mathcal{S})$ defined in section 4 which is called the minimal projection. See [8] for proofs of these and related facts.

The notion of shorted operator of A to \mathcal{S}, introduced by M. G. Krein [15] as part of the theory of extensions of Hermitian operators, was later rediscovered by W. N. Anderson and G. E. Trapp [1], [2], who applied it in electrical network theory.

In finite dimensional spaces, the shorted operator is one of the various manifestations of the Schur complement of a matrix. Given a block matrix

$$
A=\left(\begin{array}{ll}
B & C \\
D & E
\end{array}\right)
$$

with B invertible, then $E-D B^{-1} C$ is the Schur complement of B in A. This definition is due to E. Haynsworth [14], but it has appeared in several disguised forms since the beginning of the theory of matrices. The reader is referred to the nice surveys by R. W. Cottle [6] and D. Carlson [5] for many properties and applications. The notion was generalized in several directions. In particular, T. Ando [3] introduced, simultaneously with a generalization of the Schur complement, the concept of \mathcal{S}-compression $A_{\mathcal{S}}$ of an operator A in the case of a finite dimensional space. In Ando's definition, if \mathcal{S} is a subspace of \mathcal{H} and A is an operator on \mathcal{H} of the form $A=\left(\begin{array}{cc}B & C \\ D & E\end{array}\right)$, with B invertible on \mathcal{S}, then

$$
A_{/ \mathcal{s}}=\left(\begin{array}{cc}
0 & 0 \\
0 & E-D B^{-1} C
\end{array}\right) \quad \text { and } \quad A_{\mathcal{S}}=\left(\begin{array}{cc}
B & C \\
D & D B^{-1} C
\end{array}\right)
$$

W. N. Anderson [1] showed that if $A=\left(\begin{array}{cc}B & C \\ C^{*} & D\end{array}\right)$ is a $n \times n$ positive semidefinite matrix and B is a square $k \times k$ submatrix, then the operator

$$
A_{/ s}=\left(\begin{array}{cc}
0 & 0 \\
0 & E-D B^{\dagger} C
\end{array}\right)
$$

where B^{\dagger} is the Moore-Penrose pseudoinverse of B and \mathcal{S} the subspace of \mathbb{C}^{n} generated by the fist k canonical vectors, has the following interpretation in electrical network theory: if A is the impedance matrix of a resistive n-port network, then $A_{/ s}$ is the impedance matrix of the network obtained by shorting the first k ports. He proved that

$$
A_{/ s}=\max \left\{X \in \mathbb{C}^{n \times n}: 0 \leq X \leq A \quad \text { and } \quad R(X) \subseteq \mathcal{S}^{\perp}\right\}
$$

and used this property to extend the notion to Hilbert space positive operators:
Definition 1.1. Let $A \in L(\mathcal{H})^{+}$and let $\mathcal{S} \subseteq \mathcal{H}$ be a closed subspace. Then

1. The shorted operator of A by \mathcal{S} is defined by

$$
A_{/ \mathcal{s}}=\max \left\{X \in L(\mathcal{H})^{+}: X \leq A \quad \text { and } \quad R(X) \subseteq \mathcal{S}^{\perp}\right\}
$$

where the maximum is taken for the natural order relation in $L(\mathcal{H})^{+}$(see [2]).
2. The \mathcal{S}-compression $A_{\mathcal{S}}$ of A is defined as $A_{\mathcal{S}}=A-A_{/ \mathcal{S}}$.

The following general properties about the range and kernel of $A_{/ \mathcal{s}}$ and $A_{\mathcal{S}}$ are proved in section 2:

1. $\overline{\operatorname{ker} A+\mathcal{S}} \subseteq \operatorname{ker} A_{/ \mathcal{S}} \subseteq A^{-1 / 2}\left(\overline{A^{1 / 2}(\mathcal{S})}\right)$.
2. $\operatorname{ker} A_{/ \mathcal{s}}=\operatorname{ker} A+\mathcal{S}$ if and only if $A^{1 / 2}(\mathcal{S})$ is closed in $R(A)$.
3. $A(\mathcal{S}) \subseteq R\left(A_{\mathcal{S}}\right) \subseteq \overline{A(\mathcal{S})}$ and both inclusions may be strict.
4. $\operatorname{ker} A_{\mathcal{S}}=A^{-1}\left(\mathcal{S}^{\perp}\right)=A(\mathcal{S})^{\perp}$.

The following list contains some of the results of the paper relating the compatibility of the pair (A, \mathcal{S}) with the properties of $A_{/ \mathcal{S}}$ and $A_{\mathcal{S}}$:

1. If (A, \mathcal{S}) is compatible, and $E \in \mathcal{P}(A, \mathcal{S})$, then

$$
A_{\mathcal{S}}=A E \quad \text { and } \quad A_{/ s}=A(1-E)
$$

2. (A, \mathcal{S}) is compatible if and only if $A_{/ \mathcal{s}}=\min \left\{R^{*} A R: R^{2}=R\right.$, $\left.\operatorname{ker} R=\mathcal{S}\right\}$ (see 5.1).
3. (A, \mathcal{S}) is compatible if and only if

$$
\operatorname{ker} A_{/ s}=\mathcal{S}+\operatorname{ker} A \quad \text { and } \quad R\left(A_{/ s}\right) \subseteq R(A)
$$

In this case, $R\left(A_{/ \mathcal{S}}\right)=R(A) \cap \mathcal{S}^{\perp}$ (see 5.4).
4. (A, \mathcal{S}) is compatible if and only if $R\left(A_{\mathcal{S}}\right)=A(\mathcal{S})$ (see 5.5).
5. $R\left(A_{/ \mathcal{s}}\right) \subseteq R(A)$ if and only if the pair $\left(A, \operatorname{ker} A_{/ \mathcal{s}}\right)$ is compatible (see 5.2).

Section 2 contains some properties of shorted operators and compressions we shall use later. In section 3 we present several results about A-selfadjoint operators and compatibility, for A a positive (semidefinite) operator. In section 4 we define and show formulas and properties of the minimal projection $P_{A, \mathcal{S}}$ of $\mathcal{P}(A, \mathcal{S})$. In section 5 we get the mentioned characterizations of compatibility for a pair (A, \mathcal{S}), in terms of the properties of shorted operators and compressions. Section 6 contains some examples.

2. Preliminaries

In this paper \mathcal{H} denotes a Hilbert space, $L(\mathcal{H})$ is the algebra of all linear bounded operators on $\mathcal{H}, L(\mathcal{H})^{+}$is the subset of $L(\mathcal{H})$ of all (selfadjoint) positive operators, $G L(\mathcal{H})$ is the group of all invertible operators in $L(\mathcal{H})$ and $G L(\mathcal{H})^{+}=G L(\mathcal{H}) \cap$ $L(\mathcal{H})^{+}$(positive invertible operators). For every $C \in L(\mathcal{H})$ its range is denoted by $R(C)$ and its nullspace by $\operatorname{ker} C$. Denote by \mathcal{Q} (resp., \mathcal{P}) the set of all projections (resp., selfadjoint projections) in $L(\mathcal{H})$:

$$
\mathcal{Q}=\mathcal{Q}(L(\mathcal{H}))=\left\{Q \in L(\mathcal{H}): Q^{2}=Q\right\}, \quad \mathcal{P}=\mathcal{P}(L(\mathcal{H}))=\left\{P \in \mathcal{Q}: P=P^{*}\right\}
$$

The nonselfadjoint elements of \mathcal{Q} will be called oblique projections.
Along this note we use the fact that every $P \in \mathcal{P}$ induces a representation of elements of $L(\mathcal{H})$ by 2×2 matrices: if $T \in L(\mathcal{H})$ decomposes as

$$
T=P T P+P T(1-P)+(1-P) T P+(1-P) T(1-P),
$$

then T is represented by the matrix $\left(\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right)$, where for example $T_{1}=P T P$, which is alternatively viewed as an element of $L(\mathcal{H})$ or $L(P(\mathcal{H}))$. Under this representation P can be identified with

$$
\left(\begin{array}{cc}
I_{P(\mathcal{H})} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and all idempotents Q with the same range as P have the form

$$
Q=\left(\begin{array}{ll}
1 & x \\
0 & 0
\end{array}\right)
$$

for some $x \in L(\operatorname{ker} P, R(P))$.
Now we state the well known criterium due to Douglas [11] about ranges and factorizations of operators:

Theorem 2.1. Let $A, B \in L(\mathcal{H})$. Then the following conditions are equivalent:

1. $R(B) \subseteq R(A)$.
2. There exists a positive number λ such that $B B^{*} \leq \lambda A A^{*}$.
3. There exists $D \in L(\mathcal{H})$ such that $B=A D$.

Moreover, the operator D is unique if it satisfies the conditions

$$
B=A D, \quad \text { ker } D=\operatorname{ker} B \quad \text { and } \quad R(D) \subseteq \overline{R\left(A^{*}\right)} .
$$

In this case $\|D\|^{2}=\inf \left\{\lambda: B B^{*} \leq \lambda A A^{*}\right\}$ and A is called the reduced solution of the equation $A X=B$.

We state the following elementary result because we shall use it several times in this paper.

Lemma 2.2. Ler $A \in L(\mathcal{H})^{+}$. Then

1. $\operatorname{ker} A=\operatorname{ker} A^{1 / 2}$.
2. $R(A) \subseteq R\left(A^{1 / 2}\right) \subseteq \overline{R(A)}$.
3. If $R(A)$ is not closed then $R(A)$ is properly included in $R\left(A^{1 / 2}\right)$.

Proof. Item 1 and 2 are easy to see. If $R(A)=R\left(A^{1 / 2}\right)$ and $\xi \in(\operatorname{ker} A)^{\perp}$, then there exists $\rho \in(\operatorname{ker} A)^{\perp}$ such that $A^{1 / 2} \xi=A \rho$. Therefore $A^{1 / 2} \rho=\xi$ and $R\left(A^{1 / 2}\right)$ is closed. Clearly this implies that $R(A)$ is also closed.

Shorted operator and compressions.

2.3. As before, let $P \in \mathcal{P}$ be the orthogonal projection onto the closed subspace $\mathcal{S} \subseteq \mathcal{H}$. The classical notion of Schur complement of a matrix (see [6] and [5] for concise surveys on the subject) has been extended to positive Hilbert space operators by M. G. Krein [15] and, later and independently, by W. N. Anderson and G. E.

Trapp [2] defining what is called the shorted operator: if $A \in L(\mathcal{H})^{+}$then there exists

$$
A_{/ s}=\max \left\{X \in L(\mathcal{H})^{+}: X \leq A \quad \text { and } \quad R(X) \subseteq \mathcal{S}^{\perp}\right\}
$$

where the maximum is taken for the natural order relation in $L(\mathcal{H})^{+}$(see [2]). $A_{/ s}$ is called the shorted operator of A to $\mathcal{S}^{\perp} . \Sigma: \mathcal{P} \times L(\mathcal{H})^{+} \rightarrow L(\mathcal{H})^{+},(P, A) \mapsto A_{/ s}$. Next we collect some results of Anderson-Trapp and E. L. Pekarev [19] which are relevant in this paper.

Theorem 2.4. Let $A \in L(\mathcal{H})^{+}$with matrix representation $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$.

1. $R(b) \subseteq R\left(a^{1 / 2}\right)$ and if $d \in L\left(\mathcal{S}^{\perp}, \mathcal{S}\right)$ is the $R S$ of the equation $a^{1 / 2} x=b$ then

$$
A_{/ s}=\left(\begin{array}{cc}
0 & 0 \\
0 & c-d^{*} d
\end{array}\right)
$$

2. If $\mathcal{M}=\overline{A^{1 / 2}(\mathcal{S})}$ and $P_{\mathcal{M}}$ is the orthogonal projection onto \mathcal{M} then

$$
A_{/ \mathcal{s}}=A^{1 / 2}\left(1-P_{\mathcal{M}}\right) A^{1 / 2}
$$

3. $A_{/ s}$ is the infimum of the set $\left\{R^{*} A R: R \in \mathcal{Q}\right.$, $\left.\operatorname{ker} R=\mathcal{S}\right\}$; in general, the infimum is not attained.
4. $R(A) \cap \mathcal{S}^{\perp} \subseteq R\left(A_{/ \mathcal{s}}\right) \subseteq R\left(A_{/ s}^{1 / 2}\right)=R\left(A^{1 / 2}\right) \cap \mathcal{S}^{\perp}$; in general, the inclusions are strict.

The reader is referred to [2] and [19] for proofs of these facts.
Corollary 2.5. Let $A \in L(\mathcal{H})^{+}$. Then

1. $\overline{\operatorname{ker} A+\mathcal{S}} \subseteq \operatorname{ker}\left(A_{/ \mathcal{S}}\right)=A^{-1 / 2}\left(\overline{A^{1 / 2}(\mathcal{S})}\right)$.
2. $\operatorname{ker} A_{/ \mathcal{S}}=\operatorname{ker} A+\mathcal{S}$ if and only if $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$.

Proof.

1. By Theorem 2.4, if $\mathcal{M}=\overline{A^{1 / 2}(\mathcal{S})}$, then $A_{/ \mathcal{S}}=A^{1 / 2}\left(1-P_{\mathcal{M}}\right) A^{1 / 2}$. Hence both $\operatorname{ker} A$ and \mathcal{S} are included in $\operatorname{ker} A_{/ \mathcal{S}}$. On the other hand,

$$
\operatorname{ker} A_{/ \mathcal{S}}=\operatorname{ker} A^{1 / 2}\left(1-P_{\mathcal{M}}\right) A^{1 / 2}=\operatorname{ker}\left(1-P_{\mathcal{M}}\right) A^{1 / 2}=A^{-1 / 2}(\mathcal{M})
$$

2. It is clear that $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$ if and only if $\mathcal{M} \cap R\left(A^{1 / 2}\right)=$ $A^{1 / 2}(\mathcal{S})$ if and only if $A^{-1 / 2}(\mathcal{M})=A^{-1 / 2}\left(A^{1 / 2}(\mathcal{S})\right)=\operatorname{ker} A+\mathcal{S}$.

Definition 2.6. Let $A \in L(\mathcal{H})^{+}, P \in \mathcal{P}$ and $\mathcal{S}=R(P)$. The positive operator

$$
A_{\mathcal{S}}:=A-A_{/ \mathcal{S}}
$$

will be called the \mathcal{S}-compression of A.
Remark 2.7. Let $A \in L(\mathcal{H})^{+}, P \in \mathcal{P}$ and $\mathcal{S}=R(P)$. Using Theorem 2.4 and Proposition 5.1, one can easily deduce the following properties of $A_{\mathcal{S}}$:

1. $\left(A_{\mathcal{S}}\right)_{/ \mathcal{S}}=0$.
2. If $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$ and d is the reduced solution of the equation $a^{1 / 2} x=b$, then

$$
A_{\mathcal{S}}=\left(\begin{array}{cc}
a & b \\
b^{*} & d^{*} d
\end{array}\right)=\left(\begin{array}{cc}
a^{1 / 2} & 0 \\
d^{*} & 0
\end{array}\right)\left(\begin{array}{cc}
a^{1 / 2} & d \\
0 & 0
\end{array}\right)
$$

3. $A_{\mathcal{S}}=A^{1 / 2} P_{\mathcal{M}} A^{1 / 2}$, where $\mathcal{M}=\overline{A^{1 / 2}(\mathcal{S})}$.
4. $\operatorname{ker} A_{\mathcal{S}}=A^{-1}\left(\mathcal{S}^{\perp}\right)$. Indeed, since $\mathcal{M}^{\perp}=A^{-1 / 2}\left(\mathcal{S}^{\perp}\right)$, then
$\operatorname{ker} A_{\mathcal{S}}=\operatorname{ker} P_{\mathcal{M}} A^{1 / 2}=A^{-1 / 2}\left(\mathcal{M}^{\perp}\right)=A^{-1 / 2}\left(A^{-1 / 2}\left(\mathcal{S}^{\perp}\right)\right)=A^{-1}\left(\mathcal{S}^{\perp}\right)$.
5. $A(\mathcal{S}) \subseteq R\left(A_{\mathcal{S}}\right) \subseteq \overline{A(\mathcal{S})}$ and the inclusions may be strict. Indeed,

$$
A(\mathcal{S})=A_{\mathcal{S}}(\mathcal{S}) \subseteq R\left(A_{\mathcal{S}}\right) \subseteq\left(\operatorname{ker} A_{\mathcal{S}}\right)^{\perp}=\left(A^{-1}\left(\mathcal{S}^{\perp}\right)\right)^{\perp}=\overline{A(\mathcal{S})}
$$

See Example 6.9 in order to see an example of strict inclusions.

3. A-SELFADJOint PROJECTIONS AND COMPATIBILITY

Throughout, \mathcal{S} is a closed subspace of \mathcal{H} and P is the orthogonal projection onto \mathcal{S}. As we said in the introduction, we consider a bounded sesquilinear form $\langle,\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ determined by a positive operator $A \in L(\mathcal{H}):\langle\xi, \eta\rangle_{A}=\langle A \xi, \eta\rangle$, $\xi, \eta \in \mathcal{H}$. This form induces the notion of A-orthogonality. For example, easy computations show that the A-orthogonal of \mathcal{S} is

$$
\mathcal{S}^{\perp_{A}}:=\{\xi:\langle A \xi, \eta\rangle=0 \quad \forall \eta \in \mathcal{S}\}=A^{-1}\left(\mathcal{S}^{\perp}\right)=A(\mathcal{S})^{\perp} .
$$

Given $T \in L(\mathcal{H})$, an operator $W \in L(\mathcal{H})$ is called an A-adjoint of T if

$$
\langle T \xi, \eta\rangle_{A}=\langle\xi, W \eta\rangle_{A}, \quad \xi, \eta \in \mathcal{H}
$$

or, which is the same, if $T^{*} A=A W$. Therefore, the existence of an A-adjoint W of T is equivalent to $R\left(T^{*} A\right) \subseteq R(A)$. In particular, if $Q \in \mathcal{Q}$, then the existence of an A-adjoint of Q is also equivalent to

$$
\begin{equation*}
R(A)=R(A) \cap \operatorname{ker} Q^{*} \oplus R(A) \cap R\left(Q^{*}\right)=R(A) \cap(\operatorname{ker} Q)^{\perp} \oplus R(A) \cap R(Q)^{\perp} \tag{1}
\end{equation*}
$$

Observe that T may have no A-adjoint, only one or many of them. We shall not deal in this paper with the general problem of existence and uniqueness of A-adjoint operators. Instead, we shall study the existence and uniqueness of A-selfadjoint projections, i.e., $Q \in \mathcal{Q}$ such that $A Q=Q^{*} A$. Among them, we are interested in those whose range is exactly \mathcal{S}. Thus, the main goal of the paper is the study of the set

$$
\mathcal{P}(A, \mathcal{S})=\left\{Q \in \mathcal{Q}: R(Q)=\mathcal{S}, A Q=Q^{*} A\right\}
$$

for different choices of A.
We shall state all the results for positive operators, though some of them are still true in a more general case. For general results on A-selfadjoint operators the reader is referred to the papers by Lax [16] and Dieudonné [10]; a recent paper by Hassi and Nordström [13] contains many interesting results on A-selfadjoint projections.

The following lemma gives equivalent conditions for a projection to be A-selfadjoint. Observe that they are similar to those for a selfadjoint projection.

Lemma 3.1. Let $A \in L(\mathcal{H})^{+}$and $Q \in \mathcal{Q}$. Then the following conditions are equivalent:

1. Q is A-selfadjoint.
2. $\operatorname{ker} Q \subseteq R(Q)^{\perp_{A}}$.
3. Q is an A-contraction, i.e. $\langle Q \xi, Q \xi\rangle_{A} \leq\langle\xi, \xi\rangle_{A} \quad \xi \in \mathcal{H}$.

Proof. $1 \leftrightarrow 2$: If $Q \in \mathcal{P}(A, \mathcal{S})$ and $\xi, \eta \in \mathcal{H}$, then

$$
\begin{equation*}
\langle A \eta, Q \xi\rangle=\left\langle Q^{*} A \eta, \xi\right\rangle=\langle A Q \eta, \xi\rangle=\langle Q \eta, A \xi\rangle \tag{2}
\end{equation*}
$$

so $\operatorname{ker} Q \subseteq A^{-1}\left(S^{\perp}\right)$. The converse can be proved in a similar way.
$\mathbf{1} \leftrightarrow \mathbf{3}$: First observe that condition 3 is equivalent to $Q^{*} A Q \leq A$. Now suppose that $Q^{*} A Q \leq A$. Then, by Theorem 2.1, the reduced solution D of the equation $A^{1 / 2} X=Q^{*} A^{1 / 2}$ satisfies $\|D\| \leq 1$. We shall see that $D^{2}=D$. Indeed, note that $A D^{2}=Q^{*} A^{1 / 2} D=\left(Q^{*}\right)^{2} A^{1 / 2}=Q^{*} A^{1 / 2}$. Also

$$
\operatorname{ker} Q^{*} A^{1 / 2}=\operatorname{ker} D \subseteq \operatorname{ker} D^{2} \subseteq \operatorname{ker} A D^{2}=\operatorname{ker} Q^{*} A^{1 / 2}
$$

and $R\left(D^{2}\right) \subseteq R(D) \subseteq \overline{R\left(A^{*}\right)}$. Thus, D^{2} is a reduced solution of $A X=Q^{*} A^{1 / 2}$ and, by uniqueness, $D^{2}=D$. Since $\|D\|=1$, it must be $D^{*}=D$. Since $Q^{*} A=$ $A^{1 / 2} D A^{1 / 2}$, we conclude that $Q^{*} A=A Q$. Conversely, note that $A Q=Q^{*} A Q \geq 0$ and, if $E=1-Q$, then also $A E=E^{*} A E$. Therefore, $A=A(Q+E)=Q^{*} A Q+$ $E^{*} A E \geq Q^{*} A Q$.

Throughout, we use the matrix representation determined by P. Given $A \in$ $L(\mathcal{H})^{+}, A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$, where $a=P A P, b=P A(I-P)$ and $c=(I-P) A(I-P)$.
Definition 3.2. Let $A \in L(\mathcal{H})^{+}$and $\mathcal{S} \subseteq \mathcal{H}$ a closed subspace. The pair (A, \mathcal{S}) is said to be compatible if there exists an A-selfadjoint projection with range \mathcal{S}, i.e. if $\mathcal{P}(A, \mathcal{S})$ is not empty.

Now, we state equivalent conditions to compatibility, in terms of the matrix representation given by P. Let $A \in L(\mathcal{H})^{+}$with matrix representation $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$.
Proposition 3.3. Given $A \in L(\mathcal{H})^{+}$, the following conditions are equivalent:

1. The pair (A, \mathcal{S}) is compatible.
2. $R(P A)=R(P A P)$ or equivalently $R(b) \subseteq R(a)$.
3. The equation $a x=b$ admits a solution.

Proof. $2 \leftrightarrow$ 3: Apply Theorem 2.1.
$\mathbf{1} \leftrightarrow$ 3: Recall that $a=P A P$ and $b=P A(1-P)$. If Y is a solution to $(P A P) X=P A(1-P)$, consider $y=P Y(1-P)$ and $Q=\left(\begin{array}{ll}1 & y \\ 0 & 0\end{array}\right)$. Easy computations shows that $Q \in \mathcal{P}(A, \mathcal{S})$. Conversely if $Q \in \mathcal{P}(A, \mathcal{S}), Q=\left(\begin{array}{ll}1 & q \\ 0 & 0\end{array}\right)$ then writing the equality $A Q=Q^{*} A$ in matrix form, we get that q is a solution to $a x=b$.
Remark 3.4. Let $A \in L(\mathcal{H})^{+}, P \in \mathcal{P}$ with $R(P)=\mathcal{S}$. Then,

1. If $R(P A P)$ is closed, the pair (A, \mathcal{S}) is compatible. Indeed, if $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$ then, by Theorem 2.4, $R(b) \subseteq R\left(a^{1 / 2}\right)$. But if $R(P A P)$ is closed, $R\left(a^{1 / 2}\right)=$ $R(a)$. Then, by Proposition 3.3, the pair (A, \mathcal{S}) is compatible. In particular:
2. If $\operatorname{dim} \mathcal{H}<\infty$ then every pair (A, \mathcal{S}) is compatible.
3. If $\operatorname{dim} \mathcal{S}<\infty$ then (A, \mathcal{S}) is compatible.
4. If $A \in G L(\mathcal{H})^{+}$, then $R(P A P)=\mathcal{S}$, so that (A, \mathcal{S}) is compatible. In this case, the unique projection $P_{A, \mathcal{S}}$ onto \mathcal{S} which is A-selfadjoint, is determined (see [4]) by the formulae

$$
\begin{equation*}
P_{A, \mathcal{S}}=P\left(1+P-A^{-1} P A\right)^{-1}=(P A P+(1-P) A(1-P))^{-1} P A \tag{3}
\end{equation*}
$$

Example 3.5. Let $A \in L(\mathcal{H})^{+}$and consider

$$
M=\left(\begin{array}{cc}
A & A^{1 / 2} \\
A^{1 / 2} & I
\end{array}\right)=\left(\begin{array}{cc}
A^{1 / 2} & 0 \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
A^{1 / 2} & I \\
0 & 0
\end{array}\right) \in L(\mathcal{H} \oplus \mathcal{H})^{+} .
$$

If $\mathcal{S}=\mathcal{H} \oplus\{0\}$, then, by Lemma 2.2, the pair (M, \mathcal{S}) is compatible if and only if $R(A)$ is closed.

Now we give equivalent conditions to compatibility, in this case in terms of subspaces.
Proposition 3.6. Given $A \in L(\mathcal{H})^{+}$, the following conditions are equivalent:

1. The pair (A, \mathcal{S}) is compatible.
2. $\mathcal{S}+\mathcal{S}^{\perp_{A}}=\mathcal{H}$.
3. $R\left(A^{1 / 2}\right)=A^{1 / 2}(\mathcal{S}) \oplus\left(A^{1 / 2}(\mathcal{S})^{\perp} \cap R\left(A^{1 / 2}\right)\right)$.
4. If $\mathcal{M}=\overline{A^{1 / 2}(\mathcal{S})}$, then $R\left(P_{\mathcal{M}} A^{1 / 2}\right) \subseteq R\left(A^{1 / 2} P\right)$.

Proof. $1 \leftrightarrow 2$: follows from Lemma 3.1 with $R(Q)=\mathcal{S}$.
$\mathbf{2} \leftrightarrow \mathbf{3}$: If $\mathcal{H}=\mathcal{S}+\mathcal{S}^{\perp_{A}}$ then applying $A^{1 / 2}$ to both sides of the equality we get that $A^{1 / 2}(\mathcal{H})=A^{1 / 2}(\mathcal{S})+A^{1 / 2}\left(A^{-1}\left(\mathcal{S}^{\perp}\right)\right)$ or $R\left(A^{1 / 2}\right)=A^{1 / 2}(\mathcal{S})+A^{-1 / 2}\left(\mathcal{S}^{\perp}\right) \cap$ $R\left(A^{1 / 2}\right)=A^{1 / 2}(\mathcal{S}) \oplus A^{1 / 2}(\mathcal{S})^{\perp} \cap R\left(A^{1 / 2}\right)$. Conversely, from $R\left(A^{1 / 2}\right)=A^{1 / 2}(\mathcal{S}) \oplus$ $A^{1 / 2}(\mathcal{S})^{\perp} \cap R\left(A^{1 / 2}\right)$ we get that $\mathcal{H}=\mathcal{S}+A^{-1}\left(\mathcal{S}^{\perp}\right)+\operatorname{ker} A^{1 / 2}=\mathcal{S}+A^{-1}\left(\mathcal{S}^{\perp}\right)$.
$3 \leftrightarrow 4$: If $y \in R\left(A^{1 / 2}\right)$ then $y=y_{1}+y_{2}$ for unique $y_{1} \in A^{1 / 2}(\mathcal{S})$ and $y_{2} \in$ $A^{1 / 2}(\mathcal{S})^{\perp}$, but then $P_{\mathcal{M}}(y)=y_{1} \in R\left(A^{1 / 2} P\right)$. The converse is similar.

Remark 3.7. If the pair (A, \mathcal{S}) is compatible it follows from item 3 of Proposition 3.6 that $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$. Observe that in this case if $\mathcal{M}=\overline{A^{1 / 2}(\mathcal{S})}$ then

$$
R\left(A^{1 / 2}\right)=\mathcal{M} \cap R\left(A^{1 / 2}\right) \oplus \mathcal{M}^{\perp} \cap R\left(A^{1 / 2}\right)
$$

Conversely if $R\left(A^{1 / 2}\right)=\mathcal{M} \cap R\left(A^{1 / 2}\right) \oplus \mathcal{M}^{\perp} \cap R\left(A^{1 / 2}\right)$ and $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$ then (A, \mathcal{S}) is compatible.

Proposition 3.8. Let $A \in L(\mathcal{H})^{+}, P \in \mathcal{P}$ and $\mathcal{S}=R(P)$. Then

1. $\left(A_{/ \mathcal{S}}^{2}\right)^{1 / 2} \leq A_{/ \mathcal{s}}$.
2. If $A(\mathcal{S})$ is closed in $R(A)$, then $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$.
3. If (A, \mathcal{S}) is compatible, then $A(\mathcal{S})$ is closed in $R(A)$.

Proof.

1. $A^{2}{ }_{/ \mathcal{s}} \leq A^{2}$ implies that $\left(A_{/ s}^{2}\right)^{1 / 2} \leq A$. But $R\left(\left(A_{/ \mathcal{s}}^{2}\right)^{1 / 2}\right) \subseteq \mathcal{S}^{\perp}$.
2. Using Corollary 2.5, the fact that $A(\mathcal{S})$ is closed in $R(A)$ implies that

$$
\operatorname{ker} A_{/ \mathcal{S}}^{2}=\operatorname{ker} A^{2}+\mathcal{S}=\operatorname{ker} A+\mathcal{S}
$$

Using item 1 , we can deduce that $\operatorname{ker} A_{/ \mathcal{s}} \subseteq \operatorname{ker} A+\mathcal{S}$, so that $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$, again by Corollary 2.5 .
3. Assume that (A, \mathcal{S}) is compatible. By equation (1), if $Q \in \mathcal{P}(A, \mathcal{S})$, then

$$
R(A)=R(A) \cap R\left(Q^{*}\right) \oplus R(A) \cap \operatorname{ker} Q^{*}
$$

Therefore $A(\mathcal{S})=R(A Q)=R\left(Q^{*} A\right)=R\left(Q^{*}\right) \cap R(A)$ is closed in $R(A)$.

Lemma 3.9. If $A \in L(\mathcal{H})^{+}$then

1. The following conditions are equivalent:
(a) $R(P A P)$ is closed.
(b) $A^{1 / 2}(\mathcal{S})$ is closed.
(c) $A(\mathcal{S})$ is closed.
2. If $R(P A P)$ is closed, then the pair (A, \mathcal{S}) is compatible.
3. If the pair (A, \mathcal{S}) is compatible, then $\mathcal{S}+\operatorname{ker} A$ is closed.

Proof.

1. Since $A^{1 / 2}(\mathcal{S})=R\left(A^{1 / 2} P\right)$ and $P A P=\left(A^{1 / 2} P\right)^{*} A^{1 / 2} P$, we get that (a) is equivalent to (b). Suppose that $R(P A P)$ is closed. Note that $A(S)=R(A P)$ and $R(A P)$ is closed if and only if $R(P A)$ is closed if and only if $R\left(P A^{2} P\right)$ is closed. Note that $(P A P)^{2} \leq P A^{2} P$ and

$$
\operatorname{ker}(P A P)^{2}=\operatorname{ker} P A^{2} P=\mathcal{S}^{\perp} \oplus(\mathcal{S} \cap \operatorname{ker} A)
$$

Since $P A^{2} P \geq(P A P)^{2}>0$ in $\left(\operatorname{ker}(P A P)^{2}\right)^{\perp}$ we get that $R\left(P A^{2} P\right)$ is closed. The reverse implication is easy to see.
2. See Remark 3.4.
3. If (A, \mathcal{S}) is compatible, then, by item 3 of $\operatorname{Proposition~} 3.6, A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$ and then $\mathcal{S}+\operatorname{ker} A=A^{-1 / 2}\left(A^{1 / 2}(\mathcal{S})\right)$ is closed.

The condition " $A(\mathcal{S})$ closed in $R(A)$ " (or equivalently " $A(\mathcal{S})$ closed" when A has closed range), which is necessary for the pair (A, \mathcal{S}) to be compatible (by Proposition 3.8), turns out to be sufficient when A has closed range, as we will see in the following proposition.

Proposition 3.10. If $A \in L(\mathcal{H})^{+}$has closed range then the following conditions are equivalent:

1. The pair (A, \mathcal{S}) is compatible.
2. $R(P A P)$ is closed.
3. $\mathcal{S}+\operatorname{ker} A$ is closed.

Proof. By Lemma 3.9, we know that $2 \rightarrow 1 \rightarrow 3$. If $\mathcal{S}+$ ker A is closed then $P_{R(A)}(\mathcal{S})$ is closed. Therefore $A(\mathcal{S})=A\left(P_{R(A)}(\mathcal{S})\right)$ which is closed because $P_{R(A)}(\mathcal{S}) \subseteq R(A)$ is closed.

Remark 3.11. If $A, B \in L(\mathcal{H})^{+}$have both the same closed range, then $\operatorname{ker} A=$ ker B and, by Proposition $3.10,(A, \mathcal{S})$ is compatible if and only if (B, \mathcal{S}) is compatible. Moreover, $\mathcal{P}(A, \mathcal{S})$ and $\mathcal{P}(B, \mathcal{S})$ are parallel affine manifolds by Remark 4.2 above.

For positive injective operators the following equivalences hold:
Proposition 3.12. If $A \in L(\mathcal{H})^{+}$is injective then the following conditions are equivalent:

1. The pair (A, \mathcal{S}) is compatible.
2. $\mathcal{S} \oplus \mathcal{S}^{\perp_{A}}=\mathcal{H}$.
3. $\mathcal{S}^{\perp} \oplus \overline{A(\mathcal{S})}$ is closed.

Proof. $1 \leftrightarrow$ 2: follows from Proposition 3.6 and the fact that $\mathcal{S} \cap \mathcal{S}^{\perp_{A}}=\{0\}$ when A is injective.
$\mathbf{2} \leftrightarrow \mathbf{3}$: First observe that, if $\mathcal{W}=\overline{A(\mathcal{S})}$, then $\mathcal{S}^{\perp}+\mathcal{W}$ is always a dense set when A is injective because $\overline{\mathcal{S}^{\perp}+\mathcal{W}}=\left(\mathcal{S} \cap A(\mathcal{S})^{\perp}\right)^{\perp}=\mathcal{H}$. Then $\mathcal{S}^{\perp}+\mathcal{W}=\mathcal{H}$ if and only if $\mathcal{S}^{\perp}+\mathcal{W}$ is closed. The equivalence follows by using the general fact that given closed subspaces \mathcal{M} and \mathcal{N} then $\mathcal{M} \oplus \mathcal{N}=\mathcal{H}$ if and only if $\mathcal{M}^{\perp} \oplus \mathcal{N}^{\perp}=\mathcal{H}$.
Remark 3.13. Given two subspaces \mathcal{S}, \mathcal{T}, the cosine of the Friedrichs angle between them is defined by

$$
c(\mathcal{S}, \mathcal{T})=\sup \left\{|\langle\xi, \eta\rangle|: \xi \in \mathcal{S} \cap(\mathcal{S} \cap \mathcal{T})^{\perp},\|\xi\| \leq 1, \eta \in \mathcal{T} \cap(\mathcal{S} \cap \mathcal{T})^{\perp},\|\eta\| \leq 1\right\}
$$

It is well known that $c(\mathcal{S}, \mathcal{T})<1$ if and only if $\mathcal{S}+\mathcal{T}$ is closed. Then compatibility in the case of a closed range operator or in the injective case is related to an angle condition between two subspaces:

1. If $A \in L(\mathcal{H})^{+}$has closed range, then (A, \mathcal{S}) is compatible if and only if $c(\mathcal{S}, \operatorname{ker} A)<1$ (see Proposition 3.10).
2. If $A \in L(\mathcal{H})^{+}$is injective, then, by Proposition $3.12,(A, \mathcal{S})$ is compatible if and only if $c\left(\mathcal{S}^{\perp}, \overline{A(\mathcal{S})}\right)<1$.

4. The minimal projection

Let $A \in L(\mathcal{H})^{+}$and $\mathcal{S} \subseteq \mathcal{H}$ a closed subspace such that the pair (A, \mathcal{S}) is compatible. Using Lemma 3.1 or Proposition 3.6 , it is clear that $\mathcal{P}(A, \mathcal{S})$ is a singleton if and only if $\operatorname{ker} A \cap \mathcal{S}=\{0\}$. If this is no the case, there exists a projection in $\mathcal{P}(A, \mathcal{S})$ with optimal properties:
Definition 4.1. Let $A \in L(\mathcal{H})^{+}$and suppose that the pair (A, \mathcal{S}) is compatible. If $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$ and $d \in L\left(\mathcal{S}^{\perp}, \mathcal{S}\right)$ is the reduced solution of the equation $a x=b$, we define the following oblique projection onto \mathcal{S} :

$$
P_{A, \mathcal{S}}=\left(\begin{array}{ll}
1 & d \\
0 & 0
\end{array}\right) .
$$

Remark 4.2. Let $A \in L(\mathcal{H})^{+}$and suppose that (A, \mathcal{S}) is compatible. Denote by $\mathcal{N}=A^{-1}\left(S^{\perp}\right) \cap \mathcal{S}=\operatorname{ker} A \cap \mathcal{S}$. Then $P_{A, \mathcal{S}} \in \mathcal{P}(A, \mathcal{S})$, $\operatorname{ker} P_{A, \mathcal{S}}=A^{-1}\left(\mathcal{S}^{\perp}\right) \ominus \mathcal{N}$ and $\mathcal{P}(A, \mathcal{S})$ is an affine manifold that can be parametrized as

$$
\mathcal{P}(A, \mathcal{S})=P_{A, \mathcal{S}}+L\left(\mathcal{S}^{\perp}, \mathcal{N}\right)
$$

where $L\left(\mathcal{S}^{\perp}, \mathcal{N}\right)$ is viewed as a subspace of $L(\mathcal{H})$. Observe that $\mathcal{P}(A, \mathcal{S})$ has a unique element $\left(P_{A, \mathcal{S}}\right)$ if and only if $\mathcal{N}=\{0\}$, i.e. if $\mathcal{S} \oplus A^{-1}\left(\mathcal{S}^{\perp}\right)=\mathcal{H}$.

Moreover $P_{A, \mathcal{S}}$ has minimal norm in $\mathcal{P}(A, \mathcal{S})$. Nevertheless, $P_{A, \mathcal{S}}$ is not in general the unique $Q \in \mathcal{P}(A, \mathcal{S})$ that realizes the minimum. For a proof of these facts see 3.6 of [7].

Proposition 3.3 shows that the pair (A, \mathcal{S}) is compatible if and only if $R(P A) \subseteq$ $R(P A P)$. Therefore, if (A, \mathcal{S}) is compatible, it is natural to look at the reduced solution Q of the equation

$$
\begin{equation*}
(P A P) X=P A \tag{4}
\end{equation*}
$$

and its relation with $P_{A, \mathcal{S}}$. Observe that $R(Q) \subseteq \overline{R(P A P)}$ which can be strictly included in \mathcal{S}, so that, in general, $Q \neq P_{A, \mathcal{S}}$. Nevertheless:

Proposition 4.3. Let $A \in L(\mathcal{H})^{+}$such that the pair (A, \mathcal{S}) is compatible. Let Q be the reduced solution of the equation (4). Let $\mathcal{N}=\operatorname{ker} A \cap \mathcal{S}$. Then $Q=P_{A, \mathcal{S} \ominus \mathcal{N}}$ and

$$
P_{A, \mathcal{S}}=P_{\mathcal{N}}+Q
$$

Proof. Let $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$. In $L(\mathcal{S})$, ker $a=\mathcal{N}$ and $\overline{R(a)}=\overline{R\left(a^{1 / 2}\right)}=\mathcal{S} \ominus \mathcal{N}$.
Note that $R(Q) \subseteq \overline{R(a)}$. Also $\operatorname{ker} Q=\operatorname{ker}(P A)=A^{-1}\left(\mathcal{S}^{\perp}\right)$. If $\xi \in \mathcal{S} \ominus \mathcal{N}$, then

$$
a(Q \xi)=(P A P) Q \xi=P A \xi=P A P \xi=a(\xi)
$$

Since a is injective in $\mathcal{S} \ominus \mathcal{N}$, we can deduce that $Q \xi=\xi$ for all $\xi \in \mathcal{S} \ominus \mathcal{N}$. Now, the compatibility of (A, \mathcal{S}) implies that $\mathcal{S}+A^{-1}\left(\mathcal{S}^{\perp}\right)=\mathcal{H}$. Also $A^{-1}\left(\mathcal{S}^{\perp}\right) \cap \mathcal{S}=$ $\operatorname{ker} A \cap \mathcal{S}=\mathcal{N}$. Therefore $A^{-1}\left(\mathcal{S}^{\perp}\right) \oplus(\mathcal{S} \ominus \mathcal{N})=\mathcal{H}$. Then $Q^{2}=Q$ and $R(Q)=\mathcal{S} \ominus \mathcal{N}$. Note that

$$
\operatorname{ker} Q=A^{-1}\left(\mathcal{S}^{\perp}\right) \subseteq A^{-1}\left((\mathcal{S} \ominus \mathcal{N})^{\perp}\right)=R(Q)^{\perp_{A}}
$$

so that Q is A-selfadjoint by Lemma 3.1. On the other hand, $(\mathcal{S} \ominus \mathcal{N}) \cap \operatorname{ker} A=\{0\}$, so that Q is the unique element of $P(A, \mathcal{S} \ominus \mathcal{N})$, by Remark 4.2. Observe that $\mathcal{N} \subseteq \operatorname{ker} A \subseteq A^{-1}\left(\mathcal{S}^{\perp}\right)$. Therefore

$$
\begin{gathered}
\left(P_{\mathcal{N}}+Q\right)^{2}=P_{\mathcal{N}}+Q, \quad R\left(P_{\mathcal{N}}+Q\right)=\mathcal{S} \quad \text { and } \\
\operatorname{ker}\left(P_{\mathcal{N}}+Q\right)=\left(A^{-1}\left(\mathcal{S}^{\perp}\right)\right) \ominus \mathcal{N}
\end{gathered}
$$

These formulae clearly implies that $P_{\mathcal{N}}+Q=P_{A, \mathcal{S}}$ (see Remark 4.2).
By Proposition 3.6, the pair (A, \mathcal{S}) is compatible if and only if $R\left(P_{\mathcal{M}} A^{1 / 2}\right) \subseteq$ $R\left(A^{1 / 2} P\right)$ or equivalently if equation $A^{1 / 2} P X=P_{\mathcal{M}} A^{1 / 2}$ admits a solution. Moreover, equation (4) and equation $A^{1 / 2} P X=P_{\mathcal{M}} A^{1 / 2}$ have the same reduced solution as we will see in the following proposition.

Proposition 4.4. Let $A \in L(\mathcal{H})^{+}$such that the pair (A, \mathcal{S}) is compatible. Let $\mathcal{M}=\overline{A^{1 / 2}(\mathcal{S})}$ and $\mathcal{N}=\operatorname{ker} A \cap \mathcal{S}$. Consider Q the reduced solution of the equation

$$
\begin{equation*}
\left(A^{1 / 2} P\right) X=P_{\mathcal{M}} A^{1 / 2} \tag{5}
\end{equation*}
$$

Then $Q=P_{A, \mathcal{S} \ominus \mathcal{N}}$ and $P_{A, \mathcal{S}}=P_{\mathcal{N}}+Q$. In particular, if $A^{1 / 2}(\mathcal{S})$ is closed and $\operatorname{ker} A \cap \mathcal{S}=\{0\}$, then

$$
\begin{equation*}
P_{A, \mathcal{S}}=\left(A^{1 / 2} P\right)^{\dagger} P_{\mathcal{M}} A^{1 / 2}=\left(A^{1 / 2} P\right)^{\dagger} A^{1 / 2} \tag{6}
\end{equation*}
$$

where $\left(A^{1 / 2} P\right)^{\dagger}$ denotes the Moore-Penrose pseudoinverse of $\left(A^{1 / 2} P\right)$.
Proof. We will prove that equations (4) and (5) have the same RS. Denote $B=A^{1 / 2}$. Recall that $\mathcal{M}=\overline{B(\mathcal{S})}=B^{-1}\left(\mathcal{S}^{\perp}\right)^{\perp}$. Observe that

$$
\begin{equation*}
B P_{\mathcal{M}} B=A P_{A, \mathcal{S}}=A P P_{A, \mathcal{S}} \tag{7}
\end{equation*}
$$

In fact, for $\xi \in \mathcal{H}$, let $\eta=P_{A, \mathcal{S}} \xi$ and $\rho=\xi-\eta \in A^{-1}\left(\mathcal{S}^{\perp}\right)$; then $B \eta \in \mathcal{M}$ and $B \rho \in B^{-1}\left(\mathcal{S}^{\perp}\right)=\mathcal{M}^{\perp}$. Hence $B P_{\mathcal{M}} B \xi=A \eta=A P_{A, \mathcal{S}} \xi$. By Proposition 4.3, the projection $Q=P_{A, \mathcal{S}}-P_{\mathcal{N}}$ is the reduced solution of the equation $P A P X=P A$. We shall see that Q is the reduced solution of the equation (5). First note that, by equation (7), $B P_{\mathcal{M}} B=(A P) P_{A, \mathcal{S}}=(A P) Q$, so $B\left(P_{\mathcal{M}} B-B P Q\right)=0$. But $R\left(P_{\mathcal{M}} B-B P Q\right) \subseteq \overline{R(B)}=(\operatorname{ker} B)^{\perp}$. Hence Q is a solution of (5). Note that ker $P_{\mathcal{M}} B=B^{-1}\left(B^{-1}\left(\mathcal{S}^{\perp}\right)\right)=A^{-1}\left(\mathcal{S}^{\perp}\right)=\operatorname{ker} Q$ by Proposition 4.3. Finally,

$$
\overline{R\left((B P)^{*}\right)}=\overline{R(P B)}=\overline{R(P A P)}=\mathcal{S} \ominus \mathcal{N}=R(Q)
$$

The first equality of equation (6) follows directly. The second, from the fact that

$$
\left(A^{1 / 2} P\right)^{\dagger} P_{\mathcal{M}}=\left(A^{1 / 2} P\right)^{\dagger}
$$

Formula (6), for operators with closed range, is due to Golomb [12].
Corollary 4.5. Consider $A \in L(\mathcal{H})^{+}$injective such that the pair (A, \mathcal{S}) is compatible. Then, with the same notations as in Proposition 4.4,

$$
P_{A, \mathcal{S}}=A^{-1 / 2} P_{\mathcal{M}} A^{1 / 2}
$$

5. The relationship with shorted operators

As before, let $P \in \mathcal{P}$ be the orthogonal projection onto the closed subspace $\mathcal{S} \subseteq \mathcal{H}$. The following proposition relates, when (A, \mathcal{S}) is compatible, the shorted operator $A_{/ \mathcal{s}}$ defined in section 2.3 with the elements of $\mathcal{P}(A, \mathcal{S})$.

Proposition 5.1. Let $A \in L(\mathcal{H})^{+}$such that the pair (A, \mathcal{S}) is compatible. Let $E \in \mathcal{P}(A, \mathcal{S})$ and $Q=1-E$. Then

1. $A_{/ s}=A Q=Q^{*} A Q$.
2. $A_{/ s}=\min \left\{R^{*} A R: R \in \mathcal{Q}, \operatorname{ker} R=\mathcal{S}\right\}$. Actually, this property is equivalent to the compatibility of the pair (A, \mathcal{S}).
3. $R\left(A_{/ \mathcal{s}}\right)=R(A) \cap S^{\perp}$.
4. $\operatorname{ker} A_{/ \mathcal{s}}=\operatorname{ker} A+\mathcal{S}$.

Proof.

1. Note that $0 \leq A Q=Q^{*} A Q \leq A$, by Lemma 3.1. Also $R(A Q)=R\left(Q^{*} A\right) \subseteq$ $R\left(Q^{*}\right)=\mathcal{S}^{\perp}$. Given $X \leq A$ with $R(X) \subseteq \mathcal{S}^{\perp}$, then, since $\operatorname{ker} Q=\mathcal{S}$, we have that

$$
X=Q^{*} X Q \leq Q^{*} A Q=A Q
$$

where the first equality can be easily checked because $X=\left(\begin{array}{cc}0 & 0 \\ 0 & x\end{array}\right)$.
2. By item $1, Q^{*} A Q=A_{/ \mathcal{s}}$ and $\operatorname{ker} Q=\mathcal{S}$. So the minimum is attained at Q by Theorem 2.4. On the other hand, if the minimum is attained at some projection Y, then $Y^{*} A Y=A_{/ \mathcal{S}} \leq A$ implies that Y is A-selfadjoint, by Lemma 3.1. Therefore $1-Y \in \mathcal{P}(A, \mathcal{S})$.
3. Clearly the equation $A_{/ s}=A Q$ implies that $R\left(A_{/ s}\right) \subseteq R(A) \cap S^{\perp}$. The other inclusion always holds by Theorem 2.4.
4. It follows from Remark 3.7 and Corollary 2.5

The condition $R\left(A_{/ \mathcal{S}}\right) \subseteq R(A)$, which is necessary for compatibility, implies that some subspace bigger than \mathcal{S} (actually $\operatorname{ker} A_{/ \mathcal{S}}$) is A-compatible:

Proposition 5.2. Let $A \in L(\mathcal{H})^{+}$such that $R\left(A_{/ \mathcal{s}}\right) \subseteq R(A)$. Denote $\operatorname{ker} A_{/ \mathcal{s}}=\mathcal{T}$. Then

1. $A_{/ \tau}=A_{/ s}$.
2. The pair (A, \mathcal{T}) is compatible.
3. Let Q be the reduced solution of the equation $A X=A_{/ s}$. Then

$$
1-Q=P_{A, \mathcal{T}}
$$

Proof. Item 1 follows directly from the definition of shorted operator. Condition $R\left(A_{/ s}\right) \subseteq R(A)$ implies, by Douglas theorem, that the set

$$
\Delta=\left\{Q \in L(\mathcal{H}): A Q=A_{/ s} \text { and } \operatorname{ker} Q=\mathcal{T}\right\}
$$

is not empty. Let $Q \in \Delta$. Clearly Q verifies that $\operatorname{ker} Q=\mathcal{T}$ and $Q^{*} A=A Q$, because $A_{/ s}$ is selfadjoint. In order to prove that $1-Q \in \mathcal{P}(A, \mathcal{T})$, it just remain to show that $Q^{2}=Q$. Let us first prove that, if $\mathcal{Z}=A^{-1 / 2}\left(\mathcal{S}^{\perp}\right)=A^{1 / 2}(\mathcal{S})^{\perp}$, then Q is a solution of the equation $A^{1 / 2} X=P_{\mathcal{Z}} A^{1 / 2}$. Recall that $A_{/ \mathcal{s}}=A^{1 / 2} P_{\mathcal{Z}} A^{1 / 2}$, so $A^{1 / 2}\left(A^{1 / 2} Q-P_{\mathcal{Z}} A^{1 / 2}\right)=0$. Then, if $\xi \in \mathcal{H}, P_{\mathcal{Z}} A^{1 / 2} \xi=A^{1 / 2} Q \xi+\eta$ with $\eta \in \operatorname{ker} A^{1 / 2}=R\left(A^{1 / 2}\right)^{\perp} \subseteq \mathcal{Z}$. So that

$$
\|\eta\|^{2}=\left\langle P_{\mathcal{Z}} A^{1 / 2} \xi, \eta\right\rangle-\left\langle A^{1 / 2} Q \xi, \eta\right\rangle=\left\langle A^{1 / 2} \xi, P_{\mathcal{Z}} \eta\right\rangle=\left\langle A^{1 / 2} \xi, \eta\right\rangle=0
$$

Therefore $A^{1 / 2} Q=P_{\mathcal{Z}} A^{1 / 2}$. Note that also $A^{1 / 2} Q^{2}=\left(P_{\mathcal{Z}}\right)^{2} A^{1 / 2}=P_{\mathcal{Z}} A^{1 / 2}$, so $A^{1 / 2}\left(Q^{2}-Q\right)=0$. Let $\rho \in R(Q)$. Then $Q \rho-\rho \in \operatorname{ker} A \cap R(Q)$. If $Q \rho-\rho=Q \omega$, for some $\omega \in \mathcal{H}$, then $0=A Q \omega=A_{/ s} \omega$. So $\omega \in \operatorname{ker} A_{/ s}=\mathcal{T}=\operatorname{ker} Q$. Therefore $Q \rho=\rho$ for every $\rho \in R(Q)$. This clearly implies that $Q^{2}=Q$ and $1-Q \in \mathcal{P}(A, \mathcal{T})$, showing item 2.

Denote by Q_{o} the reduced solution of $A X=A_{/ \mathcal{s}}$. Then $R\left(Q_{o}\right) \subseteq \overline{R(A)}=$ $(\operatorname{ker} A)^{\perp}$. Also $\operatorname{ker} Q_{o}=\operatorname{ker} A_{/ \mathcal{s}}=\mathcal{T}$ so that $1-Q_{o} \in \mathcal{P}(A, \mathcal{T})$ and $R\left(Q_{o}\right) \subseteq$ $A^{-1}\left(\mathcal{T}^{\perp}\right)$. Then $R\left(1-Q_{o}\right)=\mathcal{T}=R\left(P_{A, \mathcal{T}}\right)$ and

$$
\begin{aligned}
\operatorname{ker}\left(1-Q_{o}\right)=R\left(Q_{o}\right) & \subseteq A^{-1}\left(\mathcal{T}^{\perp}\right) \cap(\operatorname{ker} A)^{\perp} \\
& \subseteq A^{-1}\left(\mathcal{T}^{\perp}\right) \cap(\mathcal{T} \cap \operatorname{ker} A)^{\perp}=\operatorname{ker} P_{A, \mathcal{T}}
\end{aligned}
$$

by Remark 4.2. Therefore it must be $P_{A, \mathcal{T}}=1-Q_{o}$.

Remark 5.3.

1. Observe that if A has closed range then (A, \mathcal{S}) is compatible if and only if $\operatorname{ker}\left(A_{/ \mathcal{s}}\right)=\mathcal{S}+\operatorname{ker} A$. Indeed, (A, \mathcal{S}) is compatible if and only if $A^{1 / 2}(\mathcal{S})$ is closed (see Proposition 3.10) if and only if $A^{1 / 2}(\mathcal{S})$ is closed in $R\left(A^{1 / 2}\right)$ (because $R\left(A^{1 / 2}\right)=R(A)$ is closed) if and only if $R\left(A_{/ \mathcal{S}}\right)=\mathcal{S}+\operatorname{ker} A$ (see Corollary 2.5). Note that $R\left(A_{/ \mathcal{S}}\right)=R(A) \cap \mathcal{S}^{\perp}$ if $R(A)$ closed.
2. If A is injective, using Propositions 5.1 and 5.2 , one gets that (A, \mathcal{S}) is compatible if and only if $R\left(A_{/ \mathcal{S}}\right)=R(A) \cap \mathcal{S}^{\perp}$ and $\operatorname{ker}\left(A_{/ \mathcal{s}}\right)=\mathcal{S}$ (see also 5.5 of [7]).

Now we state a general result:
Theorem 5.4. Let $A \in L(\mathcal{H})^{+}$and \mathcal{S} a closed subspace of \mathcal{H}. Then (A, \mathcal{S}) is compatible if and only if $R\left(A_{/ s}\right)=R(A) \cap \mathcal{S}^{\perp}$ and $\operatorname{ker} A_{/ s}=\operatorname{ker} A+\mathcal{S}$.
Proof. One implication is stated in Proposition 5.1. Conversely, if $R\left(A_{/ \mathcal{s}}\right)=R(A) \cap$ \mathcal{S}^{\perp} and $\operatorname{ker} A_{/ s}=\operatorname{ker} A+\mathcal{S}=\mathcal{T}$ then, by Proposition 5.2, pair (A, \mathcal{T}) is compatible, or equivalently $\mathcal{T}+A^{-1}\left(\mathcal{T}^{\perp}\right)=\mathcal{H}$. But

$$
\operatorname{ker} A \subseteq A^{-1}\left(\mathcal{S}^{\perp}\right)=A(\mathcal{S})^{\perp}=A(\mathcal{T})^{\perp}=A^{-1}\left(\mathcal{T}^{\perp}\right)
$$

so that $\mathcal{S}+A^{-1}\left(\mathcal{S}^{\perp}\right)=\mathcal{H}$. Then (A, \mathcal{S}) is compatible.
Compressions. Let $A \in L(\mathcal{H})^{+}$and $\mathcal{S} \subseteq \mathcal{H}$ a closed subspace. Recall from Definition 2.6, that the compression of A by \mathcal{S} is $A_{\mathcal{S}}=A-A_{/ \mathcal{S}}$. Using Proposition 5.1, if (A, \mathcal{S}) is compatible, then $A_{\mathcal{S}}=A P_{A, \mathcal{S}}$. So that $R\left(A_{\mathcal{S}}\right)=A(\mathcal{S})$. In the next Proposition we shall see that this equality actually characterizes compatibility:
Proposition 5.5. Let $A \in L(\mathcal{H})^{+}, P \in \mathcal{P}$ and $\mathcal{S}=R(P)$. Then

1. The pair (A, \mathcal{S}) is compatible if and only if $R\left(A_{\mathcal{S}}\right)=A(\mathcal{S})$.
2. If (A, \mathcal{S}) is compatible and Y is the reduced solution of the equation $(A P) X=$ $A_{\mathcal{S}}$ and $\mathcal{N}=\operatorname{ker} A \cap \mathcal{S}$, then $Y=P_{A, \mathcal{S} \ominus \mathcal{N}}$ and

$$
P_{A, \mathcal{S}}=Y+P_{\mathcal{N}}
$$

Proof. If (A, \mathcal{S}) is compatible then from the properties of $A_{\mathcal{S}}$ above, $R\left(A_{\mathcal{S}}\right)=A(\mathcal{S})$. Conversely, $R\left(A_{\mathcal{S}}\right)=A(\mathcal{S})$ implies that the equation $A P X=A_{\mathcal{S}}$ admits a solution (apply Douglas' theorem). Denote by Y the reduced solution of the equation $A P X=$ $A_{\mathcal{S}}$. Then

$$
\begin{equation*}
\operatorname{ker} Y=\operatorname{ker} A_{\mathcal{S}}=A(\mathcal{S})^{\perp} \quad \text { and } \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
R(Y) \subseteq(\operatorname{ker} A P)^{\perp}=\left(\mathcal{S}^{\perp}+\mathcal{N}\right)^{\perp}=\mathcal{S} \ominus \mathcal{N} \subseteq \mathcal{S} \tag{9}
\end{equation*}
$$

So that $P Y=Y$ and $A_{\mathcal{S}}=A Y=Y^{*} A$, which means that Y is A-selfadjoint. On the other hand, because $\left.A\right|_{\mathcal{S}}=\left.A_{\mathcal{S}}\right|_{\mathcal{S}}$ and the fact that $\left.A\right|_{\mathcal{S} \ominus \mathcal{N}}$ is injective, we can deduce that $Y \xi=\xi$ for every $\xi \in \mathcal{S} \ominus \mathcal{N}$, which means that $Y^{2}=Y$. Then Y^{2} is the reduced solution and $Y=Y^{2}$. So $\mathcal{H}=R(Y)+\operatorname{ker} Y \subseteq \mathcal{S}+A(\mathcal{S})^{\perp}$ and the pair (A, \mathcal{S}) is compatible. Using formulae (8) and (9), item 2 follows as in the proof of Proposition 4.3.

6. Some examples

Example 6.1. Given a positive injective operator $A \in L(\mathcal{H})$ with non-closed range. Let $\xi \in R\left(A^{1 / 2}\right)$ and let P_{ξ} be the orthogonal projection onto the subspace $\langle\xi\rangle$ generated by ξ. Then $R\left(P_{\xi}\right) \subseteq R\left(A^{1 / 2}\right)$, so that, by Douglas' theorem, $P_{\xi} \leq \lambda A$ for some positive number λ which we can suppose equal to 1 , by changing A by λA. It is well known that this implies that the operator $B \in L(\mathcal{H} \oplus \mathcal{H})$ defined by

$$
B=\left(\begin{array}{cc}
A & P_{\xi} \\
P_{\xi} & A
\end{array}\right)
$$

is positive. By Lemma $2.2, R(A)$ is strictly contained in $R\left(A^{1 / 2}\right)$. Suppose that $\xi \in$ $R\left(A^{1 / 2}\right) \backslash R(A)$. Let $\mathcal{S}=\mathcal{H}_{1}=\mathcal{H} \oplus 0$. Then $\mathcal{S}^{\perp}=\mathcal{H}_{2}=0 \oplus \mathcal{H}$. We shall see that B is injective, $\operatorname{ker} B / \mathcal{S}=\mathcal{S}$, moreover $B(\mathcal{S})$ is closed in $R(B)$ (this condition is necessary for compatibility and it implies that $B^{1 / 2}(\mathcal{S})$ is closed in $R\left(B^{1 / 2}\right)$ i.e. ker $B_{/ \mathcal{S}}=\mathcal{S}$, by Proposition 3.8), but the pair (B, \mathcal{S}) is incompatible. Indeed, it is clear that B does not verify condition 3 of Proposition 3.3 , so the pair (B, \mathcal{S}) is incompatible. Let D be the reduced solution of $P_{\xi}=A^{1 / 2} X$. Then $B_{/ \mathcal{s}}=\left(\begin{array}{cc}0 & 0 \\ 0 & A-D^{*} D\end{array}\right)$. Note that $\operatorname{ker} D=\operatorname{ker} P_{x}$ implies $D P_{\xi}=D$. So $D^{*} D=P_{\xi} D^{*} D$. Then, if $0 \oplus \eta \in \operatorname{ker} B / \mathcal{s}$,

$$
A \eta=D^{*} D \eta=P_{\xi} D^{*} D \eta=\lambda \xi \text { for some } \lambda \in \mathbb{R} \quad \Rightarrow \quad \eta=0
$$

because $\xi \notin R(A)$ and A is injective. So ker $B_{/ \mathcal{s}}=\mathcal{S}$. Also

$$
B(\omega \oplus \eta)=0 \oplus 0 \Rightarrow A \omega+P_{\xi} \eta=0=A \eta+P_{\xi} \omega \Rightarrow A \omega=A \eta=0 \Rightarrow \omega=\eta=0
$$

so that B is injective. Finally, $\mathcal{H} \oplus\langle\xi\rangle \cap R(B)=B(\mathcal{H} \oplus 0)$, because if $\omega \neq 0$, then $A \omega \notin\langle\xi\rangle$ and $B(\eta \oplus \omega) \notin \mathcal{H} \oplus\langle\xi\rangle$ for every $\eta \in \mathcal{H}$. Therefore $B(\mathcal{S})$ is closed in $R(B)$.

Remark 6.2. Let $P \in \mathcal{P}, R(P)=\mathcal{S}$ and $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right) \in L(\mathcal{H})^{+}$. It is well known that the positivity of A implies that $R(b) \subseteq R\left(a^{1 / 2}\right)$. Therefore it is true, without restrictions on A, that if $\operatorname{dim} \mathcal{S}<\infty$, then the pair (A, \mathcal{S}) is compatible, since in this case $R(a)=R(P A P)$ must be closed, so $R(b) \subseteq R\left(a^{1 / 2}\right)=R(a)$ and Proposition 3.3 can be applied. On the other hand, if $\operatorname{dim} \mathcal{S}^{\perp}<\infty$ and $R(A)$ is closed then, by Proposition 3.10, (A, \mathcal{S}) is compatible. However, if $R(A)$ is not closed, then Example 6.3 shows that the result fails in general.

Example 6.3. Let $A \in L(\mathcal{H})^{+}$be injective non invertible. Let $\xi \in \mathcal{H} \backslash R(A)$ a unit vector. Denote by \mathcal{S}^{\perp} the subspace generated by $\xi, P=P_{\mathcal{S}}$ and $P_{\xi}=1-P$. If

$$
A=\left(\begin{array}{cc}
a & b \\
b^{*} & c
\end{array}\right)
$$

in terms of P and $A \xi=\lambda \xi+\eta$ with $\eta \in \mathcal{S}$, then $\lambda=\langle A \xi, \xi\rangle \neq 0$ and $\eta \neq 0$ (otherwise $\xi \in R(A)$). Therefore $c=\lambda P_{\xi}$ and $b(\mu \xi)=\mu \eta, \mu \in \mathbb{C}$.

Suppose that $\eta \in R(a)$, i.e., there exists $\nu \in \mathcal{S}$ which verifies $a \nu=b \xi$. Then $P A(\nu-\xi)=a \nu-b \xi=0$, so $A(\nu-\xi)$ is a multiple of ξ, which must be $0(\xi \notin$ $R(A)$). So $\nu=\xi$, a contradiction. Therefore $R(b) \nsubseteq R(a)$ and the pair (A, \mathcal{S}) is incompatible.

Let d be the reduced solution of the equation $a^{1 / 2} x=b$. The facts that $\eta \notin R(a)$ and that $a^{1 / 2}$ is injective in \mathcal{S} clearly implies that $R\left(a^{1 / 2}\right) \cap R(d)=\{0\}$. Consider now the operator

$$
B=\left(\begin{array}{cc}
a & b \\
b^{*} & d d^{*}
\end{array}\right) \geq 0
$$

Then the pair (B, \mathcal{S}) is also incompatible and $B_{/ \mathcal{S}}=0$. But in this case B is injective. Indeed,

$$
B=\left(\begin{array}{cc}
a & a^{1 / 2} d \\
d^{*} a^{1 / 2} & d d^{*}
\end{array}\right)=\left(\begin{array}{cc}
a^{1 / 2} & 0 \\
d^{*} & 0
\end{array}\right)\left(\begin{array}{cc}
a^{1 / 2} & d \\
0 & 0
\end{array}\right)
$$

and therefore

$$
\operatorname{ker} B=\operatorname{ker}\left(\begin{array}{cc}
a^{1 / 2} & d \\
0 & 0
\end{array}\right)=\{0\}
$$

because $R\left(a^{1 / 2}\right) \cap R(d)=\{0\}, a^{1 / 2}$ is injective in \mathcal{S} and d is injective in \mathcal{S}^{\perp}. This example shows the intrinsic necessarity of the condition $\operatorname{ker} A_{/ \mathcal{s}}=\mathcal{S}$ in the equivalence given in Theorem 5.4: if A is injective, the pair (A, \mathcal{S}) is compatible \Longleftrightarrow $R\left(A_{/ \mathcal{s}}\right) \subseteq R(A)$ and ker $A_{/ \mathcal{S}}=\mathcal{S}$. In fact the example shows that $R\left(A_{/ \mathcal{S}}\right) \subseteq R(A)$ does not imply $\operatorname{ker} A_{/ \mathcal{s}}=\mathcal{S}$ neither in the injective case. In this sense this example complements Example 6.1.
6.4. Two positive operators $A, B \in L(\mathcal{H})$ are in the same "Thompson component", if

$$
A \sim B \Longleftrightarrow R\left(A^{1 / 2}\right)=R\left(B^{1 / 2}\right) \Longleftrightarrow \lambda A \leq B \leq \mu A
$$

for some constants λ, μ in \mathbb{R}_{+}. A natural question is: given \mathcal{S} a closed subspace of \mathcal{H}, is it true that (A, \mathcal{S}) is compatible if and only if (B, \mathcal{S}) is compatible? This is true for closed range operators by Remark 3.11. Unfortunately, in general the answer is no, as we shall see in the following example. We first need a lemma:

Lemma 6.5. Let $A, B \in L(\mathcal{H})^{+}$.

1. If $R(A)=R(B)$ then $R\left(A^{t}\right)=R\left(B^{t}\right)$ for $0 \leq t \leq 1$. In particular $A \sim B$.
2. If $A \in L(\mathcal{H})^{+}$and $R(A)$ is not closed, then there exists $B \in L(\mathcal{H})^{+}$such that $A \sim B$ but $R(A) \neq R(B)$.

Proof.

1. By Douglas theorem, $R(A)=R(B)$ implies that there exist $\lambda, \mu>0$ such that $\lambda A^{2} \leq B^{2} \leq \mu A^{2}$. Then, by Löwner theorem [17], $\lambda^{t} A^{2 t} \leq B^{2 t} \leq \mu^{t} A^{2 t}$ and $R\left(A^{t}\right)=R\left(B^{t}\right)$, for $0 \leq t \leq 1$. Taking $t=1 / 2$ one gets that $A \sim B$.
2. Denote $C=A^{1 / 2}$. If $G \in G L(\mathcal{H})^{+}$, then $R(C)=R\left(C G^{1 / 2}\right)=R\left((C G C)^{1 / 2}\right)$. We claim that G can be chosen in such a way that $R(A) \neq R(C G C)$. Indeed, take $\xi \in R(C) \backslash R(A), \eta \in(\operatorname{ker} C)^{\perp}$ such that $C \eta=\xi$, and $\rho \in R(C)$ such that $\langle\rho, \eta\rangle>0$ (recall that $R(C)$ is dense in $\left.(\operatorname{ker} C)^{\perp}\right)$. Choose $G \in G L(\mathcal{H})^{+}$ such that $G \rho=\eta$. This can be done working separately in the subspace \mathcal{Z} generated by ρ and η, and in \mathcal{Z}^{\perp}. The condition $\langle\rho, \eta\rangle>0$ is sufficient by an easy 2×2 argument. Then $\xi=C \eta=C G \rho \in R(C G C) \backslash R(A)$. Take $B=C G C$.

Example 6.6. Let $A \in L(\mathcal{H})^{+}$injective but not invertible. Suppose that $A \sim B$ and $\lambda A \leq B \leq \mu A$ with $\lambda<1<\mu$. By last lemma, we can also suppose that $R(A) \neq R(B)$. So there exists $\xi \in R(A) \backslash R(B) \subseteq R\left(A^{1 / 2}\right)=R\left(B^{1 / 2}\right)$. Let P_{ξ} be the orthogonal projection onto the subspace generated by ξ. Then $R\left(P_{\xi}\right) \subseteq$ $R\left(A^{1 / 2}\right)=R\left(B^{1 / 2}\right)$. So that, by Douglas theorem, we can suppose $2 P_{\xi} \leq A$ and $2 P_{\xi} \leq B$. As in Example 6.1, the operators $M_{A}, M_{B} \in L(\mathcal{H} \oplus \mathcal{H})$ defined by

$$
M_{A}=\left(\begin{array}{cc}
A & P_{\xi} \\
P_{\xi} & A
\end{array}\right), \quad M_{B}=\left(\begin{array}{cc}
B & P_{\xi} \\
P_{\xi} & B
\end{array}\right)
$$

are positive. Let $\mathcal{S}=\mathcal{H}_{1}=\mathcal{H} \oplus 0$. Then $\mathcal{S}^{\perp}=\mathcal{H}_{2}=0 \oplus \mathcal{H}$. In Example 6.1 it is shown that M_{B} is injective but the pair $\left(M_{B}, \mathcal{S}\right)$ is incompatible. On the other hand, since $\xi \in R(A)$, then the pair $\left(M_{A}, \mathcal{S}\right)$ is compatible. We shall see that $M_{A} \sim M_{B}$, thus contradicting the previous conjecture. Indeed, note that

$$
2 P_{\xi} \leq A \text { and } \frac{1}{\mu} B \leq A \quad \Rightarrow \quad 2 A-\frac{1}{\mu} B \geq 2 P_{\xi} \geq\left(2-\frac{1}{\mu}\right) P_{\xi}
$$

Therefore

$$
2 M_{A}=2\left(\begin{array}{cc}
A & P_{\xi} \\
P_{\xi} & A
\end{array}\right) \geq \frac{1}{\mu}\left(\begin{array}{cc}
B & P_{\xi} \\
P_{\xi} & B
\end{array}\right)=\frac{1}{\mu} M_{B}
$$

Analogously $2 P_{\xi} \leq B$ and $\lambda A \leq B$ implies that $2 B-\lambda A \geq 2 P_{\xi} \geq(2-\lambda) P_{\xi}$. Therefore

$$
2 M_{B}=2\left(\begin{array}{cc}
B & P_{\xi} \\
P_{\xi} & B
\end{array}\right) \geq \lambda\left(\begin{array}{cc}
A & P_{\xi} \\
P_{\xi} & A
\end{array}\right)=\lambda M_{A}
$$

Example 6.7. Let $\mathcal{A}=\left\{(A, P) \in L(\mathcal{H})^{+} \times \mathcal{P}\right.$: the pair (A, \mathcal{S}) is compatible $\}$. If $\operatorname{dim} \mathcal{H}=\infty$, then the space \mathcal{A} is neither open nor closed in $L(\mathcal{H})^{+} \times \mathcal{P}$. Indeed, the proper subset $G L(\mathcal{H})^{+} \times \mathcal{P} \subseteq \mathcal{A}$ of \mathcal{A} is dense in $L(\mathcal{H})^{+} \times \mathcal{P}$, so \mathcal{A} is not closed. On the other hand, let A be a positive injective operator in $L(\mathcal{H})$ with non-closed range and $\xi \in R\left(A^{1 / 2}\right)$. Consider the operator $B \in L(\mathcal{H} \oplus \mathcal{H})$ defined in Example 6.1. If $\mathcal{S}=\mathcal{H}_{1}=\mathcal{H} \oplus 0$, then (B, \mathcal{S}) is compatible if and only if $\xi \in R(A)$. It is easy to see that some $\xi \in R(A)$ can be approached by elements of $R\left(A^{1 / 2}\right) \backslash R(A)$ and so, the
compatible pair (B, \mathcal{S}) can be approached by non compatible pairs. Since $\mathcal{H} \oplus \mathcal{H}$ is isomorphic to \mathcal{H}, this shows that \mathcal{A} is not open in $L(\mathcal{H})^{+} \times \mathcal{P}$.

Example 6.8. Consider the map $\alpha: \mathcal{A} \rightarrow \mathcal{Q}$ given by $\alpha(A, P)=P_{A, \mathcal{S}}$, where \mathcal{A} is the set defined in Example 6.7. We shall see that α is not continuous. Indeed, fix $\mathcal{S} \subseteq \mathcal{H}$ and consider $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$, such that $R(b)=R(a)$ is a closed subspace \mathcal{M} properly included in \mathcal{S}. Denote by $\mathcal{N}=\mathcal{S} \ominus \mathcal{M}$ and consider the projection $P_{\mathcal{N}}$ and some element $u \in L\left(\mathcal{S}^{\perp}, \mathcal{N}\right) \subseteq L(\mathcal{H}), u \neq 0$. Consider, for every $n \in \mathbb{N}$,

$$
\begin{aligned}
A_{n} & =A+\frac{1}{n}\left(P_{\mathcal{N}}+u\right)^{*}\left(P_{\mathcal{N}}+u\right) \\
& =A+\frac{1}{n}\left(\begin{array}{ccc}
1 & 0 & u \\
0 & 0 & 0 \\
u^{*} & 0 & u^{*} u
\end{array}\right) \begin{array}{l}
\mathcal{N} \\
\mathcal{M} \\
\mathcal{S}^{\perp} \\
\end{array} \\
& =\left(\begin{array}{ccc}
\frac{1}{n} & 0 & \frac{1}{n} u \\
0 & a & b \\
\frac{1}{n} u^{*} & b^{*} & c+\frac{1}{n} u^{*} u
\end{array}\right) \geq A \geq 0
\end{aligned}
$$

It is clear that $A_{n} \rightarrow A$. Note that a is invertible in $L(\mathcal{M})$. Then, by Remark 4.2,

$$
P_{A, \mathcal{S}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & a^{-1} b \\
0 & 0 & 0
\end{array}\right) \begin{gathered}
\mathcal{N} \\
\mathcal{M} \\
\mathcal{S}^{\perp}
\end{gathered}
$$

Note that $a+\frac{1}{n} P_{\mathcal{N}}$ is invertible in $L(\mathcal{S})$. Then, by equation (3),

$$
P_{A_{n}, \mathcal{S}}=\left(\begin{array}{ccc}
n & 0 & 0 \\
0 & a^{-1} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{n} & 0 & \frac{1}{n} u \\
0 & a & b \\
\frac{1}{n} u^{*} & b^{*} & c+\frac{1}{n} u^{*} u
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & u \\
0 & 1 & a^{-1} b \\
0 & 0 & 0
\end{array}\right) \begin{gathered}
\mathcal{N} \\
\mathcal{M} \\
\mathcal{S}^{\perp}
\end{gathered}
$$

for all $n \in \mathbb{N}$. Therefore $\alpha\left(A_{n}, P\right)=P_{A_{n}, \mathcal{S}} \nrightarrow P_{A, \mathcal{S}}=\alpha(A, P)$. Remark that the sequence $\alpha\left(A_{n}, P\right)$ converges (actually, it is constant) to $P_{A, \mathcal{S}}+u$, which belongs to $\mathcal{P}(A, \mathcal{S})$ by Remark 4.2. Also, it is easy to see that, for every $n \in \mathbb{N},\left(A_{n}\right)_{/ \mathcal{s}}=A_{/ \mathcal{s}}$.
Example 6.9. Let $A \in L(\mathcal{H})^{+}$and

$$
M=\left(\begin{array}{cc}
A & A^{1 / 2} \\
A^{1 / 2} & I
\end{array}\right)=\left(\begin{array}{cc}
A^{1 / 2} & 0 \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
A^{1 / 2} & I \\
0 & 0
\end{array}\right) \in L(\mathcal{H} \oplus \mathcal{H})^{+}
$$

like in Example 3.5. Denote by $\mathcal{S}=\mathcal{H} \oplus\{0\}$ and by $N=\left(\begin{array}{cc}A^{1 / 2} & I \\ 0 & 0\end{array}\right)$. Since $M=N^{*} N$, then $\operatorname{ker} M=\operatorname{ker} N=\left\{\xi \oplus-A^{1 / 2} \xi: \xi \in \mathcal{H}\right\}$ which is the graph of $-A^{1 / 2}$. Note that $R(N)=\left(R\left(A^{1 / 2}\right)+R(I)\right) \oplus\{0\}=\mathcal{S}$, so that $R(M)$ is also closed. Also $M_{/ s}=\left(\begin{array}{cc}0 & 0 \\ 0 & P_{\operatorname{ker} A}\end{array}\right)$, because the reduced solution of the equation $A^{1 / 2} X=A^{1 / 2}$ is $D=P_{R(A)}$.

If A is injective not inversible, then (M, \mathcal{S}) is not compatible (because $R(A)$ is properly included in $R\left(A^{1 / 2}\right)$). Also $M=M_{\mathcal{S}}$ and $M(\mathcal{S}) \neq R\left(M_{\mathcal{S}}\right)$. Hence in this example $R\left(M_{\mathcal{S}}\right)=\overline{M(\mathcal{S})}$ while $M(\mathcal{S})$ is not closed (see Proposition 5.5).

References

[1] W. N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971), 520-525.
[2] W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71.
[3] T. Ando, Generalized Schur complements, Linear Algebra Appl. 27 (1979), 173-186.
[4] E. Andruchow, G. Corach and D. Stojanoff, Geometry of oblique projections, Studia Math. 137 (1999), 61-79.
[5] D. Carlson, What are Schur complements, anyway?, Linear Algebra Appl. 74 (1986), 257-275.
[6] R. W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974), 189211.
[7] G. Corach, A. Maestripieri and D. Stojanoff, Schur complements and oblique projections, Acta Sci. Math. (Szeged) 67 (2001), 439-459.
[8] G. Corach, A. Maestripieri and D. Stojanoff, Oblique projections and abstract splines, preprint.
[9] F. Deutsch, The angle between subspaces in Hilbert space, in Approximation theory, wavelets and applications (S. P. Singh, ed.), Kluwer, Netherlands (1995), 107-130.
[10] J. Dieudonné, Quasi-hermitian operators, in Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1961), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford (1961), 115-122.
[11] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
[12] M. Golomb, Splines, n-widths and optimal approximations, MRC Technical Summary Report 784, 1967.
[13] S. Hassi, K. Nordström, On projections in a space with an indefinite metric, Linear Algebra Appl. 208/209 (1994), 401-417.
[14] E. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), 73-81.
[15] M. G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N.S.) 20(62) (1947), 431-495
[16] P. D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633-647.
[17] K. Löwner, Über monotone Matrixfunktionen, Math. Zeit. 38 (1934), 177-216.
[18] Z. Pasternak-Winiarski, On the dependence of the orthogonal projector on deformations of the scalar product, Studia Math. 128 (1998), 1-17.
[19] E. L. Pekarev, Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1992), 147-163.
[20] V. Ptak, Extremal operators and oblique projections, Časopis Pěst. Math. 110 (1985), 343350.
[21] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc. 14 (1963), 438-443.

Departamento de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires
E-mail address: gcorach@ciudad.com.ar
Instituto de Ciencias, Universidad Nacional de General Sarmiento, San Miguel, ArGentina

E-mail address: amaestri@ungs.edu.ar
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, la Plata, Argentina

E-mail address: demetrio@mate.unlp.edu.ar
URL: http://www.mate.unlp.edu.ar/~demetrio/

[^0]: 2000 Mathematics Subject Classification. 47A64, 47A07 and 46C99.
 Key words and phrases. Orthogonal projection, Schur complement, shorted operators, compression, abstract splines.

 Partially supported by CONICET (PIP 4463/96), Universidad de Buenos Aires (UBACYT TX92 and TW49) and UNLP.

