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Abstract. If ψ is a BLc wavelet, a Chui-Shi family of redundant tight frames

{Ψ(k); k ∈ Z} can be built. Its redundancy is studied through the subspaces
of coefficients in l2(Z2). It will be proved that these subspaces converge to

zero when ψ is a uniformly continuous wavelet. Also a Whittaker-Shannon-
Kotel’nikov type sampling theorem will be given for discrete vector functions

associated to Ψ(k). Even more, it will be proved that does not exist a Shannon
type sampling result for modifications in the scaling parameter.

1. Introduction

In many situations it is much more useful to manage a frame than an orthonor-
mal basis, mainly when the application needs to reconstruct signals avoiding noise
brought by perturbation in coefficients of the signal in an analysing system.

The redundancy of frames gets to reduce this noise, as can be seen in [M]; but
the overcompleteness also brings the growing of computations needed for both anal-
ysis and synthesis. For these reasons it turns to be really interesting to construct
redundant systems from a complete exact one, such as a Riesz basis, through a
perturbation.

Among the different perturbations of a frame system in a Hilbert space that we
can find (see [Ch], [CaCh] and [ChChp]) we will deal on the Charles K. Chui and
Xianliang Shi one (see [ChuS1]), written as:

Ψ(k) = {ψk
j,n(t) = 2

j
2ψ(2jt− n

k ); j, n ∈ Z}
for any 0 �= k ∈ Z.

In [ChuS1] and [ChuS2], the authors prove that

Teorema 1.1. Let ψ be a wavelet such that Ψ(1) is an A-B-frame. Then Ψ(k) is
also a frame with admisible bounds kA and kB for any odd k.

This result is not true in general if k is even: take ψ the Haar wavelet. Clearly
Ψ(2) is not tight although Ψ(1) is an orthonormal basis.
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In [C] is given a characterization (extension of a result of Wang [W] and Gripen-
berg [G] as appears in [HWe]) of the wavelets that make Ψ(k) to be a k-tight frame,
and then a characterization of the wavelets that maintain the relation between the
frame bounds (tightness for an orthonormal basis) of the system through a Chui-Shi
perturbation.

Teorema 1.2. It will be said that a function f ∈ L2(R) is band limited up to
congruences, with band width B (we will write f ∈ B-BLc) if there exist bounded
intervals {Ik, k ∈ Z} such that Jk = Ik − kB are disjoint, Jk ⊂ [−B,B] and
supp f̂ ⊂ ∪k∈KIk.

Denoting with Fk the set of wavelets ψ ∈ L2(R) such that Ψ(k) is a k-tight frame
in [C] is got the following characterization result:

Teorema 1.3. Let ψ ∈ F1. The following are equivalent:

(a) ψ ∈
⋂
n∈N

F2n,

(b) ψ ∈
⋂
r∈N

F2r ,

(c) ψ is π-BLc.

And so we have that

Corollary 1.4. A wavelet ψ ∈ F1 is in Fn for any n ∈ N if and only if it is π-BLc.

From now on we will only consider ψ a BLc wavelet that generates an orthonormal
basis by the action of the diadic affine group, and so the family Ψ(k) will be a tight
frame in L2(R) for any 0 �= k ∈ Z.

In Section 2 we will study the redundancy of the frames of the families {Ψ(k); k ∈
N} through the subspaces of sequences of l2(Z2) that are the coefficients in the frame
of the space of functions L2(R), namely

S(Ψ(k)) = Sk =
{(

〈f, ψk
j,n〉

)
j,n∈Z

; f ∈ L2(R)
}
.

Clearly S1 = l2(Z2), and for any other k �= 1 we just know, when ψ is band-
limited up to congruences, that Sk ⊂ l2(Z2). The following section will prove that
∩k∈NSk = {0} when ψ is in L1(R), even more, limk→∞ Sk = {0}.

In Section 3 we will study another important feature of redundant systems: the
relation between the coefficients in such a system. It will be proved that they verify
a Shannon’s sampling type theorem. In Section 4 we will introduce a different
perturbation and will see that is also maintains the relation between the frame
bounds, but the redundancy got does not provide a Shannon type formula for the
new frame coefficients.

2. Redundancy

Lemma 2.1. Let ψ ∈ L1(R) be a uniformly continuous wavelet. Then, for any
j, p, l, h ∈ Z,

〈ψ(2j · −h), ψ(2p · − l
k
)〉 k→∞−→ 〈ψ(2j · −h), ψ(2p·)〉 = 2−pδhδj,p.
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Proof. The Theorem of continuity of functions defined by means of a parametric
integral will be applied to

f(x, y) = ψ(2jx− h)ψ(2px− y)

for x ∈ R, y ∈ [0,∞). It is a continuous function as ψ does.
As ψ is a uniformly continuous wavelet, given ε = 1 there exists δ > 0 such that

for any x ∈ R and |z| < δ, |ψ(x+ z) − ψ(x)| < 1.
Take y0 ∈ [0,∞) and V = (y0 − γ, y0 + γ) with γ ≤ min{δ, y0} if y0 �= 0, and

V = [0, γ) with γ ≤ δ if y0 = 0.
Let’s see that there exists an integrable function gy0 such that |f(x, y)| ≤ gy0(x)

for any x ∈ R, y ∈ V :

|f(x, y)| = |ψ(2jx− h)ψ(2px− y)|
= |ψ(2jx− h)| |ψ(2px− y) − ψ(2px− y0) + ψ(2px− y0)|
≤ |ψ(2jx− h)| {|ψ(2px− y0 + (y0 − y)) − ψ(2px− y0)| + |ψ(2px− y0)|}
≤ |ψ(2jx− h)| + |ψ(2jx− h)| |ψ(2px− y0)|.

Take gy0(x) = |ψ(2jx− h)| + |ψ(2jx− h)||ψ(2px− y0)|, which is integrable on R

as ψ ∈ L1(R), and verifies that |f(x, y)| ≤ gy0(x) for any x ∈ R, y ∈ V . So

F (y) =
∫

R

fy(x) dx =
∫

R

ψ(2jx− h)ψ(2px− y) dx

is continuous in [0,∞); in particular, taking y = l
k and making k → ∞ we have the

lemma. �

Definition 2.2. A sequence of sets {Γn}n∈N is convergent to Γ if limΓn = lim Γn =
Γ, where

lim Γn =
∞⋂

k=1

∞⋃
n=k

Γn and lim Γn =
∞⋃

k=1

∞⋂
n=k

Γn.

For more details see [Mu] for e.g.
Let us consider the subspaces

Sk = {{〈f, ψk
j,n∈Z〉}j,n∈Z; f ∈ L2(R)}

in l2(Z2).

Teorema 2.3. Let ψ ∈ L1(R) be a BLc uniformly continuous wavelet. Then
⋂
k∈N

Sk = {0}.

Proof. Let x = (xj,n) ∈ ⋂
k∈N

Sk. As x ∈ Sk there exists fk ∈ L2(R) such that

(1) x =
(
〈fk, 2

j
2ψ(2j · −n

k )〉
)

j,n∈Z

.



550 RAQUEL G. CATALÁN AND JOSÉ GARAY

Consider the subsequence xj,kh = 〈fk, 2
j
2ψ(2j · −h)〉. As Ψ(1) is an orthonormal

basis in L2(R), fk can be expressed as

(2) fk =
∑

j,h∈Z

〈fk, ψj,h〉ψj,h =
∑

j,h∈Z

xj,kh 2
j
2 ψ(2j · −h)

and so, taking (2) to (1) we have that for any p, l ∈ Z

xp,l = 〈
∑

j,h∈Z

xj,kh 2
j
2 ψ(2j · −h), 2

p
2 ψ(2p · − l

k
)〉

=
∑

j,h∈Z

xj,kh 2
j+p
2 〈ψ(2j · −h), ψ(2p · − l

k )〉

=
∑
j∈Z

2
j+p
2

∑
h∈Z

xj,kh〈ψ(2j · −h), ψ(2p · − l
k )〉.

Grouping terms accurately we have

xp,l =
∑
j∈Z

j �=p

∑
h∈Z

xj,kh〈2
j
2ψ(2j · −h), 2

p
2ψ(2p · − l

k )〉

+
∑
h∈Z

h�=0

xp,kh〈2
p
2ψ(2p · −h), 2

p
2ψ(2p · − l

k )〉

+ xp,0〈2
p
2ψ(2p·), 2 p

2ψ(2p · − l
k )〉.

Call A, B and C these three terms respectively. Taking modulus and by triangular
inequality we have that

|xp,l| ≤
∑
j∈Z

j �=p

∑
h∈Z

|xj,kh|
∣∣∣〈2 j

2ψ(2j · −h), 2
p
2ψ(2p · − l

k )〉
∣∣∣(3)

+
∑
h∈Z

h�=0

|xp,kh|
∣∣∣〈2 p

2ψ(2p · −h), 2
p
2ψ(2p · − l

k )〉
∣∣∣

+ |xp,0|
∣∣∣〈2 p

2ψ(2p·), 2 p
2ψ(2p · − l

k
)〉

∣∣∣ .

As ψ is uniformly continuous, given ε > 0 there exists k1 > 0 such that for any
k ∈ Z with |k| > k1, ‖2

p
2ψ(2p·) − 2

p
2ψ(2p · − l

k )‖ < ε.
We also have that, using Lemma 2.1, given ε > 0 there exists k2 > 0 such that

for any k ∈ Z with |k| > k2, |〈2
p
2ψ(2p·), 2 p

2ψ(2p · − l
k )〉| < 1 + ε.

Taking k0 ≥ max{k1, k2}, for any |k| > k0 they two both hold.
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Let’s take the first term A of xp,l:

|A| ≤
∑
j∈Z

j �=p

∑
h∈Z

|xj,kh|
∣∣∣〈2 j

2ψ(2j · −h), 2
p
2ψ(2p · − l

k )〉
∣∣∣

≤


∑

j∈Z

j �=p

∑
h∈Z

|xj,kh|2


1/2

∑
j∈Z

j �=p

∑
h∈Z

∣∣∣〈2 j
2ψ(2j · −h), 2

p
2ψ(2p · − l

k )〉
∣∣∣2



1/2

≤ ‖x‖l2(Z2)


∑

j∈Z

j �=p

∣∣∣
∣∣∣Pj[2

p
2ψ(2p · − l

k
)]

∣∣∣
∣∣∣2



1/2

where we have applied the Cauchy-Schwarz inequality and that Pj is the projection
on Wj . As the summation index does not equal p and 2

p
2ψ(2p·) ∈Wp, we have that:

‖x‖l2(Z2)


∑

j∈Z

j �=p

∣∣∣
∣∣∣Pj[2

p
2ψ(2p · − l

k
)]

∣∣∣
∣∣∣2



1/2

= ‖x‖l2(Z2)


∑

j∈Z

j �=p

∣∣∣
∣∣∣Pj[2

p
2ψ(2p · − l

k ) − 2
p
2ψ(2p·)]

∣∣∣
∣∣∣2



1/2

≤ ‖x‖l2(Z2)

∣∣∣
∣∣∣2 p

2ψ(2p · − l
k ) − 2

p
2ψ(2p·)

∣∣∣
∣∣∣

≤ ‖x‖l2(Z2) ε

for |k| > k0.
A similar process can be followed with the second term of xp,l:

|B| ≤
∑
h∈Z

h�=0

|xp,kh|
∣∣∣〈2 p

2ψ(2p · −h), 2
p
2ψ(2p · − l

k
)〉

∣∣∣

≤


∑

h∈Z

h�=0

|xp,kh|2


1/2 

∑
h∈Z

h�=0

∣∣∣〈2 p
2ψ(2p · −h), 2

p
2ψ(2p · − l

k )〉
∣∣∣2



1/2

≤ ‖xp‖l2(Z)


∑

h∈Z

h�=0

∣∣∣〈2 p
2ψ(2p · −h), 2

p
2ψ(2p · − l

k
) − 2

p
2ψ(2p·)〉

∣∣∣2


1/2

≤ ‖xp‖l2(Z)

∣∣∣
∣∣∣Pp[2

p
2ψ(2p · − l

k ) − 2
p
2ψ(2p·)]

∣∣∣
∣∣∣

≤ ‖xp‖l2(Z)

∣∣∣
∣∣∣2 p

2ψ(2p · − l
k ) − 2

p
2ψ(2p·)

∣∣∣
∣∣∣

≤ ‖xp‖l2(Z) ε.
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In this case, orthogonality between ψ(2p · −h) and ψ(2p·) for any h �= 0 is used.
These bounds for the first two terms and the application of the Lemma 2.1 at

the third one, take (3) to:

|xp,l| ≤ ‖x‖l2(Z2) ε+ ‖xp‖l2(Z) ε+ |xp,0| (1 + ε)

= ε (‖x‖l2(Z2) + ‖xp‖l2(Z) + |xp,0|) + |xp,0|
for any ε > 0. So, for any l ∈ Z

(4) |xp,l| ≤ |xp,0|.
If xp,0 = 0, xp = 0 for all p and so x ≡ 0. In other case, by inverse triangular

inequality, we have that |xp,l| ≥ 1
3 |xp,0|. As x ∈ l2(Z2), xp ∈ l2(Z) and so does the

constant sequence equal to xp,0. So xp,0 = 0 and then by (4) xp ≡ 0 for all p ∈ Z,
and so x ≡ 0. �

Corollary 2.4. Let ψ be a wavelet as in Theorem 2.3. Then there exists the limit
of Sk and equals {0}.

Proof. As limSk ⊂ limSk we just have to see that limSk = {0}.
Take x ∈ limSk, then x belongs to Sk for an infinite number of values of k, and

so there exists a subsequence of natural numbers {kn} such that x ∈ ⋂
n∈N

Skn .
The same proof of Theorem 2.3 can be followed to obtain that

⋂
n∈N

Skn = {0},
and so the announced result. �

3. Discrete vector sampling theorem

Let f be a function in L2(R). Consider the biinfinite matrix

x = (xj,n)j,n∈Z = (〈f, ψk
j,n〉)j,n∈Z.

As Ψ(1) is an orthonormal basis in L2(R), f =
∑

j,n∈Z

〈f, ψj,n〉ψj,n and so

xl,p =
∑

j,n∈Z

xj,nk 〈ψj,n, ψ
k
l,p〉.

Call xn the n-th column of x. It is clear that the matrix x can be got just from the
columns {xhk; h ∈ Z}.

This is a situation that reminds a reconstruction from samples. We will see in
this paper (in what will be called Discrete Vector Sampling Theorem, DVST) that it
is a Shannon type one. With “Shannon type” we mean that the reconstruction will
have the same structure of Shannon’s Sampling Theorem for band-limited functions:

Teorema 3.1 (Whittaker-Shannon-Kotel’nikov). Let f ∈ L2(R) with supp f̂ ⊂
[−B,B]. Then

(5) f(·) =
∑
n∈Z

f(nτ ) sinc
( ·
τ
− n

)

for any τ ≤ τ0 = 1
2B , called Nyquist frequency. This equality holds in L2(R).



ABOUT BAND LIMITED UP TO CONGRUENCES WAVELETS 553

See, by e.g., [Z], pg. 15 and ff., for more details.
We will begin defining the space of discrete functions where we are going to work

from now on. Given F : Z −→ l2(Z), the j-th element of the sequence F (n) will be
denoted by Fj(n) = [F (n)]j. We will call L2(Z) the space l2(l2(Z)).

The subspace of L2(Z) whose functions will verify the DVST, and that will play
the analogous role of the band limited functions in Shannon’s Sampling Theorem,
is the following:

Definition 3.2. We will call

(6) Bk = {F : Z −→ l2(Z); ∃f ∈ L2(R) , Fj(n) = 〈f, ψk
j,n〉}.

As Ψ(k) is a frame Bk ⊂ L2(Z).

Proposition 3.3. (Bk, ‖ · ‖L2(Z)) is a Hilbert space.

Proof. Let (Fm)m∈N be a Cauchy sequence in Bk. Then, given m ∈ N, there exists
fm ∈ L2(R) such that Fm

j (n) = 〈fm, ψ
k
j,n〉 for all j, n ∈ Z.

And, by other side, we have that for any ε > 0 there exists N0 ∈ N so that for
any p, h > N0 ∑

j,n∈Z

∣∣F p
j (n) − F h

j (n)
∣∣2 < ε.

As ∑
j,n∈Z

∣∣F p
j (n) − F h

j (n)
∣∣2 =

∑
j,n∈Z

∣∣〈fp − fh, ψ
k
j,n〉

∣∣2

and Ψ(k) is a frame in L2(R) (let A(k) and B(k) be its bounds) we have that

A(k) ‖fp − fh‖2 ≤
∑

j,n∈Z

∣∣F p
j (n) − F h

j (n)
∣∣2 ≤ B(k) ‖fp − fh‖2.

This makes the family {fm;m ∈ N} to be a Cauchy sequence in L2(R) and so
convergent to a function f ∈ L2(R).

Take F ∈ L2(Z) associated to f by (6). Clearly F ∈ Bk and

‖Fm − F ‖2L2(Z) =
∑

j,n∈Z

∣∣Fm
j (n) − Fj(n)

∣∣2 =
∑

j,n∈Z

∣∣〈fm − f, ψk
j,n〉

∣∣2

≤ B(k) ‖fm − f‖2 .

This proves that, for all k ∈ Z, Bk is complete and so closed in L2(Z), what concludes
the result of the proposition. �

We will define now the basic function that will take the role of the function sinc.

Definition 3.4. Let us define S : Q × Z −→ l2(Z) as:

[S(l, m)]j = 〈ψ, ψj,l−2jm〉 = 〈ψ, 2 j
2ψ(2j · −l + 2jm)〉.
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Note that it is well defined; just take l = p
q ∈ Q and verify that

∑
j∈Z

|〈ψ, ψj,l−2jm〉|2 =
∑
j∈Z

|〈ψ, ψq
j,p−2jmq〉|2 =

∑
j∈Z

|〈ψ0,m, ψq
j,p〉|2

≤ B(q)‖ψ‖2.
We can give now the DVST:

Teorema 3.5. Let k ∈ N and F ∈ Bk. Let S be the function defined upwards. Then

(7) F (·) =
∑
n∈Z

F (nk) ∗ S( ·
k , n)

where ∗ is the convolution product in l2(Z). This equality holds in L2(Z).

Proof. First of all we will see the equality holds pointwise, it is

[F (l)]p =
∑
n∈Z

[F (nk) ∗ S( l
k , n)]p

for all p, l ∈ Z.
Take F ∈ Bk and let f ∈ L2(R) be the function associated to it by (6). As Ψ(1)

is an orthonormal basis in L2(R), f =
∑

j,n〈f, ψj,n〉ψj,n. This gives:

Fp(l) =
∑

j,n∈Z

〈f, ψj,n〉〈ψj,n, ψ
k
p,l〉 =

∑
j,n∈Z

〈f, ψk
j,nk〉〈ψj,n, ψ

k
p,l〉

=
∑

j,n∈Z

Fj(nk)〈ψj,n, ψ
k
p,l〉 =

∑
j,n∈Z

Fj(nk)〈ψ, ψ
p−j,

l
k−2p−jn

〉

=
∑

j,n∈Z

[F (nk)]j[S( l
k
, n)]p−j =

∑
n∈Z

[F (nk) ∗ S( l
k
, n)]p

= [
∑
n∈Z

F (nk) ∗ S( l
k , n)]p

for any p ∈ Z.
For getting the equality in L2(Z) it is not too difficult to see that what we have

to prove is that ∑
l,p∈Z

∣∣∣ ∑
|n|>N

[an(l)]p
∣∣∣2 −→ 0,

where

[an(l)]p = [F (nk) ∗ S( l
k , n)]p =

∑
m∈Z

[F (nk)]m[S( l
k , n)]p−m

=
∑
m∈Z

〈f, ψk
m,nk〉〈ψ, ψp−m,

l
k
−2p−mn

〉

= 〈
∑
m∈Z

〈f, ψm,n〉ψm,n, ψ
k
p,l〉.
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From here, and using that Ψ(k) is a frame we have that there exists B(k) > 0 such
that ∑

l,p∈Z

∣∣∣ ∑
|n|>N

[an(l)]p
∣∣∣2 =

∑
l,p∈Z

∣∣∣〈 ∑
|n|>N

∑
m∈Z

〈f, ψm,n〉ψm,n, ψ
k
p,l〉

∣∣∣2

≤ B(k)
∥∥∥ ∑

|n|>N

∑
m∈Z

〈f, ψm,n〉ψm,n

∥∥∥2
L2(R)

= B(k)
∑

|n|>N

∑
m∈Z

|〈f, ψm,n〉|2.

As Ψ(1) is an orthonormal basis and f ∈ L2(R) we have the result of the theorem.
�

Note that Theorems 3.5 and 3.1 are completely analogous, not only because of
the type of convergence got in both of them, but also by the similar expressions (7)
and (5) respectively. For this reason Theorem 3.5 can be said to be a Whittaker-
Shannon-Kotel’nikov type theorem.

4. Columns by rows: the family Ψ[k]

By now only modifications in the translation parameter of an orthonormal wavelet
basis have been considered, but the same type of modification can be made in the
scaling parameter. We will call Ψ[k] the family

Ψ[k] = { kψj,n(·) = 2
j
2k ψ(2

j
k · −n); j, n ∈ Z },

where k ∈ N and ψ is a wavelet such that Ψ(1) is an orthonormal wavelet basis.

Proposition 4.1. The family Ψ[k] is a tight frame in L2(R) for any k ∈ N and the
frame bound is k.

Proof. Take f ∈ L2(R) and consider the k different classes in Z/kZ.

∑
m,n∈Z

∣∣〈f, 2 m
2k ψ(2

m
k · −n)〉

∣∣2 =
∑

m,n∈Z

k−1∑
h=0

∣∣〈f(t) kψmk+h,n〉
∣∣2

=
k−1∑
h=0

∑
m,n∈Z

∣∣∣〈f− h
k ,0, ψm,n〉

∣∣∣2 =
k−1∑
h=0

‖f−h
k ,0‖2L2(R) = k ‖f‖L2(R).

�
Note that this result is got for any wavelet ψ such that Ψ(1) is an orthonormal

basis in L2(R), and finite band-width is not required.
Associated to the family Ψ[k] we can also try to obtain a discrete vector sampling

theorem as before. We will see that a Shannon type theorem cannot be got.

Definition 4.2. Let ψ be a wavelet such that Ψ(1) is an orthonormal basis in L2(R)
and k ∈ N. We will call Ak the space

(8) Ak = {G : Z −→ l2(Z); ∃g ∈ L2(R), Gj(n) = 〈g,k ψj,n〉}.
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By Proposition 4.1 we have that Ak ⊂ L2(Z).

Proposition 4.3. There is no Shannon type sampling theorem for the functions
in Ak.

Proof. Take G ∈ Ak, and let g ∈ L2(R) be the function associated to G by (8). As
Ψ(1) is an orthonormal basis in L2(R)

[G(l)]j =
∑

n,q∈Z

〈g, ψn,q〉〈ψn,q,
k ψl,j〉

=
∑

n,q∈Z

[G(nk)]q 〈ψn,q, ψ l
k ,j

〉.

Suppose there exists T : Q × Z −→ l2(Z) such that

G(l) =
∑
n∈Z

G(nk) ∗ T ( l
k , n)

for all l ∈ Z. Then

[G(l)]j =
∑

n,q∈Z

[G(nk)]q [T ( l
k , n)]j−q.

From these two expressions of [G(l)]j we obtain that

[T ( l
k
, n)]j−q = 〈ψn,q, ψ l

k ,j
〉,

what is the same, given λ ∈ Q and n ∈ Z

[T (λ, n)]j−q = 〈ψn,q, ψλ,j〉.
This would make 〈ψn,q, ψλ,j〉 to depend on j and q just by its difference, and so

〈ψn,q, ψλ,j〉 = 〈ψn,0, ψλ,j−q〉.
But it is not true, as 〈ψn,q, ψλ,j〉 = 〈ψn,0, ψλ,2λ−nq−j〉. �

Let us observe that the only, but essential, difference between the redundancy
introduced in the family Ψ(k) and in Ψ[k] is that 〈ψn,q, ψ

j,
l
k

〉 does depend on j and

q just by its difference, and so we can build the function S so that

[F (l)]j =
∑

n,q∈Z

[F (qk)]n 〈ψn,q, ψ
j,

l
k

〉 =
∑

n,q∈Z

[F (qk)]n [S( l
k , n)]j−q.
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