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Abstract. In this paper we present a definition of weighted Sobolev spaces on

curves and find general conditions under which the spaces are complete. We
also prove the density of the polynomials in these spaces for non-closed compact

curves and, finally, we find conditions under which the multiplication operator
is bounded on the completion of polynomials. These results have applications

to the study of zeroes and asymptotics of Sobolev orthogonal polynomials.

1. Introduction

The topic of weighted Sobolev spaces appears in very different areas of Math-
ematics going from the partial differential equations to approximation theory (see
e.g. [HKM], [K], [Ku], [KO], [KS] and [T]). Some particular cases were studied in
[ELW1], [ELW2] and [EL]. Later, we presented a very deep study of general Sobolev
spaces in the real line (see [RARP1], [RARP2], [R1], [R2] and [R3]).

Here we are interested in the case of Sobolev spaces with general measures sup-
ported on curves in the complex plane.

In the last months of his life, J. J. Guadalupe (Chicho for his friends) showed
increasing interest in these problems, planning to collaborate with us.

Sobolev orthogonal polynomials on the unit circle and, more generally, on curves
is a topic of recent and increasing interest in approximation theory; see, for example,
[CM] and [FMP] (for the unit circle) and [BFM] and [M-F] (for the case of Jordan
curves). If γ is a simple and locally absolutely continuous curve, it is clear that the
set of holomorphic functions whose norm in the Sobolev space W k,p(γ, µ) is finite
is not a Banach space except when the support of µ is finite. In order to obtain a
complete space we have to deal with functions which are not holomorphic. Conse-
quently, we need to define f(j) when f is not holomorphic; the precise definition is
presented in Section 2.

The zeroes of the Sobolev orthogonal polynomials have been studied in [LP] in the
case of a segment on the real line. There it is proved that they are contained in the
disk {z ∈ C : |z| ≤ 2‖M‖}, where (Mf)(x) = x f(x) is the multiplication operator.
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Consequently, the set of the zeroes of the Sobolev orthogonal polynomials is bounded
if the multiplication operator is bounded. The location of these zeroes allows one to
obtain results on the asymptotic behaviour of Sobolev orthogonal polynomials (see
[LP]). In [LP] they prove also that if µ is a finite sequentially dominated measure in
[a, b], then M is a bounded operator on the completion of polynomials (a measure is
sequentially dominated if # suppµ0 = ∞ and dµj = fj dµj−1 with fj bounded for
1 ≤ j ≤ k). Recently, these results have been improved for measures on compact
sets in C (see [LPP]).

It is not difficult to see that the multiplication operator can also be bounded
when the vectorial measure is not sequentially dominated. In Section 8 below other
conditions are given in order to have the boundedness of M even on compact sets
in C. In [R2] one of the authors obtains a characterization of the boundedness of
the operator M for measures in R. Also, in Section 8 (see Theorem 8.1 below) this
result is generalized for measures on compact sets in C; therefore this theorem is
useful in the study of orthogonal polynomials.

Though we do not have yet the definitions, let us state the main theorems here.
The results are numbered according to the section where they appear. The first
one gives a sufficient condition under which one obtains a complete Sobolev space.
The condition is a bit technical although it is very general, so we prefer to state
the theorem in a short version where this condition is denoted by: (γ, µ) ∈ C. The
definition of the class C is in Section 4, Definition 4.2. The theorem is as follows:

Theorem 5.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a locally finite p-
admissible vectorial measure on γ with (γ, µ) ∈ C. Then the Sobolev space W k,p(γ, µ)
is complete.

Our main result on the density of polynomials in these spaces is Theorem 6.2.
Now, the conditions we need are more restrictive than in Theorem 5.1, but we have
found five general types of measures for which it is true. We simply name them by
types 1, 2, 3, 4 and 5 and the definitions are in Section 6. These measures include
the most usual examples like Jacobi-type weights (that are measures of type 2).

Theorem 6.2. Let us consider 1 ≤ p < ∞, c > 0 and µ = (µ0, . . . , µk) a p-
admissible vectorial measure on a non-closed compact curve γ : I → C. Let us
assume that γ ∈W k,∞(I) and |γ′| ≥ c. If µ is a measure of type 1, 2, 3, 4 or 5, then
P is dense in the Sobolev space W k,p(γ, µ).

The last result we present here is Theorem 8.1. It gives a necessary and suffi-
cient condition so that the multiplication operator is bounded on the completion
of polynomials, P k,p(E, µ). Here we consider general compact sets E ⊂ C instead
of curves. The kind of measures that appear here, ESD, is a generalization of
sequentially dominated measures. The definition is in Section 6, Definition 6.6.

Theorem 8.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite vecto-
rial measure on a compact set E. Then, the multiplication operator is bounded on
P k,p(E, µ) if and only if there exists a vectorial measure µ′ ∈ ESD such that the
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Sobolev norms in W k,p(E, µ) and W k,p(E, µ′) are comparable on the space of poly-
nomials P . Furthermore, we can choose µ′ = (µ′0, . . . , µ′k) with µ′j := µj + µj+1 +
· · ·+ µk.

We also obtain results which partially generalize the classical result on density of
polynomials in Lp of the unit circle to the context of Sobolev spaces (see Section 7).

Notation. We only consider simple curves in the complex plane which have a locally
absolutely continuous parametrization. In the paper, k ≥ 1 denotes a fixed natural
number; zi are points along a curve γ ⊂ C. All the measures we consider are Borel,
positive and locally finite and all the weights are non-negative Borel measurable
functions. We can split µj as dµj = d(µj)s + wj ds, where (µj)s is singular with
respect to the arc-length measure, wj is a weight on γ and ds is the differential of
arc-length. We always use this terminology for the Radon-Nikodym decomposition
of µj. We identify a weight w on γ with the measure wds. P denotes the set of
all polynomials. When every polynomial has finite W k,p(γ, µ)-norm, we denote by
P k,p(γ, µ) the completion of polynomials with that norm.

If γ : I −→ C is a non-closed curve and t0 ∈ I, by a right (respectively, left)
neighbourhood of z0 = γ(t0) in γ we mean the image by γ of [t0, t0+ε] (respectively,
[t0 − ε, t0]) for some ε > 0. If t0 is the maximum (respectively, minimum) of I we
also have left (respectively, right) neighbourhoods of γ(t0).

If γ : I −→ C is a closed curve and t0 ∈ I, we can consider its periodic extension
γ0 : R −→ C, and define left and right neighborhoods of γ(t0) in a similar way.

Finally, the constants (denoted by c or ci) in the formulae can change from line
to line and even in the same line.

The present article is extracted from [APRR], from the same authors. In that
paper we can find the proofs that do not appear here; there we can also find another
related theorems and all the technical results that we need in our proofs.

We thank the editors of this volume for suggesting us to collaborate with an
article related to one of the last topics of interest for J. J. Guadalupe. With this
paper we want to honour the memory of our friend Chicho who, tragically, has left
us so early.

2. Derivatives along curves

In this section we introduce a definition of derivative along a curve extending the
usual complex derivative, which will be crucial in the future. As far as we know this
concept is new. Recall that every curve in this paper is simple and has a locally
absolutely continuous parametrization.

Definition 2.1.
(a) Let I ⊆ R be any interval and γ : I −→ C be a curve. If z1, z2 are two distinct

points of γ(I), we denote by
∫ z2

z1
g(ζ)dζ the complex integral of the function g along

the arc of γ joining z1 and z2, (which we denote by [z1, z2]). We also can consider
arcs where one or the two extremal points are not included, as (z1, z2), [z1, z2) or
(z1, z2]. If γ is a closed curve we take the arc of γ joining z1 and z2 in the positive
sense (according to the parametrization).
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(b) Let z0 be a fixed point in γ. If γ is compact we say that f ∈ ACk(γ) if f can
be written as

(1) f(z) = q(z) +
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ ,

for some h ∈ L1(γ, ds) and some polynomial q ∈ Pk−1. If γ is a closed curve we
require also the function h ∈ L1(γ, ds) to verify

∫
γ
h(ζ) ζi dζ = 0, for 0 ≤ i < k.

When γ is not compact, we say that f ∈ ACk
loc(γ) if it can be split as in (1) with

h ∈ L1loc(γ, ds).
(c) If f ∈ ACk

loc(γ) and z0 ∈ γ, we define its derivative f ′ along γ as

f ′(z) = q′(z) +
∫ z

z0

h(ζ)
(z − ζ)k−2

(k − 2)!
dζ ,

where q′(z) means the classical derivative of q(z) and
∫ z

z0
h(ζ)(z − ζ)−1/(−1)! dζ

means h(z).

Obviously, if γ is a compact real interval, the space AC1(γ) is the set of absolutely
continuous functions in γ. If γ is a closed curve and f ∈ ACk(γ), we have

∫
γ
h(ζ) (z−

ζ)k−1 dζ = 0 for every z ∈ γ. This property is equivalent to f(j) being continuous
in γ for 0 ≤ j < k, where f(j) denotes the j-th derivative (according to the previous
definition) of f . It is clear that every holomorphic function in a neighbourhood of
γ belongs to ACk(γ) for every k.

We also notice that it is natural to define the derivative along γ in this way, since
this is the “inverse” of integration:

∫ z

z0

∫ ξ

z0

h(ζ)
(ξ − ζ)k−2

(k − 2)!
dζ dξ =

∫ z

z0

∫ z

ζ

h(ζ)
(ξ − ζ)k−2

(k − 2)!
dξ dζ

=
∫ z

z0

h(ζ)
[ (ξ − ζ)k−1

(k − 1)!

]ξ=z

ξ=ζ
dζ =

∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ .

This definition of derivative is independent of the representation of f we are using;
moreover, it does not depend on the choice of the point z0 nor on k. We have the
following non-surprising result.

Lemma 2.1. If f ∈ ACk
loc(γ) and z0 ∈ γ, then

f(z) = q(z) +
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ ,

where q(z) is the (k − 1)-th Taylor polynomial of f centered at z0, i.e.,

q(z) =
k−1∑
j=0

f(j)(z0)
j!

(z − z0)j , and h(z) = f(k)(z) .

Definition 2.2. We say that f ∈ Ck(γ) if f ∈ ACk
loc(γ) and f(k) is continuous

in γ.
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This definition of the class Ck(γ) coincides with the classical one when γ ∈ Ck(I)
and γ′ �= 0 on I (see Corollary 2.1 in [APRR]).

With our definition of derivatives, we can prove that Leibniz’ rule is true. Also,
we can prove the chain rule for derivatives. The proofs of these results may be found
in [APRR], Lemmas 2.4, 2.5 and 2.6.

3. Sobolev spaces

Obviously one of our main problems is to define the space W k,p(γ, µ). There are
two natural definitions:

(1) W k,p(γ, µ) is the biggest space of (classes of) functions f regular enough with
‖f‖Wk,p(γ,µ) <∞.

(2) W k,p(γ, µ) is the closure of a good set of functions (e.g. C∞(γ) or P ) with
the norm ‖ · ‖Wk,p(γ,µ).

However both approaches have serious difficulties:
We consider first the approach (1). It is clear that the derivatives f(j) must be

derivatives along γ in order to obtain a complete Sobolev space. Therefore we need
to restrict the measures µ to a class of p-admissible measures (see Definition 3.6).
Roughly speaking, µ is p-admissible if (µj)s, for 1 ≤ j ≤ k, is concentrated in the
set of points where f(j) is continuous, for every function f of the space; otherwise
f(j) is determined, up to zero-Lebesgue measure sets. Then (µk)s is identically zero.
However, there is no restriction on the support of (µ0)s.

This reasonable approach excludes norms appearing in the theory of Sobolev
orthogonal polynomials. Even if we work with the simpler case of the weighted
Sobolev spaces W k,p(γ, w) (measures without singular part) we must impose the
condition that wj belongs to the class Bp (see Definition 3.2 below) in order to have
a complete weighted Sobolev space (see [KO], [RARP1]).

The approach (2) is simpler: we know that the completion of every normed space
exists (e.g. (C∞(γ), ‖ · ‖Wk,p(γ,µ)) or (P, ‖ · ‖Wk,p(γ,µ))), but we have two difficulties.
The first one is evident: we do not get an explicit description of the Sobolev functions
as in (1) (in Section 6 there are several theorems which prove that both definitions
of Sobolev space are the same for p-admissible measures). The second problem is
worse: The completion of a normed space is by definition a set of equivalence classes
of Cauchy sequences. In many cases this completion is not a function space (see
Theorem 3.1 in [R2] and its Remark).

However, since we need to work with the multiplication operator in P k,p(γ, µ),
we have to choose this second approach if µ is not p-admissible. First of all, we
explain the definition of generalized Sobolev space on a curve. Let us start with
some preliminary technical definitions.

Definition 3.1. We say that two functions u, v are comparable on the set A ⊆ γ if
there are positive constants c1, c2 such that c1v(x) ≤ u(x) ≤ c2v(x) for almost every
x ∈ A. Since measures and norms are functions on measurable sets and vectors,
respectively, we can talk about comparable measures and comparable norms. We say
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that two vectorial weights or vectorial measures are comparable if each component
is comparable.

In what follows, the symbol a � b means that a and b are comparable for a and
b functions, measures or norms.

Obviously, the spaces Lp(A, µ) and Lp(A, ν) are the same and have comparable
norms if µ and ν are comparable on A. Therefore, in order to obtain our results we
can replace a measure µ by any comparable measure ν .

To define a Sobolev space along a curve γ we consider first a class of weights
which plays an important role in our results.

Definition 3.2. If 1 ≤ p ≤ ∞, we say that a weight w belongs to Bp([z1, z2]) if and
only if

w−1 ∈ L1/(p−1)([z1, z2]) , if p <∞ ,

w−1 ∈ L1([z1, z2]) , if p = ∞ .

Also, if J is any arc of γ we say that w ∈ Bp(J) if w ∈ Bp(J0) for every compact
arc J0 ⊆ J . We say that a weight belongs to Bp(J), where J is a union of disjoint
arcs ∪i∈AJi, if it belongs to Bp(Ji), for i ∈ A.

If the curve γ is R, then Bp(R) contains the classical Ap(R) weights appearing
in Harmonic Analysis (see [Mu1] or [GR]). The classes Bp(Ω), with Ω ⊆ R

n, and
Ap(Rn) (1 < p <∞) have been used in other definitions of weighted Sobolev spaces
on Rn in [KO] and [K] respectively.

Definition 3.3. Let us consider 1 ≤ p ≤ ∞ and a vectorial measure µ = (µ0, . . . , µk)
defined on the curve γ. For 0 ≤ j ≤ k we define the open set

Ωj :=
{
z ∈ γ : ∃ an open neighbourhood V of z on the curve γ with wj ∈ Bp(V )

}
.

Remark. Observe that we always have wj ∈ Bp(Ωj) for any 1 ≤ p ≤ ∞ and
0 ≤ j ≤ k. In fact, Ωj is the greatest open set U with wj ∈ Bp(U). Obviously,
Ωj depends on µ and p, although p and µ do not appear explicitly in the symbol
Ωj. Applying Hölder inequality it is easy to check that if f(j) ∈ Lp(Ωj , wj) with
1 ≤ j ≤ k, then f(j) ∈ L1loc(Ωj) and f(j−1) ∈ AC1loc(Ωj).

The definitions below also depend on µ and p, although µ and p may not appear
explicitly.

Let us consider 1 ≤ p ≤ ∞, a vectorial measure µ = (µ0, . . . , µk) and z0 ∈ γ.
We can modify the measure µ in a neighbourhood of z0, using the following version
of Muckenhoupt inequality on curves. This modified measure is equivalent in some
sense to the original one (see Theorem 4.1).

Theorem 3.1 (Muckenhoupt inequality on curves). Let us consider 1 ≤ p ≤ ∞,
[z0, z1 ] ⊆ γ and µ0, µ1 measures in (z0, z1 ]. Assume also (µ0)s ≡ 0 if p = ∞. Then
there exists a positive constant c such that

(2)
∥∥∥

∫ z1

z

g(ζ) dζ
∥∥∥

Lp((z0,z1], µ0)
≤ c ‖g‖Lp((z0,z1], µ1) ,
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for any measurable function g in (z0, z1 ], if and only if

(3)

sup
ζ∈(z0,z1)

µ0
(
(z0, ζ]

)∥∥w−1
1

∥∥
L1/(p−1)([ζ,z1])

<∞ , if 1 ≤ p <∞ ,

ess sup
ζ∈(z0,z1)

w0(ζ)
∫ z1

ζ

w1(ξ)−1 |dξ| <∞ , if p = ∞ ,

where ess sup refers to the arc-length.

Remark. This inequality is already known for γ contained in the real line (see
[Mu2], [M, p. 44] for 1 ≤ p <∞, and [RARP1, Lemma 3.2] for the case p = ∞).

Definition 3.4. A vectorial measure µ = (µ0, . . . , µk) is a right completion of a
vectorial measure µ = (µ0, . . . , µk) with respect to z0 ∈ γ in a right neighbourhood
[z0, z1], if µk = µk in γ, µj = µj in the complement of (z0, z1] and

µj = µj + µ̃j , in (z0, z1] for 0 ≤ j < k ,

where µ̃j is any measure satisfying:
(i) µ̃j((z0, z1]) <∞ if 1 ≤ p <∞,
(ii) (µ̃j)s ≡ 0 and w̃j ∈ L∞([z0, z1]) if p = ∞,
(iii) Λp(µ̃j , µj+1) <∞, where

Λp(ν, σ) := sup
ζ∈(z0,z1)

ν
(
(z0, ζ]

)∥∥∥
(dσ
ds

)−1∥∥∥
L1/(p−1)([ζ,z1 ])

, if 1 ≤ p <∞ ,

Λ∞(ν, σ) := ess sup
ζ∈(z0,z1)

dν

ds
(ζ)

∫ z1

ζ

(dσ
ds

)−1
(ξ) |dξ| .

The Muckenhoupt inequality guarantees that if f(j) ∈ Lp(µj) and f(j+1) ∈
Lp(µj+1), then f(j) ∈ Lp(µj). Therefore, f ∈ W k,p(γ, µ) if and only if f ∈
W k,p(γ, µ) (see Theorem 4.1 for further results). If we work with absolutely contin-
uous measures, we also say that a vectorial weight w is a completion of µ (or of w).
Some examples of completions may be found in [RARP1].

We can define a left completion of µ with respect to z0 in a similar way.

Definition 3.5. For 1 ≤ p ≤ ∞ and a vectorial measure µ, we say that a point z0 ∈
γ is right j-regular (respectively, left j-regular), if there exist a right completion µ
(respectively, left completion) of µ in [z0, z1] and j < i ≤ k such that wi ∈ Bp([z0, z1])
(respectively, Bp([z1, z0])). Also, we say that a point z0 ∈ γ is j-regular, if it is right
and left j-regular.

Remarks.
1. A point z0 ∈ γ is right j-regular (respectively, left j-regular), if at least one

of the following properties is verified:
(a) There exist a right (respectively, left) neighbourhood [z0, z1] (respectively,

[z1, z0]) and j < i ≤ k such that wi ∈ Bp([z0, z1]) (respectively, Bp([z1, z0])). Here
we have chosen w̃j = 0.

(b) There exist a right (respectively, left) neighbourhood [z0, z1] (respectively,
[z1, z0]) and j < i ≤ k, α > 0, δ < δp with δp := (i − j)p − 1 if 1 ≤ p < ∞ and
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δ∞ := i−j−1, such thatwi(z) ≥ α |z−z0 |δ, for almost every z ∈ [z0, z1] (respectively,
[z1, z0]) and we have |z − z0| � |γ−1(z) − γ−1(z0)| in [z0, z1] (respectively, [z1, z0]),
when γ is the arc-length parametrization. See Lemma 3.4 in [RARP1].

2. If z0 is right j-regular (respectively, left), then it is also right i-regular (re-
spectively, left) for each 0 ≤ i ≤ j.

3. It is easy to prove that we can take i = j + 1 in this definition.

Let us introduce some more notation. We denote by Ω(j) the set of j-regular
points or half-points, i.e., z ∈ Ω(j) if and only if z is j-regular, we say that z+ ∈ Ω(j)

if and only if z is right j-regular, and we say that z− ∈ Ω(j) if and only if z is
left j-regular. Obviously, Ω(k) = ∅ and Ωj+1 ∪ · · · ∪ Ωk ⊆ Ω(j). Observe that Ω(j)

depends on p (see Definition 3.5).

Remark. If 0 ≤ j < k and J is an arc in γ, J ⊆ Ω(j), then the set J\(Ωj+1∪· · ·∪Ωk)
is discrete (see the Remark before Definition 7 in [RARP1]).

Definition 3.6. We say that the vectorial measure µ = (µ0, . . . , µk) is p-admissible
if

(µj − (wj)|Ωj )(γ \ Ω(j)) = 0, for 1 ≤ j ≤ k.

We say that µ is strongly p-admissible if supp(µj − (wj)|Ωj ) ⊆ Ω(j), for 1 ≤ j ≤ k.

We use the letter p in p-admissible in order to emphasize the dependence on p
(recall that Ω(j) depends on p).

Remarks.
1. There is no condition on µ0.
2. We have wk = 0 in almost every z ∈ γ \ Ωk and (µk)s ≡ 0, since Ω(k) = ∅.
3. Every absolutely continuous measure w with wj(z) = 0 in almost every

z ∈ γ \ Ωj for 1 ≤ j ≤ k is p-admissible.
4. Recall that we are identifying wj with the measure wj ds.
5. This definition is more general than Definition 8 in [RARP1]; there we always

assume wj(z) = 0 in γ \Ωj . There exist weights which do not satisfy this reasonable
condition: Consider a Cantor set C in [0, 1] with positive length and define w1 := 1
in C and w1(x) := dist (x, C) if x ∈ R \ C; it is clear that Ω1 = R \ C and w1 = 1
in C.

Definition 3.7 (Sobolev space). Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a
p-admissible vectorial measure. We define the Sobolev space W k,p(γ, µ) as the space
of equivalence classes of

V k,p(γ, µ) :=
{
f : γ → C / f(j) ∈ AC1loc(Ω(j)) for 0 ≤ j < k and

‖f(j)‖Lp(γ,µj) <∞ for 0 ≤ j ≤ k
}
,

with respect to the seminorm

‖f‖Wk,p(γ,µ) :=
( k∑

j=0

‖f(j)‖p
Lp(γ,µj)

)1/p

, for 1 ≤ p <∞ ,
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and
‖f‖Wk,∞(γ,µ) := max

0≤j≤k
‖f(j)‖L∞(γ,µj) ,

where
‖g‖L∞(γ,µj) := max

{
ess sup

z∈γ
|g(z)|wj(z) , sup

z∈supp(µj)s

|g(z)|
}

and we assume the usual convention sup ∅ = −∞.

Remark. It is natural to ask for f(j) ∈ AC1loc(Ω(j)), since when the (µj)s-measure
of the set where |f(j)| is not continuous is positive, the integral

∫
|f(j)|p d(µj)s does

not make sense.

4. Some technical results

In these results rely the hardest part of the proofs of our theorems. There are
some concepts of particular importance that appear in these results. They are in
the following definitions.

Definition 4.1. Let us consider 1 ≤ p ≤ ∞ and µ a p-admissible vectorial measure
on γ. Let us define the space K(γ, µ) as

K(γ, µ) :=
{
g : Ω(0) −→ C/ g ∈ V k,p

(
γ, µ|Ω(0)

)
, ‖g‖Wk,p(γ, µ|

Ω(0) ) = 0
}
.

K(γ, µ) is the equivalence class of 0 in W k,p(γ, µ|Ω(0)). It plays an important
role in the study of the multiplication operator in Sobolev spaces (see [RARP2]
and Theorem 8.3 below) and in the following definition, which will be crucial in
the study of Sobolev spaces (see [RARP1], [RARP2] and theorems 4.1, 4.2 and 5.1
below).

Definition 4.2. Let us consider 1 ≤ p ≤ ∞ and µ a p-admissible vectorial measure
on γ. We say that (γ, µ) belongs to the class C0 if there exist compact sets Mn,
which are a finite union of compact arcs in γ, such that

(i) Mn intersects at most a finite number of connected components of Ω1∪· · ·∪Ωk,
(ii) K(Mn, µ) = {0},
(iii) Mn ⊆Mn+1,
(iv) ∪nMn = Ω(0).

We say that (γ, µ) belongs to the class C if there exists a measure µ′0 = µ0 +∑
m∈D cmδzm with cm > 0, {zm} ⊂ Ω(0), D ⊆ N and (γ, µ′) ∈ C0, where µ′ =

(µ′0, µ1, . . . , µk) is minimal in the following sense: there exists {Mn} correspond-
ing to (γ, µ′) ∈ C0 such that if µ′′0 = µ′0 − cm0δzm0

with m0 ∈ D and µ′′ =
(µ′′0 , µ1, . . . , µk), then K(Mn, µ

′′) �= {0} if zm0 ∈ Mn.

Remarks.
1. The condition (γ, µ) ∈ C is not very restrictive. In fact, the proof of Theorem

4.1 (see [APRR]) shows that if Ω(0) \ (Ω1 ∪ · · · ∪ Ωk) has only a finite number
of points in each connected component of Ω(0), then (γ, µ) ∈ C. Furthermore, if
K(γ, µ) = {0}, we have (γ, µ) ∈ C0.

2. If (γ, µ) ∈ C0, then (γ, µ) ∈ C, with µ′ = µ.
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3. The proof of Theorem 4.1 shows that if for every connected component Λ of
Ω1∪· · ·∪Ωk we have K(Λ, µ) = {0}, then (γ, µ) ∈ C0. Condition # suppµ0|Λ∩Ω(0) ≥
k implies K(Λ, µ) = {0}.

The next results play a central role in the theory of Sobolev spaces on curves.

Theorem 4.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a locally finite
p-admissible vectorial measure on γ. Let Kj be a finite union of compact arcs
contained in Ω(j), for 0 ≤ j < k and µ a right (or left ) completion of µ. Then:

(a) If (γ, µ) ∈ C0 there exist positive constants c1 = c1(K0, . . . , Kk−1) and c2 =
c2(µ,K0, . . . , Kk−1) such that, ∀ g ∈ V k,p(γ, µ),

c1

k−1∑
j=0

‖g(j)‖L∞(Kj) ≤ ‖g‖Wk,p(γ, µ), c2 ‖g‖Wk,p(γ, µ) ≤ ‖g‖Wk,p(γ, µ).

(b) If
(
γ, µ

)
∈ C there exist positive constants c3 = c3(K0, . . . , Kk−1) and c4 =

c4(µ,K0, . . . , Kk−1) such that for every g ∈ V k,p(γ, µ), there exists g0 ∈ V k,p(γ, µ),
independent of K0, . . . , Kk−1, c3, c4 and µ, with

‖g0 − g‖Wk,p(γ, µ) = 0 ,

c3

k−1∑
j=0

‖g(j)0 ‖L∞(Kj) ≤ ‖g0‖Wk,p(γ, µ) = ‖g‖Wk,p(γ, µ),

c4 ‖g0‖Wk,p(γ, µ) ≤ ‖g‖Wk,p(γ, µ).

Furthermore, if g0, f0 are, respectively, these representatives of g, f, we have, with
the same constants c3, c4,

c3

k−1∑
j=0

‖g(j)0 − f(j)0 ‖L∞(Kj) ≤ ‖g − f‖Wk,p(γ, µ),

c4 ‖g0 − f0‖Wk,p(γ, µ) ≤ ‖g − f‖Wk,p(γ, µ).

The proof follows the argument in the proof of Theorem 4.3 in [RARP1] and
needs some additional technical results on curves.

Theorem 4.2. Let us consider 1 ≤ p ≤ ∞ and µ a locally finite p-admissible
vectorial measure on γ. Let Kj be a finite union of compact arcs contained in Ω(j),
for 0 ≤ j < k. Then:

(a) If (γ, µ) ∈ C0 there exists a positive constant c1 = c1(K0, . . . , Kk−1) such that

c1

k−1∑
j=0

‖g(j+1)‖L1(Kj) ≤ ‖g‖Wk,p(γ, µ), ∀ g ∈ V k,p(γ, µ).

(b) If
(
γ, µ

)
∈ C there exists a positive constant c2 = c2(K0, . . . , Kk−1) such

that for every g ∈ V k,p(γ, µ), there exists g0 ∈ V k,p(γ, µ) (the same function as in
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Theorem 4.1), with

‖g0 − g‖Wk,p(γ, µ) = 0 ,

c2

k−1∑
j=0

‖g(j+1)0 ‖L1(Kj) ≤ ‖g0‖Wk,p(γ, µ) = ‖g‖Wk,p(γ, µ).

Furthermore, if g0, f0 are, respectively, these representatives of g, f, we have with
the same constant c2

c2

k−1∑
j=0

‖g(j+1)0 − f(j+1)0 ‖L1(Kj) ≤ ‖g − f‖Wk,p(γ, µ).

Proof. We only prove part (b) since (a) is simpler. Given a function g ∈ V k,p(γ, µ),
let us choose g0 as in Theorem 4.1(b). Fix 0 ≤ j < k. Since Kj ⊆ Ω(j), given any
point z ∈ Kj , there exist an arc Jz and a completion wz of w with z ∈ Jz and
wz

j+1 ∈ Bp(Jz). The compactness of Kj gives that there exists a finite set of points
z1, . . . , zl with Kj ⊆ Jz1 ∪ · · · ∪ Jzl .

If we define w∗
j+1 :=

∑l
i=1 w

zi

j+1χJzi

, the second inequality in Theorem 4.1(b)
gives, since w∗

j+1 ∈ Bp(Kj),

c ‖g(j+1)0 ‖L1(Kj) ≤ c ‖g(j+1)0 ‖Lp(Kj ,w∗
j+1)

≤ ‖g0‖Wk,p(γ, µ) ,

and this finishes the proof of the first inequality. The proof of the second one is
similar. �

5. Completeness

Theorem 5.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a locally finite p-
admissible vectorial measure on γ with (γ, µ) ∈ C. Then the Sobolev space W k,p(γ, µ)
is complete.

Proof. Let {fn} be a Cauchy sequence in W k,p(γ, µ). For each n, let us choose a
representative of the class of fn ∈ W k,p(γ, µ) (which we also denote by fn) as in
theorems 4.1 and 4.2. Therefore, for each 0 ≤ j ≤ k, {f(j)n } is a Cauchy sequence
in Lp(γ, µj) and it converges to a function gj ∈ Lp(γ, µj). We only need to prove
that, for each 0 ≤ j ≤ k − 1, gj is (perhaps modified in a set of zero µj-measure) a
function belonging to AC1loc(Ω

(j)) such that g′j = gj+1 in Ω(j).
Let us consider any compact arcK ⊆ Ω(j) (K can be the whole curve γ if Ω(j) = γ

and it is a compact curve). By theorems 4.1(b) and 4.2(b) we know that there exists
a positive constant c such that for every n,m ∈ N

‖f(j)n − f(j)m ‖L∞(K) + ‖f(j+1)n − f(j+1)m ‖L1(K) ≤ c

k∑
i=0

‖f(i)n − f(i)m ‖Lp(γ, µi) .

As {f(j)n } ⊂ C(K), there exists a function hj ∈ C(K) such that

c ‖f(j)n − hj‖L∞(K) ≤
k∑

i=0

‖f(i)n − gi‖Lp(γ, µi) .
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Since we can take as K any compact arc contained in Ω(j), we obtain that the
function hj can be extended to Ω(j) and we have in fact hj ∈ C(Ω(j)). It is obvious
that gj = hj in Ω(j) (except for at most a set of zero µj-measure), since f(j)n converges
to gj in the norm of Lp(γ, µj) and to hj uniformly on each compact arc K ⊆ Ω(j).
Therefore we can assume that gj ∈ C(Ω(j)).

Let us see now that g′j = gj+1 in K. We have for z, z0 ∈ K that

f(j)n (z) = f(j)n (z0) +
∫ z

z0

f(j+1)n (ζ) dζ .

The uniform convergence of f(j)n in K and the L1-convergence of f(j+1)n in K give
that

gj(z) = gj(z0) +
∫ z

z0

gj+1(ζ) dζ .

�

6. Density

We do not have a density theorem as general as Theorem 5.1, but Theorem 6.1
covers many important cases. We need some previous definitions.

Definition 6.1. Consider 1 ≤ p < ∞, a compact curve γ and a vectorial measure
µ = (µ0, . . . , µk) on γ. We say that µ is of type 1 if it is finite and p-admissible on
γ and wk ∈ Bp(γ).

Definition 6.2. Consider 1 ≤ p < ∞, a non-closed compact curve γ = [z1, z2]
and a vectorial measure µ = (µ0, . . . , µk) on γ. We say that µ is of type 2 if
it is finite and strongly p-admissible on γ and there exist points along the curve
z1 ≤ ζ1 < ζ2 < ζ3 < ζ4 ≤ z2 and integers k1, k2 ≥ 0 such that

(1) wk ∈ Bp([ζ1, ζ4]),
(2) if z1 < ζ1, then wj is comparable to a non-decreasing weight in [z1, ζ2], for

k1 ≤ j ≤ k,
(3) if ζ4 < z2, then wj is comparable to a non-increasing weight in [ζ3, z2], for

k2 ≤ j ≤ k,
(4) z1 is right (k1 − 1)-regular if k1 > 0 and z2 is left (k2 − 1)-regular if k2 > 0.

Definition 6.3. Consider 1 ≤ p < ∞, a compact curve γ and a vectorial measure
µ = (µ0, . . . , µk) on γ. We say that µ is of type 3 if it is finite and p-admissible on
γ and there exist z0 ∈ γ, an open neighbourhood V of z0 in γ, an integer 0 ≤ r < k
and a positive constant c such that

(1) dµj+1(z) ≤ c |z − z0|pdµj(z) on V , for r ≤ j < k,
(2) wk ∈ Bp(γ \ {z0}),
(3) if r > 0, z0 is (r − 1)-regular.

Remark. Condition (1) means that µj+1 is absolutely continuous with respect to
µj on V and its Radon-Nikodym derivative is less than or equal to c |z − z0|p.
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Definition 6.4. Consider 1 ≤ p < ∞, a compact curve γ and a vectorial measure
µ = (µ0, . . . , µk) on γ. We say that µ is of type 4 if it is finite and p-admissible on γ
and there exist z0 ∈ γ, an open neighbourhood V of z0 on γ and a positive constant
c such that

(1) if p > 1, wk(z) ≤ c |z − z0|p−1 for almost every z ∈ V ; if p = 1, wk can be
modified in a set of zero length in such a way that limz→z0 wk(z) = 0,

(2) wk ∈ Bp(γ \ {z0}),
(3) if k > 1, z0 is (k − 2)-regular.

Definition 6.5. Consider 1 ≤ p <∞, a non-closed compact curve γ = [z1, z2] and
a vectorial measure µ = (µ0, . . . , µk) on γ. We say that µ is of type 5 if it is finite
and p-admissible on γ and verifies

(1) wk ∈ Bp((z1, z2)),
(2) if k > 1, z1 is right (k − 2)-regular and z2 is left (k − 2)-regular.

We want to remark that the types of measures in [RARP2] and here do not
coincide.

Our theorems on density use in their proofs a new concept of measures, which
we define now.

Definition 6.6. A vectorial measure µ = (µ0, . . . , µk) on the complex plane belongs
to ESD (extended sequentially dominated) if there exists a positive constant c such
that µj+1 ≤ cµj for 0 ≤ j < k.

Remark. If µ ∈ ESD is a p-admissible vectorial measure on a curve γ, then
(γ, µ) ∈ C0 (see Remark 3 to Definition 4.2). A vectorial measure µ is sequentially
dominated if and only if µ ∈ ESD and # suppµ0 = ∞. If µ ∈ ESD, 0 is the unique
polynomial q with ‖q‖Wk,p(C,µ) = 0 if and only if # suppµ0 = ∞.

Now, let us state our results.

Theorem 6.1. Let us consider 1 ≤ p < ∞, c > 0 and µ = (µ0, . . . , µk) a p-
admissible vectorial measure on a compact curve γ : I → C. Let us assume that
γ ∈ W k,∞(I) and |γ′| ≥ c. If µ is a measure of type 1, 2, 3, 4 or 5, then ACk(I) is
dense in the Sobolev space W k,p(γ, µ). Furthermore, if γ ∈ C∞(I), then C∞(γ) is
dense in W k,p(γ, µ).

To prove this theorem we assume that the measure µ ∈ ESD (this can be done
by lemmas 6.1 and 6.2 in [APRR]). Then, we can find another measure, µ∗, such
that the spaces W k,p(I, µ∗) and W k,p(γ, µ) are isomorphic as normed spaces (µ∗ is
the pullback of µ by γ). Therefore, we can apply the results on density in intervals
(see Theorem 4.1 in [RARP2] and theorems 3.3 and 3.4 in [R3]). This is the basis
of the proof.

Theorem 6.2. Let us consider 1 ≤ p < ∞, c > 0 and µ = (µ0, . . . , µk) a p-
admissible vectorial measure on a non-closed compact curve γ : I → C. Let us
assume that γ ∈W k,∞(I) and |γ′| ≥ c. If µ is a measure of type 1, 2, 3, 4 or 5, then
P is dense in the Sobolev space W k,p(γ, µ).
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Proof. Let f0 ∈ V k,p(γ, µ). By Theorem 6.1 we can approximate f0 by a function
f ∈ ACk(γ). Let g be a continuous function approximating f(k) in the Lp(γ, µk)
and the L1(γ) norms (see [R3, Lemma 3.1]). Since γ is non-closed, we can choose
a polynomial q approximating g in L∞(γ) (and therefore in the Lp(γ, µk) and the
L1(γ) norms). If z0 ∈ γ, the following function approximates f :

Q(z) :=
k−1∑
j=0

f(j)(z0)
(z − z0)j

j!
+

∫ z

z0

q(ζ)
(z − ζ)k−1

(k − 1)!
dζ .

�

7. Density in analytic closed curves

First of all, let us translate Szegö condition to our context of curves.

Definition 7.1. A scalar measure µ on an analytic closed curve γ with absolutely
continuous part w verifies the Szegö condition if∫

γ

logw(z) |dz| > −∞ .

The following theorem of Kolmogorov-Krein-Szegö is well known (see e.g. [G,
pp. 135–137]).

Theorem A. Let us consider 1 ≤ p < ∞ and a finite scalar measure µ on ∂D.
Then the polynomials are dense in Lp(∂D, µ) if and only if µ does not verify the
Szegö condition.

We can prove the following consequence of Theorem A.

Corollary 7.1. Let us consider 1 ≤ p < ∞ and a finite scalar measure µ on an
analytic closed curve γ. Then the polynomials are dense in Lp(γ, µ) if and only if
µ does not verify the Szegö condition.

In the case of Sobolev spaces, the natural translation of this result would be
that when one of the components, µj , of the vectorial measure µ verifies the Szegö
condition, then the polynomials are not dense in W k,p(γ, µ). In change, we obtain
something better.

Theorem 7.1. Let us consider 1 ≤ p < ∞, µ = (µ0, . . . , µk) a finite p-admissible
vectorial measure on an analytic closed curve γ, with (γ, µ) ∈ C0 and µ a finite sum
of completions of µ. Let us assume that µ ∈ ESD if k ≥ 2. If for some 0 ≤ j ≤ k
the measure µj verifies the Szegö condition, then the polynomials are not dense in
W k,p(γ, µ).

This is also true, in particular, for µ = µ. In the same line we have the following
result.

Theorem 7.2. Let us consider 1 ≤ p < ∞, a fixed integer 0 ≤ j ≤ k, µ =
(µ0, . . . , µk) a finite p-admissible vectorial measure on an analytic closed curve γ,
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with (γ, µ) ∈ C0 and K a finite union of compact arcs with K ⊆ Ω(j). Let us assume
that µ ∈ ESD if k ≥ 2. If the measure µj verifies∫

γ\K

logwj(z) |dz| > −∞ ,

then the polynomials are not dense in W k,p(γ, µ).

When γ = ∂D, these two last theorems are true even without the hypothesis
µ ∈ ESD for k ≥ 2 (see Theorem 7.1 and Corollary 7.2 in [APRR]).

8. Multiplication operator

First of all, let us see some remarks about the definition of the multiplication
operator. In this section we only consider measures such that every polynomial
has finite Sobolev norm. Recall that when every polynomial has finite W k,p(E, µ)-
norm, we denote by P k,p(E, µ) the completion of P with that norm. We start with
a definition which has sense for measures defined on arbitrary measurable sets E
(not necessarily curves).

Definition 8.1. If µ is a vectorial measure on the Borel set E ⊆ C, we say that
the multiplication operator is well defined in P k,p(E, µ) if given any sequence {sn}
of polynomials converging to 0 in W k,p(E, µ), then {zsn} also converges to 0 in
W k,p(E, µ). In this case, if {qn} ∈ P k,p(E, µ), we define M({qn}) := {zqn}. If we
choose another Cauchy sequence {rn} representing the same element in P k,p(E, µ)
(i.e. {qn − rn} converges to 0 in W k,p(E, µ)), then {zqn} and {zrn} represent the
same element in P k,p(E, µ) (since {z(qn − rn)} converges to 0 in W k,p(E, µ)).

We can also think of another definition which is as natural in the case of curves:

Definition 8.2. If µ is a p-admissible vectorial measure on γ (and hence W k,p(γ, µ)
is a space of classes of functions), we say that the multiplication operator is well
defined in W k,p(γ, µ) if given any function h ∈ V k,p(γ, µ) with ‖h‖Wk,p(γ,µ) = 0, we
have ‖zh‖Wk,p(γ,µ) = 0. In this case, if [f ] is an equivalence class in W k,p(γ, µ),
we define M([f ]) := [zf ]. If we choose another representative g of [f ] (i.e. ‖f −
g‖Wk,p(γ,µ) = 0) we have [zf ] = [zg], since ‖z(f − g)‖Wk,p(γ,µ) = 0.

Although both definitions are natural, it is possible for a p-admissible measure
µ with W k,p(γ, µ) = P k,p(γ, µ) that M is well defined in W k,p(γ, µ) and not well
defined in P k,p(γ, µ) (see Lemma 8.1 and Theorem 8.3). The following lemma
characterizes the spaces P k,p(E, µ) with M well defined.

Lemma 8.1. Let us consider 1 ≤ p <∞ and µ = (µ0, . . . , µk) a vectorial measure
on a measurable set E ⊆ C. The following facts are equivalent:

(1) The multiplication operator is well defined in P k,p(E, µ).
(2) The multiplication operator is bounded in P k,p(E, µ).
(3) There exists a positive constant c such that

‖zq‖Wk,p(E,µ) ≤ c ‖q‖Wk,p(E,µ) , for every q ∈ P .
The following result characterizes the boundedness of the multiplication operator.
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Theorem 8.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite vecto-
rial measure on a compact set E. Then, the multiplication operator is bounded in
P k,p(E, µ) if and only if there exists a vectorial measure µ′ ∈ ESD such that the
Sobolev norms in W k,p(E, µ) and W k,p(E, µ′) are comparable on P . Furthermore,
we can choose µ′ = (µ′0, . . . , µ

′
k) with µ′j := µj + µj+1 + · · ·+ µk.

Remark. In order to apply Theorem 8.1, if E = γ is a curve, the best way to
deduce that ‖ · ‖Wk,p(γ,µ) and ‖ · ‖Wk,p(γ,µ′) are comparable is to prove that µ′

can be obtained by a finite number of completions of µ (in that case we can use
Theorem 4.1).

If we consider the case of a curve E = γ, we have the following results.

Theorem 8.2. Let us consider 1 ≤ p <∞ and a p-admissible vectorial measure µ
on a compact curve γ. If µ is of type 1, 2 or 3, and the multiplication operator is
well defined in W k,p(γ, µ), then it is bounded on P k,p(γ, µ).

In this situation Theorem 6.2 gives P k,p(γ, µ) = W k,p(γ, µ) if γ : I → C is a
non-closed curve with |γ′| ≥ c and γ ∈ W k,∞(I). In this case the multiplication
operator is bounded in W k,p(γ, µ).

Theorem 8.3. Let us consider 1 ≤ p <∞ and a p-admissible vectorial measure µ
on γ. Assume that zf(z) ∈ V k,p(γ, µ) for every f ∈ V k,p(γ, µ). Then the multipli-
cation operator is well defined in W k,p(γ, µ) if and only if K(γ, µ) = {0}.
Theorem 8.4. Let us consider 1 ≤ p < ∞ and a finite p-admissible vectorial
measure µ on a compact curve γ. Assume that (γ, µ) ∈ C0 and that for each 1 ≤
j ≤ k we have µj(γ \ (Jj−1 ∪Kj−1)) = 0, where Kj−1 is a finite union of compact
arcs contained in Ω(j−1), and Jj−1 is a measurable set with µj ≤ c µj−1 in Jj−1.
Then the multiplication operator is bounded in P k,p(γ, µ).
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als, Constr. Approx. 16 (2000), 73–84.
[M] V. G. Maz’ja, Sobolev spaces, Springer-Verlag, 1985.

[Mu1] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans.
Amer. Math. Soc. 165 (1972), 207–226.

[Mu2] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38.
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