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Abstract. We study the zero location and the asymptotic behavior of the

primitives of the standard orthogonal polynomials with respect to a finite pos-
itive Borel measure concentrate on [−1,1].

1. Introduction

Let µ be a finite positive Borel measure with supp(µ) = ∆ � [−1, 1], such that
it contains an infinite number of points. Let us consider Ln(z) = zn + · · · the nth
monic (i.e. its leading coefficient is equal to one) orthogonal polynomial with respect
to µ, that is

(1)
∫
∆

Ln(x)xk dµ(x) = 0 , k = 0, 1, 2, . . . , n− 1 .

Let us consider a monic polynomial Pn(x) of degree n and a complex number ζ
fixed, such that

(2) (n+ 1)Ln(z) = ((z − ζ)Pn(z))
′ = Pn(z) + (z − ζ)P ′

n(z) .

Note that Λ(z) = (z − ζ)Pn(z) is a monic polynomial primitive of (n + 1)Ln(z),
normalized by Λ(ζ) = 0. A direct consequence of (1)–(2) is that Pn(z) satisfy the
orthogonality relations

(3)
∫
∆

[Pn(x) + (x − ζ)P ′
n(x)] x

k dµ(x) = 0 , k = 0, 1, 2, . . . , n− 1 .

The location of critical points of polynomials has many physical and geometrical
interpretations. Let us consider , for instance, a field of forces given by a system of
n masses mj , 1 ≤ j ≤ n, at the fixed points zj , 1 ≤ j ≤ n, that repels a movable
unit mass at z according to the law of repulsion being the inverse distance law.
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Let Qm(z), where m = m1 +m2 + · · ·+mn, be the polynomial (z − z1)m1 · (z −
z2)m2 · · · (z − zn)mn . The logarithmic derivative of Qm(z) is

(4)
d(log(Qm(z)))

dz
=
Q′

m(z)
Qm(z)

=
m1

(z − z1)
+

m2
(z − z2)

+ · · ·+ mn

(z − zn)
.

The conjugate of
mj

(z − zj)
is a vector whose direction (including sense) is the direc-

tion from zj to z, so this vector represents the force at the movable unit mass z due
to a single fixed particle at zj . Every multiple zero (but no simple zero) of Qm(z) is
a zero of Q′

m(z); every other zero of Q
′
m(z) is by (4) a position of equilibrium in the

field of force; every position of equilibrium is by (4) a zero of Q′
m(z). This result is

known as Gauss‘s theorem (1816).
Now, we consider an inverse problem, let z′1, z′2, . . . , z′n be the zeros of the or-

thogonal polynomial Ln and the equilibrium positions of a field of forces with n+1
units masses, one of which ζ is given. What is the location of the remaining masses?
By (2),

(5)
(n + 1)Ln(z)
(z − ζ)Pn(z)

=
1

z − ζ
+
P ′

n(z)
Pn(z)

=
Λ′(z)
Λ(z)

.

Then, according with (5) and the above interpretation of the logarithmic derivative,
the location of the remaining units masses are the zeros of the polynomial Pn(z)
defined in (2).
The main purpose of this paper is to study some of the algebraic and analytic

properties of the orthogonal polynomials primitives.

2. Localization of zeros

It is well know that the zeros of Ln(z) are simple, using (2) is easy to see that
the zeros of Pn(z) have at most multiplicity two. Nevertheless the zeros of Pn(z)
need not to be simple as we can see in the following example
Let µ be the Lebesgue measure in [−1, 1] and set in (3) ζ = 2

√
3
3 or ζ = −2

√
3
3 .

The corresponding monic polynomials of degree two defined by (2) are P2(z) =
z2+ 2

√
3
3 z+ 1

3 or P2(z) = z2− 2
√
3
3 z+ 1

3 respectively. Note that z = −
√
3
3 or z =

√
3
3

are zeros of multiplicity two of the corresponding polynomials P2(z).
Our next propose is to prove that all the zeros of the polynomials of the sequence

{Pn(z)}∞n=0 are contained in a disc which radius is independent of n. First, let us
rewrite the polynomials Pn and Ln in terms of (z − ζ), that is

Pn(z) =
n∑

k=0

ak (z − ζ)k, Ln(z) =
n∑

k=0

bk (z − ζ)k.(6)

Lemma 1. The coefficients ak of Pn and bk of Ln in (6) are related by

(7) ak =
n+ 1
k + 1

bk .

Proof. Replacing (6) in (2). �
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The proof of the next result is based in the following Szegő’s theorem (see [5] or
[2, page 23]).

Lemma 2. Given the polynomials

f(z) =
n∑

k=0

αk

(
n

k

)
zk, αn �= 0 and g(z) =

n∑
k=0

βk

(
n

k

)
zk, βn �= 0 ,

let us construct a third polynomial as h(z) =
n∑

k=0

αkβk

(
n

k

)
zk.

If all the zeros of f(z) lie in a closed disk D̄ and λ1, λ2, . . . , λn are the zeros of
g(z). Then every zero of h(z) has the form λkγk, where γk ∈ D̄.
Then we have that

Theorem 1. All the zeros of Pn are contained in the closed disk D, where

(8) D = {z ∈ C : |z| ≤ 2 + 3 |ζ|}.
Proof. Let us write w = z − ζ, hence

f(w) =
n∑

k=0

bk w
k = Ln(z) , h(w) =

n∑
k=0

n+ 1
k + 1

bk w
k = Pn(z)

and

g(w) =
n∑

k=0

n+ 1
k + 1

(
n

k

)
wk =

(1 + w)n+1 − 1
w

=
(1 + z − ζ)n+1 − 1

z − ζ
.

If z0 is a zero of Ln, it is well known that −1 ≤ z0 ≤ 1, hence w0 = z0 − ζ is a
zero of f(w) and lie in a closed disk D̄ = {|w + ζ| ≤ 1}. On the other hand, if w1
is a zero of g(w) then |1 + w1| = 1.
Finally, by Lemma 2, if h(w3) = 0 we have that |w3| ≤ 2 + 3|ζ| and then the

theorem is proved. �

3. Auxiliary results

In order to obtain the asymptotic behaviour of the sequence {Pn} we need some
general results that we will discuss in what follows.
If {µn}∞n=1 is a sequence of measures on a compact set, we say that µn converges

weakly to the measure µ as n→ ∞ if

lim
n→∞

∫
f dµn =

∫
f dµ

for every continuous function f on C having compact support. In this case, we write
µn

∗−→ µ, or dµn
∗−→ dµ, or if µ is absolutely continuous, dµn(x)

∗−→ µ′(x)dx.
For any polynomial q of degree exactly n, we consider

νn(q) :=
1
n

n∑
j=1

δzj ,
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where z1, . . . , zn are the zeros of q repeated according to their multiplicity, and δzj

is the Dirac measure with mass one at the point zj . This is the so called normalized
zero counting measure associated with q.
Let ‖·‖∆ denotes the supremum norm on ∆ and Cap(∆) the logarithmic capacity

of a set ∆. Another result needed is

Lemma 3 ([1], Theorem 2.1 and Corollary 2.1). Let ∆ ⊂ C be a compact set with
empty interior, connected complement and positive logarithmic capacity. If {Pn}∞n=0
is a sequence of monic polynomials, deg(Pn) = n, such that

lim
n→∞

‖Pn‖
1
n

∆ ≤ Cap(∆) ,

then
νn(Pn)

∗−→ ω∆ ,

where ω∆ is the equilibrium measure of ∆.

Finally, we have the following useful result

Lemma 4 ([3], Lemma 3). Let {Pn} be a sequence of polynomials. Then, for all
j ∈ Z+,

(9) lim
n→∞

(
‖P (j)n ‖∆
‖Pn‖∆

)1/n

≤ 1 .

For ∆ = [−1, 1] is well known that Cap(∆) = 1
2 and the equilibrium measure on

∆ is the so-called arcsin measure given by

(10) µ∆(B) =
∫

B

arcsin′(x) dx
π

=
1
π

∫
B

dx√
1− x2

,

where B is a Borel set in [−1, 1].

4. Asymptotic behavior

Let us set ϕ(z) = z +
√
z2 − 1 , z ∈ C \ [−1, 1]. ϕ is a conformal map of

C \ [−1, 1] onto {z ∈ C : |z| > 1}. Here the branch of the square root is chosen
so that |z +

√
z2 − 1| > 1 for z ∈ C \ [−1, 1]. Let ζ ∈ C \ [−1, 1] be a fixed point,

Ω = C \ D and ∆ = [−1, 1].
Theorem 2. With the previous conditions it holds, for all j ∈ Z+,

• the sequence {P (j)n }∞n=0 verifies

(11) lim
n→∞

‖P (j)n ‖
1
n

∆ =
1
2
;

• νn,j(P
(j)
n ) converges to the arcsin measure in the sense of the weak-∗ topology

of measures, that is

(12) lim
n→∞

1
n− j

n−j∑
k=1

f(x(j)n,k) =
1
π

∫ 1

−1
f(x)

dx√
1− x2

,
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for every continuous function on D, where {x(j)n,k}n−j
k=1 is the set of zeros of

P
(j)
n (z).

Proof. Let us prove first that

(13) lim
n→∞

‖Pn‖
1
n

∆ =
1
2
.

If x ∈ ∆, integrating in (2) we have

(n+ 1)
∫ x

ζ

Ln(t) dt = (x − ζ)Pn(x),

by taking absolute values both sides, we obtain

M(n+ 1)‖Ln(x)‖∆ ≥ (n+ 1)
∣∣∣∣
∫ x

ζ

Ln(t) dt
∣∣∣∣ = |x− ζ||Pn(x)|,≥m|Pn(x)| ,

where m = inf
x∈∆

|x− ζ| and M = sup
x∈∆

|x− ζ|. Then

M(n+ 1)‖Ln(x)‖∆ ≥ m‖Pn‖∆ ≥ m‖Tn‖∆ ,
where Tn is the n-th Chebyshev polynomial in [−1, 1].
It is well known, for general theory of orthogonal polynomials, that

lim
n→∞

‖Ln‖
1
n

∆ = lim
n→∞

‖Tn‖
1
n

∆ =
1
2
,

hence we have (13).
By Lemma 4 and (13),

(14) lim
n→∞

‖P (j)n ‖
1
n

∆ = lim
n→∞

‖P (j)n ‖
1
n

∆

‖Pn‖
1
n

∆

‖Pn‖
1
n

∆ ≤ 1
2
= Cap(∆).

But

(15) lim
n→∞

‖P (j)n ‖
1
n

∆ ≥ lim
n→∞

‖Tn−j‖
1
n

∆ =
1
2
= Cap(∆)

and then (14) and (15) implies (11).
Finally, by Lemma 3 we deduce that (11) implies (12). �

Theorem 3. With the above assumptions, it holds:
• For all j ∈ Z+,

(16)
P
(j+1)
n (z)

nP
(j)
n (z)

⇒
n

1√
z2 − 1

uniformly on compact subsets of Ω.
• (Relative Asymptotic) For all j1, j2 ∈ Z+,

(17) nj2−j1
L
(j1)
n (z)

P
(j2)
n (z)

⇒
n

z − ζ√
z2 − 1

(√
z2 − 1

)j2−j1

uniformly on compact subsets of Ω.
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Proof. Let xj
n,k, k = 1, . . . , n − j, denote the n − j zeros of the polynomial P (j)n .

It is known that all the critical points of a non-constant polynomials Pn and it’s
derivatives lied in the convex hull of his zeros, then by theorem 1 xj

n,k ∈ D = {z :
|z| ≤ 2 + 3|ζ|} , k = 1, . . . , n − j. Using the decomposition in simple fractions and
the definition of νn,j(P

(j)
n ), we obtain

(18)
P
(j+1)
n (z)

nP
(j)
n (z)

=
1
n

n−j∑
k=1

1
z − xj

n,k

=
n− j

n

∫
dνn,j(x)
z − x

.

Therefore, the family of functions

(19)

{
P
(j+1)
n (z)

nP
(j)
n (z)

}
, n ∈ Z+ ,

is uniformly bounded on each compact subset of Ω = C \ D.
On the other hand, all the measures νn,j, n ∈ Z+, are supported in D and for

z ∈ Ω fixed, the function (z−x)−1 is continuous on D with respect to x. Therefore,
from (12) and (18), we find that any subsequence of (19) which converges uniformly
on compact subsets of Ω converges pointwise to

∫
(z − x)−1 dω∆(x). Finally, by

(10), the Cauchy’s formula and the residue Theorem,∫ 1

−1

dω∆(x)
(z − x)

=
1
π

∫ 1

−1

1
(z − x)

dx√
1− x2

=
1√

z2 − 1
.

Thus, the whole sequence converges uniformly on compact subsets of Ω to this
function as stated in (16).
For j1 = j2 = j, the proof of (17) is a direct consequence of the j-th derivative

of (2) and (16), that is

(20)
n+ 1
n

L
(j)
n (z)

P
(j)
n (z)

=
j + 1
n

+ (z − ζ)
P
(j+1)
n (z)

nP
(j)
n (z)

⇒
n

z − ζ√
z2 − 1

uniformly on compact subsets of Ω.
Assume without loss of generality that j2 < j1, hence

(21)
1

nj1−j2

L
(j1)
n (z)

P
(j2)
n (z)

=
L
(j1)
n (z)

P
(j1)
n (z)

P
(j1)
n (z)

nP
(j1−1)
n (z)

· · · P
(j2+2)
n (z)

nP
(j2+1)
n (z)

P
(j2+1)
n (z)

nP
(j2)
n (z)

.

Then we have (17) from (16), (20) and (21). �
Theorem 4. With the above conditions, the following statements hold:

• (Strong Asymptotic) If µ′(x) satisfy the Szegő condition∫ 1

−1

logµ′(x) dx√
1− x2

> −∞

then, for all j ∈ Z+,

(22)
P
(j)
n (z)

nj

(
ϕ(z)
2

)n ⇒
n

(√
z2 − 1

)1−j

z − ζ

D (µ′(cos θ) | sin θ|, 0)
D (µ′(cos θ) | sin θ|, ϕ−1(z))

,
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uniformly on compact subsets of Ω, where D (h, z) is the Szegő function of h

D(h, z) = exp
(
1
4π

∫ 2π

0

logh(θ)
eiθ + z
eiθ − z

dθ

)
, |z| < 1 .

• (Ratio Asymptotic) If µ′(x) > 0 a.e. in [−1, 1] then, for all j1, j2, k ∈ Z+,

(23)
nj2

(n+ k)j1
P
(j1)
n+k(z)

P
(j2)
n (z)

⇒
n

(√
z2 − 1

)j2−j1
(
ϕ(z)
2

)k

,

uniformly on compact subsets of Ω .
• (n-th Root Asymptotic) If the measure µ is such that for all measurable set
E ⊂ supp(µ) with µ(E) = µ([−1, 1]) it holds that Cap(E) = 1

2 , then, for all
j ∈ Z+,

(24) n

√
|P (j)n (z)| ⇒

n

|ϕ(z)|
2

,

uniformly on compact subsets of Ω, where Ω = C \ D, ϕ(z) = z +
√
z2 − 1

and the branch of the square root is chosen so that |z +
√
z2 − 1| > 1 for

z ∈ C \ [−1, 1].
Proof. The theorem is a direct consequence of (17) in theorem 3 and the well known
strong asymptotic, ratio asymptotic and n-th root asymptotic behavior of standard
orthogonal polynomials Ln. �
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