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Introduction

All objects considered in this paper (manifolds, maps, differential forms, vector and tensor
fields) are assumed to be differentiable of class C*.

Let M be a smooth manifold equipped with a Poisson tensor A and a Nijenhuis tensor
N, that is, a tensor field of type (1,1) whose Nijenhuis torsion 7(N) vanishes everywhere.
The Nijenhuis torsion 7(N) of N is given by the following formula, where X and Y are vector
fields on M,

7(N)(X,Y) = [NX,NY] - N([NX, Y] + [X, NY] — N[X, Y]).

We denote by A# : T*M — TM the vector bundle map such that, for any v € M,
a,BeTrM,
< B, A% (a) >= Ay(o, B).

1 This work was partially supported by CMUC-FCT and PRAXIS. The paper is in final form and no other
version has been submitted for publication elsewhere.
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With A and N we can define a tensor field R(A, N) of type (2, 1), called the Magri-Morosi
concomitant [Ma-Mo 84] of A and N, that is defined, for any pair of a 1-form « and a vector
field X, by

R(A,N)(a, X) = (La#@yN)X — A*(Lx(*Na)) + A* (Lyxa), (1)

where !N is the transpose of N : TM — TM.
Let A and N be, respectively, a Poisson tensor and a Nijenhuis tensor on M. The triple
(M, A, N) is called a Poisson-Nijenhuis manifold [KSch-Ma 90] if

NA# = A#*'N and R(A,N)=0.

If (M, A, N) is a Poisson-Nijenhuis manifold, there exists a sequence (Ag)gen of Poisson
tensors on M, with A, = N*A. Moreover, these Poisson tensors are pairwaise compatible,
that is, [A;, Ag] = 0, for all [,k € N.

Besides the Poisson-Nijenhuis structure, we are going to use, in what follows, the notion
of Jacobi manifold.

A Jacobi manifold [Lich 78] is a triple (M, C, E') where C and E are respectively a bivector
and a vector field on M, such that

[E,C]=0 and [C,C]=2EAC.

When F = 0, the Jacobi manifold is a Poisson manifold. The Jacobi bracket of f,g €
C*®(M,R) is given by

{f,97 = Cldf,dg) + f(E.g) — g(E.f),
and it defines a local Lie algebra structure on C*®(M,R).

If (M,C, E) is a Jacobi manifold and A is a nowhere vanishing function on M, then the
pair (hC,C#(dh) + hE) = (Cy, E;) defines a new Jacobi structure on M, which is said to be
conformally equivalent to (C, E).

With each Jacobi manifold (M, C, E), we may associate a homogeneous Poisson structure

(A, %) on R x M, with A given by

A =exp(—t)(C + % NE), (2)

where ¢ is the canonical coordinate on R.

This paper is divided into two sections. Section 1 is devoted to the subject of compatible
Jacobi manifolds. We show how the compatibility is related with the Lichnerowicz-Jacobi
cohomology and we present a way of generating compatible Jacobi structures on a manifold.
In Section 2, we establish the conditions on the Poisson-Nijenhuis structure of R x M to
ensure the compatibility of the corresponding Jacobi structures on M.

1. Compatible Jacobi manifolds

The notion of compatibility of two Jacobi structures on a manifold was introduced in [NdC 98|.
We recall that two Jacobi structures (Cy, E1) and (Cy, E;) on a manifold M are said to be
compatible if (C1 + Cy, E1 + E») is again a Jacobi structure on M.
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Proposition 1.1. [NdC 98| Let M be a manifold endowed with two Jacobi structures (Cy, Ey)
and (Cy, E3).Then, (C1, E1) and (Cy, Ey) are compatible if and only if

[E1,02]+[E2,01] =0 and [01,02] :E1A02+E2/\Cl.

There are some equivalent ways of expressing the compatibility of two Jacobi structures
on a manifold [NdC 98]. But the study of the compatibility of two Jacobi structures on
a manifold, can also be done using the Lichnerowicz-Jacobi cohomology. If (M,C, FE) is a
Jacobi manifold, let us denote by A¥(M) the space of skew-symmetric contravariant tensor
fields of order k (k-tensors) on M and define the differential operator

o: A¥(M) — AFY (M), o(P)= —[C,P]+kE A P. (3)
The restriction of ¢ to the subspace
A¥ (M) ={P € A*(M) : LgP =0}
of the invariant k-tensors with respect to the vector field E is a cohomology operator on the
Jacobi manifold and the resultant cohomology is called the Lichnerowicz-Jacobi cohomology

of M [Le-Ma-Pa 97].

Proposition 1.2. Two Jacobi structures (C1, E1) and (Cs, E3) on a manifold M are com-
patible if and only if

0'1(02) = —0'2(01) and 0'1(E2) = _UQ(El),

where 0;,1 = 1,2, are the cohomology operators of the Lichnerowicz-Jacobi cohomology of M,
with respect to both Jacobi structures.

Proof. A direct computation using Proposition 1.1 and the definition (3) of the cohomology
operators 0;,1 = 1,2, gives the desired result. O

In [NdC 98] it was proved that two conformally equivalent Jacobi structures on M are
compatible. Another way of obtaining compatible Jacobi structures uses the Lie derivative
on the direction of some vector field.

Proposition 1.3. Let X be a vector field on the Jacobi manifold (M, C, E) such that
Lx(ﬁxc) =0 and EX(EXE) =0.

Then the pair (C1, E1) = (LxC,LxFE) defines a new Jacobi structure on M which is com-
patible with (C, E).

PT‘OOf. With E1 = ,CxE = [X, E], we have ;CEIC = —EE(,C)(C), that is

Lp,C+ LgCy =0. (4)
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So,

LpC: = Lx(LgC)

= —Lx(LgCh)

= —Lix,n(LxC)

= _LE‘l 017
and

Ly, C1 = 0. (5)

On the other hand,
Lx([C,C]) = [LxC,Cl+[C,LxC|

= 2[C4,C]

and
,CX(E/\C) :E1A0+E/\01;

S0,
[C1,C]=E,NC+ ENCy. (6)

Because LxFE; = LxC; = 0, if we take the Lie derivative on the direction of X of both
members of (6), we obtain

[01, 01] == 2E1 A\ Cl. (7)
The equalities (5) and (7) prove that (Cy, Ey) is a Jacobi structure, while (4) and (6) show
the compatibility. O

We can also prove the following result.

Proposition 1.4. Let X; and Xy be two vector fields on the Jacobi manifold (M,C, E) such
that
[Xl,XQ] :0, [X1,£X2C] :0, [Xl,,CXzE] :0

and

EXi(LXiC) =0, LXi(EXiE) =0, :=1,2.

Then
(Cl,El) = (EXIC, EXIE) and (CQ,EQ) = (EXZC, ,CXQE)

are compatible Jacobi structures on M.

Proof.  We only have to check the compatibility. By Proposition 1.3, we know that the
Jacobi structures (C, E) and (Cy, E») are compatible. Then,

[C,Cg] :EA02+E2/\C and [E, 02]+[E2,C] = 0. (8)

If we take the Lie derivative, on the direction of X7, of both members of equalities (8), we

obtain
[01, 02] = E1 A 02 + E2 A 01 and [El, CQ] + [EQ, Cl] =0. (9)

O
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2. Homogeneous Poisson-Nijenhuis manifolds

Let M be a manifold endowed with two Jacobi structures (Ci, E;) and (Cs, Es). Take the

: 0
corresponding homogeneous Poisson structures on R x M, (A; = exp(—t)(C; + e NE;), a),
i=1,2.

Proposition 2.1. [NdC 98] The Jacobi structures (Cy, Ey) and (Ca, E3) on M are compat-
ible if and only if Ay and Ay are compatible Poisson tensors on R x M.

Using this result, we want to study the relationship between two compatible Jacobi
structures on M and their associated (compatible) homogeneous Poisson strucutres on Rx M,
in the case where these Poisson structures are related by a Nijenhuis tensor.

Let N be a (1,1)-tensor on R x M such that E%N = 0. Then, N is given by

_ 0 0
N=N+YQdt+ — ~Qdt 10
+Y@di+ o @7+ 9o @d, (10)

where N is a (1, 1)-tensor on M, Y is a vector field on M, v is a 1-form on M and g €
C*(M,R). Reciprocally, if N is given by (10), then L%N =0.

Remarks
1. The image of a vector field on R x M of the form X = exp(—t) (f% + X), where X is
a vector field on M and f € C*°(M,R), by the (1,1)-tensor given by (10) is a vector
field on R x M of the same type of X.

2. If A is the homogeneous Poisson tensor on R x M, given by (2), then NA is a homo-
geneous bivector on R x M: ,C%(NA) = —NA

Proposition 2.2. Let N be a (1,1)-tensor on R x M given by (10). Then N is a Nijenhuis
tensor on R x M if and only if

i) 7(N)=Y ®dn;
i) Lyv=gdvy;
iii) LyN=-Y ®dg;

)
iv) ‘N(dg) = Ly + gdg.

—

- 0
Proof. First, remark that if X is a vector field on M, then NX = NX+ < v, X > e and
0

_ 0
that N(a) =Y+ 95 If X; and X, are vector fields on M, then

T(N)(Xl,XQ) = T(N)(Xl,XQ) + (X2 <, X > -X1.< v, Xo >

0
+ <7, [X1, X5] >)N(§) + (NX1). <7, Xo> —(NXy).<v,X; >
0

— <7, [NXy, Xo] > — <, [X1, NXp] > — < v, N[ X}, X5 >)&

= 7(N)(X1, Xy) — dy(X1, X0)Y — (gdy(X1, X3) — EN’Y(X1,X2))%-
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So, 7(N)(X1, X3) = 0 if and only if

T(N) (X1, X2) = (Y @ dy) (X3, X2) (11)
and
Lyy(X1, X2) = gdy(X1, Xa). (12)
Let X be a vector field on M. Then,
T(N)(X 2) = [NX,Y]+ ((NX) )2— Y.<v,X >)2
ot ’ ) S ot
0 0
_N[X7 Y]_ <7 [Xa Y] > a - (Xg)(Y + ga)
= —(LyN)(X) — (Y ®@dg)(X)
+(< 'Ndg, X > — < Ly7, X > — < gdg, X >)%.
< 0 . .
So, 7(N)(X, a) = 0 if and only if
(LyN)(X) = =(Y ® dg)(X) (13)
and
< 'Ndg — Lyvy — gdg, X >=0. (14)
Equalities (11), (12), (13) and (14) end the proof. O

0
Let us take the homogeneous Poisson tensor A = exp(—t)(C + 5% AE)on (R x M).

Lemma 2.1. With the notations of Proposition 2.2, NA = A*N if and only if
i) NE=C*%(y)+gE;
ii) NO-C'N=EQY +Y Q® F;
i) <v,E>=0.

Proof. Let o be any 1-form on M. Then,
N(A#(a)) = exp(-t)(N(C*(a)- < o, E > %))

= exp(c)(N(CH(@)— < E> Y — (<0, C*(y) > + < a, E > g)%)

and, taking account that B
'N(a) = 'Na+ < a,Y > dt,

we compute

A#*('Na) = exp(—=t)(C*(*Na)+ < a,Y > E— < a, NE > %)
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and we conclude that NA#(a) = A#(*Na) if and only if
<a,NE >=< a,C#(y) + gE > (15)

and
(NC* - Y @ E)a= (C*'N+EQ®Y)a. (16)
Equalities (15) and (16) give conditions i) and ii).
On the other hand,

_ 0
N(A#(dt)) = exp(—t)(NE+ < v, E > a) (17)
and, because N (dt) = v + gdt,
A#(*N(dt)) = exp(=t)(C*(7) + gE). (18)
Once the right members of (17) and (18) are equal, we obtain condition iii). O

Let us take the Magri-Morosi concomitant R(A, N) of A and N, (1).

Lemma 2.2. With the notations of Proposition 2.2, R(A, N) = 0 if and only if

i) NE+ LyE = gE — C*(dg)

ii) £LyC=gC—-NC+YQE

i) (LeN)X+<7,X >E=C#(ixdy) + (X.g9)E

) R(C,N)(df,X) = (X.(Y.f))E = (X.(B.f))Y = <7, X > C¥(df),

1ii

iv

where X is any vector field on M and f is any function of C*(M,R).

Proof. Let f be any function of C%°(M, R). The component of the vector field R(A,N) (df,%)

on — is

ot
exp(—t)(< df,C*(dg) + LyE + NE — gE >). (19)

_ 0
The other components (without %) of R(A, N)(df, a), obtained from the computation of

< dh, R(A, N)(df, %) >, for any h € C*°(M,R), are
exp(=t)(< dh, (=LyC)*(df) + gC*(df) — N(C*(df)) + (E./)Y >). (20)

From (19) and (20), we conclude that R(A, N)(df, %) = 0 gives conditions i) and ii) of the

Lemma.
On the other hand, if X is any vector field on M, the component of the vector field

R(A, N)(df, X) on % is

exp(—t)(< df, —(LeN)X— < v,X > E + C%(ixdy) + (X.9)E >, (21)



116 J.M. Nunes da Costa: Some Remarks on the Poisson-Nijenhuis and the Jacobi Structures

while the components without %, obtained from the computation of
< dh,R(A, N)(df,X) >, for any h € C®°(M,R), are

exp(—t)(< dh, R(C, N)(df, X)+ < v,X > C#(df) + (X.(E.f))Y — (X.(Y.f))E>. (22)

From (21) and (22), we conclude that R(A, N)(df, X) = 0 gives conditions iii) and iv) of the
Lemma. O

0 - 0 0
Theorem 2.1. Let A = exp(—t)(C + 5% ANE)and N=N+Y ®@dt+ 5 ®’y+ga ® dt, be
respectively the homogeneous Poisson tensor and the Nijenhuis tensor on R x M. Then, the

triple (R x M, A, N) is a Poisson-Nijenhuis manifold if and only if conditions i), ii) and iii)
of Lemma 2.1 and i) — iv) of Lemma 2.2 hold. Moreover, the homogeneous Poisson tensor

NA is given by exp(—t)(Cy + % A Ey), where

(C1, Ey) = (gC — LyC, gE — C*(dg) — LyE) (23)
is a Jacobi structure on M, compatible with (C, E).

Proof. 'We only have to find the expressions of Cy and F,. For any pair (f, k) of functions
on M,
< dh, (NA)#(df) >= exp(—t) < dh, NC*(df) — (Y ® E)(df) > (24)

and
< dh, (A#(t]\_f)(df) >=exp(—t) < dh, C#(tN(df)) +(E®Y)(df) > . (25)

- 1 -
Since NA = E(NA + A'N), we obtain from (24) and (25), using conditions ii) of Lemma 2.1

and ii) of Lemma 2.2,

(NA)(df,dh) = exp(—t)(NC —Y ® E)(df,dh)

= exp(—t)(gC — Ly C)(df,dh). (26)
Also,
< dh, N(A#(dt)) >= exp(—t) < dh, NE > (27)
and
< dh, A*(!N(dt)) >= exp(—t) < dh,C*(y) + gE > . (28)

From (27) and (28), and taking into account conditions i) of Lemma 2.1 and i) of Lemma
2.2, we conclude that

(NA)(dt,dh) = exp(—t)NE(dt,dh)
= exp(—t)(gE — C*(dg) — Ly E)(dt, dh). (29)

O
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