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Abstract. We study minimal real 2n-submanifolds F' : M — N without complex
directions immersed into a Kahler-Einstein manifold of complex dimension 2n.
We find conditions, for example on the curvature of M and N, or equal Kahler-
angles, or broad-pluriminimality of F', to conclude that F' must be a Lagrangian
submanifold. Our main tool is a formula of the Laplacian of a certain symmetric
function of the Kahler angles of F'.

1. Introduction

This paper is a summary of part of research results, [5] and [6], started two years ago, on the
study of immersions into Kéhler-Einstein manifolds through its Kéhler angles, and that is a
generalization of part of the work of Wolfson in [7] to higher dimensions.

Let (N, J, g) be a Kéhler manifold of complex dimension 2n, with complex struture J and
Riemannian metric ¢, and let /' : M — N be an immersed submanifold of real dimension

1 This is a summary of research results which have been submitted to publication elsewhere.
2deceased on October 2nd, 1999
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2n. We denote by w the Kihler form of N, w(X,Y) = ¢g(JX,Y). On M we take the
induced metric g5y = F*g. N is Kahler-Einstein if its Ricci tensor is a multiple of the metric,
Ricei™ = Rg. We start by recalling a result of Wolfson:

Theorem 1.1 [7] If M is a real compact orientable surface and N is a complex Kdhler-
Einstein surface with R < 0, and if F' is minimal with no complex points, then F is La-
grangian.

The main idea of the proof is the following. Since n = 1, F*w is a multiple of the volume
element of M, F*w = aVoly, with a : M — [—1,1] a real smooth map. Then a = cos¥,
where 6 is called the Kahler angle of the surface. If F'is minimal without complex points,
that is, | cos@| # 1, then

A(k(cosf)) = —Rcosb

for some convenient real map « : (—1,1) — R. If R < 0, an application of the maximum
and minimum principle implies cos # = 0 everywhere. In some cases (see Sections 2, 3) we
generalize this result to higer dimensions.

First we recall the concept of Kilher angles of F', introduced by Chern and Wolfson
[1] for surfaces, as some functions that at each point p of M measure the deviation of the
tangent plane T,M of M from a complex subspace or a Lagrangian subspace of T, N.
At each base point p € M, we identify F*w with a skew-symmetric operator of T,M by
gu(F*w(X),Y) = F*w(X,Y). The polar decomposition of F*w is given by

F'w=1J,4q, (1.1)

where J, : T,M — T,M is a (unique) partial isometry with the same kernel /C, as of F*w,
and where § is the positive semidefinite operator § = |F*w| = /—(F*w)?. It turns out that

J, : Kt — K. defines a complex structure on K, the orthogonal complement of K, in
T,M. We denote by Q3, the set of interior points in M where F*w has constant rank 2k,
0 < k < n. Then K. is a smooth sub-vector bundle of TM on QY,. Moreover, g and J, are
both smooth on those open sets, and (K., J,, ga) constitutes a smooth Hermitean vector
bundle. We should note that on 3, the open set where F*w is non-degenerate, the almost
complex struture J, is not integrable in general. The positive semidefinite tensor g is in fact
continuous in all M and locally Lipschitz. At each point p we may take {X,, Yo} i<a<n a
gm-orthonormal basis of T, M that diagonalizes F*w at p. By this one means that, in that

basis, F*w is matricially a sum of block matrices of the form
0 —a
0<a<n G 0
where a1, as, . .., a, are real numbers, also called the singular values of F*w. From

|aa| = |[F'w(Xa, Ya)| = [9(JdF(Xa), dF (Ya))| < 1

we have a, = cosf,, for some angle 6,. We may assume cosf; > ... > cosf, > 0, by

interchanging X, with Y,, and reordering the basis when necessary.
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Definition 1.1 These angles 0,, 1 < o < n, are called the Kahler angles of F' at p.

Then, Vo, F*w(X,) = c080,Ys, F*w(Y,) = —cos6,X,, and, if 2k is the rank of F*w at p
with £ > 1, J,X, = Y,, Ya < k. Since the map A — |A| is a Lipschitz map in the space of
normal operators, the Weyl’s pertubation theorem applied to the eigenvalues of the symme-
tric operator |F*w| shows that, ordering the cosf, in the above decreasing way, for each «
the map p — cosf,(p) is locally Lipschitz on M. A complex direction of F is a real two-plane
P of T,M such that dF'(P) is a complex line of T,y N, that is, JdF'(P) C dF(P). Similarly,
P is called a Lagrangian direction of F' if w vanishes on dF(P), that is, JdF(P)LdF(P). F
has no complex directions iff cos 8, < 1 Va. We note that for n = 1 our definition of Kéhler
angles may be slightly different from the original one in [1], because we demanded cosf > 0.
Our cos @ may not be smooth near a point where it vanishes. We have chosen this definition
because in higher dimensions we do not have a preferential orientation assigned to the real
planes P, = span{X,, Y,}, even if M is orientable.

Let us consider the complex vectors of the complexified tangent space of M at p, T(M),
where {X,, Y, }1<a<n diagonalizes F*w at p,
X, — 1Y,

ZQZT:“CM”, Z&:Z_a:

=
(6

Xo +1Y,
2

We extend g, and the curvature tensors of M and N to the complexified tangent spaces
by C-multilinearity. Let NM = (dF(TM))* denote the normal bundle of F, and ( )*
denote the orthogonal projection of F~'T'N onto the normal bundle. If F is any immer-
sion of real dimension 2n and no complex directions, then {dF(Z,), dF(Z), (JdAF(Z,))*,
(JAF(Zs))* }1<a<n constitutes a complex basis of Tfpy)N- On M the Ricci tensor of N can
be described by the following expression, for U,V € Tg,) N,

4

s PO TV, AF (), (JAF (),

Ricei™(U, V) = Y

1<p<n

where RY denotes the Riemannian curvature tensor of N. An application of the Codazzi’s
equation to the above expression leads the first result:

Proposition 1.1 [5] If F is a totally geodesic map without complex directions and N is
Kahler-Einstein with non-zero Ricci tensor, then F' is Lagrangian.

We consider the following morphism of vector bundles

. TM — NM
X = (JAF(X))*

Both TTM and NM are real vector bundles of the same dimension 2n. If F' has no complex
directions, then ® is an isomorphism. Moreover, the tensor g given by

9(X,Y) = gu(X,Y) — g(Frw(X), Frw(Y))
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defines a smooth Riemannian metric on M, and § = gy — §2 = 3, sin? 0,Z% ® Z%, where §
is given by (1.1). With this metric, ® : (T M, §) — (INM, g) is an isometry, that is, ® is an
isomorphism of Riemannian vector bundles. Let us denote by

\Y the Levi-Civita connection of (M, gu)

\V/ the Levi-Civita connection of (M, §)

\Vas the usual connection of NM induced by the Levi-Civita connection of N
\4 the connection on 7'M that makes the isomorphism & parallel.

We will also denote by V the Levi-Civita connection of N. Thus, if U is a smooth section of
NM C F7'TN and X is a vector field on M,

ViU = (VxU)*
and V'= <I>_1*VL, that is, for X, Y smooth vector fields of M,
o(ViY) = Vi (2(Y)).

The connections V and V have no torsion because they are Levi-Civita, but V' may have
non-zero torsion 7". Since both V and V'are Riemannian connections of TM for the same
Riemannian metric §, T’ = 0 iff V=V’ Let us denote by VxdF(Y) = VAF(X,Y) the
second fundamental form of F, which is a symmetric tensor on M that takes values on the
normal bundle NM.

Lemma 1.1 [6] If {X,,Ys} is a diagonalizing gar-orthonormal basis of F*w at p, then at p

S(T'(Za, Z5)) = i(cos b + cosb)Vz, dF (Z5)
O(T"(Za, Zg)) = i(cosbly — cosbs) Vg, dF (Zg).

Proof. Note that, if X € TM, JAF(X) — dF(F*w(X)) € NM. Thus
B(X) = JAF(X) — dF (F*w(X)).
Then
(Vi) = Vi(@(V)) = (Vx(@(¥)))"
= (Vx(JAF(Y) = dF (F'w(Y)))"
= (JVxdF(Y)+ JdF(VxY) — VxdF(F'w(Y))) .
Therefore, using the symmetry of VAF and the fact that V is torsionless,

O(T'(X,Y)) = (VY - ViX —[X,Y])
= —VWdF(F*w(Y)) + VWdF(F*w(X)). (1.2)

The lemma now follows immediately. O

This lemma will be useful in the following. It also shows that 7” vanishes in certain directions
for broadly-pluriminimal immersions or for immersions with equal Kahler angles.
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2. A formula

For a minimal immersion F' with no complex directions, we consider the map

1 0 1 det g
~ Y log (ﬂ) ~ Llog <w> _

1 atn 1 — cosd, 2 det(gar — 9)
This map is non-negative, and vanishes at a point p iff all cosf, = 0 at that point. It is
smooth on each Q3,, continuous on all M, and locally a Lipschitz map. We can compute Ak
on those open sets where k is smooth, but this gives a very long computation. In [5], [6] we

derive an expression for Ak at py € Q3 , namely

Ak = 4i)_ Ricci™ (JAF(B),dF () (2.1)

B
+ g, (Y @), 4 (), dF (), JF ()i cos 0,0 ()

B z32 cos 6, +cosb,)

Re(g(VsdF (1), JAF (p))g(VsdF (p), JAF (1))

sin? 0, sin 0

Bytsp
1 = —
+ﬁ§p32(8in20p sm 20, )Im (Vs p)g(VadF (p), JAF (i)
1
+g§p32(sin2¢9p sin 9 )Im vﬁ/% (vﬂdF( ) JdF( )))
32 0 0
+ Z (COS /,L+COS ) (|<%M’p>|2+ |<VB,LL,p>|2)’

b sin? 0,
where {X,, Y, }i<a<n is a gay-orthonormal local frame of M, with Y, = J,X, for o < £,
{Xa, Yo} ask+1 any guy-orthonormal frame of K, and which at p, diagonalizes F*w. There
are two cases where the above equation is simplified. The first one is when F' is broadly-
pluriminimal, and the second one when F' has equal Kahler angles. We will treat these cases
in Sections 3 and 4, respectively.

3. Broadly-pluriminimal submanifolds

Definition 3.1 [5] F is said to be broadly-pluriminimal if

(i) F is minimal,

(ii) For each p € QS,, k > 1, F is pluriharmonic with respect to any gyr-orthogonal complex

structure J = J, & J' on T,M, where J' is any gar-orthogonal complex structure of Ky, that
is, (VdF)Y) =0 .

In (ii), the (1,1)-part of VAF is just given by
1 - -
(VdF)BD(X,Y) = 5(VdF(X, Y)+ ViF(JX,Y)) VX,Y eT,M.

If K, = 0, (ii) means that F is pluriharmonic with respect to the almost complex structure J,
(see e.g. [4]). Pluriharmonic maps are trivially minimal. Products of minimal real surfaces of
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Kahler surfaces, minimal Lagrangian submanifolds, and complex submanifolds are examples
of pluriminimal submanifolds. For F' with equal Kéhler angles Q9. is only considered and
J=J,.
If F is broadly-pluriminimal, we get the following very simple final expression for Ax on
ng
Ak =4i Y Ricci™(JdF(B),dF(B)).

1<p<k

Consequentely,

Proposition 3.1 [5] If N is Kdhler-Finstein and F is broadly-pluriminimal without complex
directions, then, on each QY

Amz—?R( z COSQg).

1<p<n

The main problem in applying the maximum principle to this equation at a maximum point
po of k for n > 2, as Wolfson did in [7] for the case n = 1, is that p, may not lie on a open set

where £ is smooth. Since we can write £k = k1 + K2, where K1 = 21 <4<k lOg (%) (with
2k the rank of F*w at pg) is the (smooth) piece of k defined by the angles whose cosine is
not zero near py , and ko with the remaining angles, k; and k9 having at py a maximum and
a minimum respectively, we can prove that x is differentiable at py, but we do not know if
it is C? on a neighbourhood of that point. The following lemma is an immediate conclusion

from the above formula and will lead to the next theorem.

Lemma 3.1 [5] If N is Kdhler-Einstein with R < 0, and if F is broadly-pluriminimal but
not Lagrangian and has no complex directions, then py is not in Q9, V0 < k < n. That s, if
the rank of F*w s 2k at pgy, then there exists a sequence p,, — po such that the rank of F*w
at py, s > 2k.

Theorem 3.1 [5] Assume N is Kdhler-FEinstein with R < 0, and M is compact.
(i) If F is broadly-pluriminimal, then F either has complex or Lagrangian directions.

(il) If F is broadly-pluriminimal without complex directions, and F*w has constant rank or
rank < 2, then F' is Lagrangian.

(i) If n = 2, that is, M has real dimension 4 and N complex dimension 4, and if M is
orientable and F' is broadly-pluriminimal without complex directions, then F' is Lagrangian.

To prove (iii) we replace the continuous map x by a smooth map & which coincides with &
on an open set that has py at the boundary and allows p; as a maximum as well. Namely,

- 1 1
k = log 1+costy +10g( +82),
1 —cosb, 1— 389

where s5(p) = €(p) cos 02(p) for p near py, with €(p) equal to +1 or —1 according as X, Y7,
Xy, Y5 is a direct or inverse basis, respectively. We can prove that s, is smooth by using
the smoothness of F*w A F*w. Unfortunately, a similar argument does not seem to work in
higher dimensions.
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4. Immersions with equal Kahler angles
We say that F' has equal Kdhler angles if 6, = 6 Va. In this case
F*w=cosfJ, and §=sin’0gu,

with cosf a locally Lipschitz map on M, smooth on the open set where it does not vanish,
and Q9, =0 Vk # 0,n. On the open set QS = cosf*(IR\{0}), J, defines a smooth almost
complex structure gp-orthogonal. On the open set cos@~!(IR\{1}), § is a smooth metric

conformally equivalent to gns. Thus, if n > 2, V = Viff § is constant. Note that in this case
any local orthonormal frame of the type {X,, Y, = J,X,} diagonalizes F*w on the whole
set it is defined. Moreover, from (1.2) of Lemma 1.1, we get

O(T"(X,Y)) = 2cos O(VAF) BV (J, X, Y). (4.1)
This shows that

Proposition 4.1 [6] If F is a minimal immersion with equal Kdhler angles and without
complex directions, then T' = 0, that is, V' = V iff ® is parallel iff F is pluriminimal.

We may extend ® : T°M — N M€ by (-linearity to the complexified spaces, and we define
Re(u + i) = u, for u,v € NM.

Proposition 4.2 [6] If F' is any immersion with equal Kdhler angles and no complex direc-
tions, then

B(152V log(sin? 0)) = 4?(’591%(@'2 (9(VudF (), JAF(8)) — g(VadF(B), JdF(u)))<I><6>> .

S Byt

where V log(sin? 0) is the gradient with respect to gy

Since {®(8), ®(8) = ®(8)}1<p<n multiplied by ﬁ constitutes an unitary basis of NM¢, we
immediately conclude

Corollary 4.1 [6] Let F be an immersion with equal Kdhler angles, no complex directions,
and n > 2. Then 0 is constant iff

> g(VadF (), JAF () = >_ g(VadF(B), JAF (n)) VB (4.2)

In particular, if F is a pluriminimal immersion, then V = V=V and 6= constant.

To prove Proposition 4.2 we relate the three connections of M, V., V, and V' Any local
gu-orthonormal frame of the form {ey,..., ez} = {X,, Y, = J, X, }1<u<n diagonalizes F*w.
Let

S'(X,Y)=Vky - VxY.
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Then S'(X,Y) — S'(Y,X) =T'(X,Y) and so S' = 0iff V/=V iff §' is symmetric.
In [6] we prove

Zg (S'(e;, ), Zg (T'(e;, X), €;). (4.3)

We may compute

1— .
( 1 n)Vlogsin29 = Zvﬁu — Vap.
u

Now N
O(Vp) = ((J = icos0)VxdF (1)) +@(Vxp).
It follows that

o> ﬁﬁu—vﬁu) = (( —icosf H) ZQ) (Viu— Vuu) (271(JH)L @(TmcegMS))

where H =
hand, using

5> VdF(e;,e;) = 2%, VAF (i, 1) is the mean curvature of F. On the other
(4.3) and Lemma 1.1, we have

Z%ww(VMW%MHMM@—MVMW%Mﬂmmm)

~ sinZg

With this, and writing (JH)* in terms of ®(3) and ®(3), we prove Proposition 4.2. O

Note that (4.2) of Corollary 4.1 is a sort of symmetry property (we may commute g with 3,
and sum over p), and the first term is just §g(H, JdF(83)). In [6] we compute the divergences
of F*w and of J, considering F*w as an operator of TM. It is particulary interesting the
case n = 2.

Proposition 4.3 Let F' be an immersion with equal Kahler angles and V cosf denote the
gradient w.r.t gur-

(i) Forn=1, 0J,=0 (obviously!). Moreover, §(F*w) = 0 iff 6 is constant.

(i) Forn=2, 6(F*w)=0 and J,(V cosf) = cosb(dJ,). Hence, 6J, =0 iff 0 is constant.
(ili) For n # 1,2, 6(F*w) = (n — 2)J,(Vcosd) = 2=2cos0(.J,). Hence, 6(F*w) = 0 iff
dJ, =0 iff 6 is constant iff (4.2) holds.

If N is K&hler-Einstein, expression (2.1) for the Laplacian of k, for F' minimal with equal
Kéhler angles at a maximum point py of k with cos@(py) # 0 and cosf(py) # 1, can be
simplified to

Ak = cos (B, B, )+ A+ B), (1.4)
where RM is the Riemannian curvature of M, and
8(n—1) )
A= B =———||Vcosf|".
Sin2 0 || CoS ||
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Then A, B > 0, and A = 0 on an open set of M iff (M, J,, g) is Kihler on that set. If B =0
on an open set, then the equal Kahler angle is constant. The curvature term of (4.4)

> RM(B, 1, B, 1) (4.5)
Bip

is a hermitian trace of the curvature of M restricted to a maximal isotropic subspace of T°M.
To require it to be > 0 seems to be strictly weaker than the non-negative isotropic sectional
curvature defined by Micallef and Moore in [3], namely

g (R(z Aw), Z A W) >0

K —
@) FAwlp 2

where o = spang{z,w} is a totally isotropic two-plane in T°M, that is, u € 0 = gp(u,u) =0,
and where gy (R(x Ay),uAv) = RM(z,y,u,v). Finally, we present the following result.

Theorem 4.1 [6] Let F' be minimal with equal Kdhler angles, M compact orientable, and N
Kahler-Einstein with R < 0. If n = 2 or 8 = constant, and M has non-negative isotropic
sectional curvature, then one and only one of the following cases holds:

(i) M is a complex submanifold of N.

(ii) M is a Lagrangian submanifold of N.

(iii) R = 0, cos @ =constant # 0,1, and J,, is a complex integrable structure, with (M, J,, gar)
a Kdhler manifold.

To prove the theorem for n = 2, we use the Weitzenbéck formula applied to F*w (see [2]). In
this case F*w is a harmonic 2-form, because it is closed and co-closed (by Proposition 4.3).
Moreover, since F' has equal Kéhler angles, the curvature term (4.5) can be also expressed as
a multiple of < SF*w, F*w >, where S is the Ricci operator applied to forms. We may then
conclude that VF*w = 0, and so the Kihler angle is constant, and if cos 0 # 0, (M, J,, gur)
is a Kahler manifold. If n # 2, we assume the Kahler angle is constant. Then, in both cases,
equation (4.4) is valid on all M, with Ax = 0. Of course, we may replace the condition on
the curvature of M by the weaker condition (4.5) > 0.

This theorem can for instance be applied to flat minimal tori immersed in Calabi-Yau mani-
folds.
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