Proc. Summer School on Diff. Geometry Dep. de Matemática, Universidade de Coimbra September 1999, 167-176.

Minimal submanifolds of Kähler-Einstein manifolds without complex directions and of half dimension¹

Giorgio Valli² Isabel M. C. Salavessa

Dipartimento di Matematica, Università di Pavia Via Abbiategrasso 215, 27100 Pavia, Italy e-mail: valli@dimat.unipv.it

Centro de Física das Interacções Fundamentais Instituto Superior Técnico, Edifício Ciência piso 3, 1049-001 Lisboa Codex, Portugal e-mail: isabel@cartan.ist.utl.pt

Abstract. We study minimal real 2n-submanifolds $F: M \to N$ without complex directions immersed into a Kähler-Einstein manifold of complex dimension 2n. We find conditions, for example on the curvature of M and N, or equal Kählerangles, or broad-pluriminimality of F, to conclude that F must be a Lagrangian submanifold. Our main tool is a formula of the Laplacian of a certain symmetric function of the Kähler angles of F.

1. Introduction

This paper is a summary of part of research results, [5] and [6], started two years ago, on the study of immersions into Kähler-Einstein manifolds through its Kähler angles, and that is a generalization of part of the work of Wolfson in [7] to higher dimensions.

Let (N, J, g) be a Kähler manifold of complex dimension 2n, with complex struture J and Riemannian metric g, and let $F: M \to N$ be an immersed submanifold of real dimension

This is a summary of research results which have been submitted to publication elsewhere.

²deceased on October 2nd, 1999

168

2n. We denote by ω the Kähler form of N, $\omega(X,Y) = g(JX,Y)$. On M we take the induced metric $g_M = F^*g$. N is Kähler-Einstein if its Ricci tensor is a multiple of the metric, $Ricci^{N} = Rq$. We start by recalling a result of Wolfson:

Theorem 1.1 [7] If M is a real compact orientable surface and N is a complex Kähler-Einstein surface with R < 0, and if F is minimal with no complex points, then F is Lagrangian.

The main idea of the proof is the following. Since $n=1, F^*\omega$ is a multiple of the volume element of M, $F^*\omega = aVol_M$, with $a: M \to [-1,1]$ a real smooth map. Then $a = \cos\theta$, where θ is called the Kähler angle of the surface. If F is minimal without complex points, that is, $|\cos\theta| \neq 1$, then

$$\triangle(\kappa(\cos\theta)) = -R\cos\theta$$

for some convenient real map $\kappa:(-1,1)\to \mathbb{R}$. If R<0, an application of the maximum and minimum principle implies $\cos \theta = 0$ everywhere. In some cases (see Sections 2, 3) we generalize this result to higer dimensions.

First we recall the concept of Kälher angles of F, introduced by Chern and Wolfson [1] for surfaces, as some functions that at each point p of M measure the deviation of the tangent plane T_pM of M from a complex subspace or a Lagrangian subspace of $T_{F(p)}N$. At each base point $p \in M$, we identify $F^*\omega$ with a skew-symmetric operator of T_pM by $g_M(F^*\omega(X),Y)=F^*\omega(X,Y)$. The polar decomposition of $F^*\omega$ is given by

$$F^*\omega = J_\omega \,\tilde{g},\tag{1.1}$$

where $J_{\omega}: T_pM \to T_pM$ is a (unique) partial isometry with the same kernel \mathcal{K}_{ω} as of F^*w , and where \tilde{g} is the positive semidefinite operator $\tilde{g} = |F^*\omega| = \sqrt{-(F^*\omega)^2}$. It turns out that $J_{\omega}: \mathcal{K}_{\omega}^{\perp} \to \mathcal{K}_{\omega}^{\perp}$ defines a complex structure on $\mathcal{K}_{\omega}^{\perp}$, the orthogonal complement of \mathcal{K}_{ω} in T_pM . We denote by Ω_{2k}^0 the set of interior points in M where F^*w has constant rank 2k, $0 \leq k \leq n$. Then $\mathcal{K}_{\omega}^{\perp}$ is a smooth sub-vector bundle of TM on Ω_{2k}^{0} . Moreover, \tilde{g} and J_{ω} are both smooth on those open sets, and $(\mathcal{K}_{\omega}^{\perp}, J_{\omega}, g_{M})$ constitutes a smooth Hermitean vector bundle. We should note that on Ω_{2n}^0 , the open set where $F^*\omega$ is non-degenerate, the almost complex struture J_{ω} is not integrable in general. The positive semidefinite tensor \tilde{g} is in fact continuous in all M and locally Lipschitz. At each point p we may take $\{X_{\alpha}, Y_{\alpha}\}_{1 \le \alpha \le n}$ a g_M -orthonormal basis of T_pM that diagonalizes $F^*\omega$ at p. By this one means that, in that basis, $F^*\omega$ is matricially a sum of block matrices of the form

$$F^*\omega = \bigoplus_{0 < \alpha < n} \left[\begin{array}{cc} 0 & -a_\alpha \\ a_\alpha & 0 \end{array} \right],$$

where a_1, a_2, \ldots, a_n are real numbers, also called the singular values of $F^*\omega$. From

$$|a_{\alpha}| = |F^*\omega(X_{\alpha}, Y_{\alpha})| = |g(JdF(X_{\alpha}), dF(Y_{\alpha}))| \le 1$$

we have $a_{\alpha} = \cos \theta_{\alpha}$, for some angle θ_{α} . We may assume $\cos \theta_1 \geq \ldots \geq \cos \theta_n \geq 0$, by interchanging X_{α} with Y_{α} , and reordering the basis when necessary.

Definition 1.1 These angles θ_{α} , $1 \leq \alpha \leq n$, are called the Kähler angles of F at p.

Then, $\forall \alpha$, $F^*\omega(X_\alpha) = \cos\theta_\alpha Y_\alpha$, $F^*\omega(Y_\alpha) = -\cos\theta_\alpha X_\alpha$, and, if 2k is the rank of $F^*\omega$ at p with $k \geq 1$, $J_\omega X_\alpha = Y_\alpha$, $\forall \alpha \leq k$. Since the map $A \to |A|$ is a Lipschitz map in the space of normal operators, the Weyl's pertubation theorem applied to the eigenvalues of the symmetric operator $|F^*\omega|$ shows that, ordering the $\cos\theta_\alpha$ in the above decreasing way, for each α the map $p \to \cos\theta_\alpha(p)$ is locally Lipschitz on M. A complex direction of F is a real two-plane P of T_pM such that dF(P) is a complex line of $T_{F(p)}N$, that is, $JdF(P) \subset dF(P)$. Similarly, P is called a Lagrangian direction of F if ω vanishes on dF(P), that is, $JdF(P) \perp dF(P)$. F has no complex directions iff $\cos\theta_\alpha < 1 \ \forall \alpha$. We note that for n = 1 our definition of Kähler angles may be slightly different from the original one in [1], because we demanded $\cos\theta \geq 0$. Our $\cos\theta$ may not be smooth near a point where it vanishes. We have chosen this definition because in higher dimensions we do not have a preferential orientation assigned to the real planes $P_\alpha = span\{X_\alpha, Y_\alpha\}$, even if M is orientable.

Let us consider the complex vectors of the complexified tangent space of M at p, $T_p^c(M)$, where $\{X_{\alpha}, Y_{\alpha}\}_{1 \leq \alpha \leq n}$ diagonalizes $F^*\omega$ at p,

$$Z_{\alpha} = \frac{X_{\alpha} - iY_{\alpha}}{2} = \alpha, \qquad Z_{\bar{\alpha}} = \overline{Z_{\alpha}} = \frac{X_{\alpha} + iY_{\alpha}}{2} = \bar{\alpha}.$$

We extend g_M and the curvature tensors of M and N to the complexified tangent spaces by \mathscr{C} -multilinearity. Let $NM = (dF(TM))^{\perp}$ denote the normal bundle of F, and $()^{\perp}$ denote the orthogonal projection of $F^{-1}TN$ onto the normal bundle. If F is any immersion of real dimension 2n and no complex directions, then $\{dF(Z_{\alpha}), dF(Z_{\bar{\alpha}}), (JdF(Z_{\alpha}))^{\perp}, (JdF(Z_{\bar{\alpha}}))^{\perp}\}_{1\leq \alpha\leq n}$ constitutes a complex basis of $T_{F(p_0)}^cN$. On M the Ricci tensor of N can be described by the following expression, for $U, V \in T_{F(p)}N$,

$$Ricci^{N}(U, V) = \sum_{1 < \mu < n} \frac{4}{\sin \theta_{\mu}} R^{N}(U, JV, dF(\mu), (JdF(\bar{\mu}))^{\perp}),$$

where \mathbb{R}^N denotes the Riemannian curvature tensor of N. An application of the Codazzi's equation to the above expression leads the first result:

Proposition 1.1 [5] If F is a totally geodesic map without complex directions and N is Kähler-Einstein with non-zero Ricci tensor, then F is Lagrangian.

We consider the following morphism of vector bundles

$$\begin{array}{cccc} \Phi: & TM & \to & NM \\ & X & \to & (JdF(X))^{\perp}. \end{array}$$

Both TM and NM are real vector bundles of the same dimension 2n. If F has no complex directions, then Φ is an isomorphism. Moreover, the tensor \hat{g} given by

$$\hat{g}(X,Y) = g_M(X,Y) - g(F^*\omega(X), F^*\omega(Y))$$

defines a smooth Riemannian metric on M, and $\hat{g} = g_M - \tilde{g}^2 = \sum_{\alpha} \sin^2 \theta_{\alpha} Z_*^{\alpha} \odot Z_*^{\bar{\alpha}}$, where \tilde{g} is given by (1.1). With this metric, $\Phi: (TM, \hat{g}) \to (NM, g)$ is an isometry, that is, Φ is an isomorphism of Riemannian vector bundles. Let us denote by

 ∇ the Levi-Civita connection of (M, g_M)

 $\hat{\nabla}$ the Levi-Civita connection of (M, \hat{g})

 $abla^{\perp}$ the usual connection of NM induced by the Levi-Civita connection of N

 ∇' the connection on TM that makes the isomorphism Φ parallel.

We will also denote by ∇ the Levi-Civita connection of N. Thus, if U is a smooth section of $NM \subset F^{-1}TN$ and X is a vector field on M,

$$\nabla_{X}^{\perp}U = (\nabla_{X}U)^{\perp}$$

and $\nabla' = \Phi^{-1*} \nabla^{\perp}$, that is, for X, Y smooth vector fields of M,

$$\Phi(\nabla'_X Y) = \nabla_{\!X}^{\perp}(\Phi(Y)).$$

The connections ∇ and $\hat{\nabla}$ have no torsion because they are Levi-Civita, but ∇' may have non-zero torsion T'. Since both $\hat{\nabla}$ and ∇' are Riemannian connections of TM for the same Riemannian metric \hat{g} , T'=0 iff $\hat{\nabla}=\nabla'$. Let us denote by $\nabla_X dF(Y)=\nabla dF(X,Y)$ the second fundamental form of F, which is a symmetric tensor on M that takes values on the normal bundle NM.

Lemma 1.1 [6] If $\{X_{\alpha}, Y_{\alpha}\}$ is a diagonalizing g_{M} -orthonormal basis of $F^{*}\omega$ at p, then at p

$$\Phi(T'(Z_{\alpha}, Z_{\bar{\beta}})) = i(\cos \theta_{\alpha} + \cos \theta_{\beta}) \nabla_{Z_{\alpha}} dF(Z_{\bar{\beta}})
\Phi(T'(Z_{\alpha}, Z_{\beta})) = i(\cos \theta_{\alpha} - \cos \theta_{\beta}) \nabla_{Z_{\alpha}} dF(Z_{\beta}).$$

Proof. Note that, if $X \in TM$, $JdF(X) - dF(F^*\omega(X)) \in NM$. Thus

$$\Phi(X) = JdF(X) - dF(F^*\omega(X)).$$

Then

$$\Phi(\nabla'_X Y) = \nabla_X^{\perp}(\Phi(Y)) = (\nabla_X(\Phi(Y)))^{\perp}
= (\nabla_X(JdF(Y) - dF(F^*\omega(Y)))^{\perp}
= (J\nabla_XdF(Y) + JdF(\nabla_X Y) - \nabla_XdF(F^*\omega(Y)))^{\perp}.$$

Therefore, using the symmetry of ∇dF and the fact that ∇ is torsionless,

$$\Phi(T'(X,Y)) = \Phi(\nabla'_X Y - \nabla'_Y X - [X,Y])$$

$$= -\nabla_X dF(F^*\omega(Y)) + \nabla_Y dF(F^*\omega(X)). \tag{1.2}$$

The lemma now follows immediately.

This lemma will be useful in the following. It also shows that T' vanishes in certain directions for broadly-pluriminimal immersions or for immersions with equal Kähler angles.

2. A formula

For a minimal immersion F with no complex directions, we consider the map

$$\kappa = \sum_{1 \le \alpha \le n} \log \left(\frac{1 + \cos \theta_{\alpha}}{1 - \cos \theta_{\alpha}} \right) = \frac{1}{2} \log \left(\frac{\det(g_M + \tilde{g})}{\det(g_M - \tilde{g})} \right).$$

This map is non-negative, and vanishes at a point p iff all $\cos \theta_{\alpha} = 0$ at that point. It is smooth on each Ω_{2k}^0 , continuous on all M, and locally a Lipschitz map. We can compute $\Delta \kappa$ on those open sets where κ is smooth, but this gives a very long computation. In [5], [6] we derive an expression for $\Delta \kappa$ at $p_0 \in \Omega_{2k}^0$, namely

$$\Delta \kappa = 4i \sum_{\beta} Ricci^{N}(JdF(\beta), dF(\bar{\beta}))$$

$$+ \sum_{\beta,\mu} \frac{32}{\sin^{2}\theta_{\mu}} Im(R^{N}(dF(\beta), dF(\mu), dF(\bar{\beta}), JdF(\bar{\mu}) + i\cos\theta_{\mu}dF(\bar{\mu})))$$

$$- \sum_{\beta,\mu,\rho} \frac{32(\cos\theta_{\mu} + \cos\theta_{\rho})}{\sin^{2}\theta_{\mu}\sin^{2}\theta_{\rho}} Re(g(\nabla_{\beta}dF(\mu), JdF(\bar{\rho}))g(\nabla_{\bar{\beta}}dF(\rho), JdF(\bar{\mu})))$$

$$+ \sum_{\beta,\mu,\rho} 32(\frac{1}{\sin^{2}\theta_{\rho}} - \frac{1}{\sin^{2}\theta_{\mu}}) Im(\langle\nabla_{\beta}\mu, \rho\rangle g(\nabla_{\bar{\beta}}dF(\bar{\rho}), JdF(\bar{\mu})))$$

$$+ \sum_{\beta,\mu,\rho} 32(\frac{1}{\sin^{2}\theta_{\rho}} - \frac{1}{\sin^{2}\theta_{\mu}}) Im(\langle\nabla_{\bar{\beta}}\mu, \rho\rangle g(\nabla_{\beta}dF(\bar{\rho}), JdF(\bar{\mu})))$$

$$+ \sum_{\beta,\mu,\rho} \frac{32(\cos\theta_{\mu} + \cos\theta_{\rho})}{\sin^{2}\theta_{\mu}} (|\langle\nabla_{\beta}\mu, \rho\rangle|^{2} + |\langle\nabla_{\bar{\beta}}\mu, \rho\rangle|^{2}),$$

where $\{X_{\alpha}, Y_{\alpha}\}_{1 \leq \alpha \leq n}$ is a g_M -orthonormal local frame of M, with $Y_{\alpha} = J_{\omega}X_{\alpha}$ for $\alpha \leq k$, $\{X_{\alpha}, Y_{\alpha}\}_{\alpha \geq k+1}$ any g_M -orthonormal frame of \mathcal{K}_{ω} , and which at p_0 diagonalizes $F^*\omega$. There are two cases where the above equation is simplified. The first one is when F is broadly-pluriminimal, and the second one when F has equal Kähler angles. We will treat these cases in Sections 3 and 4, respectively.

3. Broadly-pluriminimal submanifolds

Definition 3.1 [5] F is said to be broadly-pluriminimal if

- (i) F is minimal,
- (ii) For each $p \in \Omega_{2k}^0$, $k \geq 1$, F is pluriharmonic with respect to any g_M -orthogonal complex structure $\tilde{J} = J_\omega \oplus J'$ on T_pM , where J' is any g_M -orthogonal complex structure of \mathcal{K}_ω , that is, $(\nabla dF)^{(1,1)} = 0$.

In (ii), the (1,1)-part of ∇dF is just given by

$$(\nabla dF)^{(1,1)}(X,Y) = \frac{1}{2} \left(\nabla dF(X,Y) + \nabla dF(\tilde{J}X,\tilde{Y}) \right) \quad \forall X,Y \in T_p M.$$

If $\mathcal{K}_{\omega} = 0$, (ii) means that F is pluriharmonic with respect to the almost complex structure J_{ω} (see e.g. [4]). Pluriharmonic maps are trivially minimal. Products of minimal real surfaces of

Kähler surfaces, minimal Lagrangian submanifolds, and complex submanifolds are examples of pluriminimal submanifolds. For F with equal Kähler angles Ω_{2k}^0 is only considered and $\tilde{J} = J_{cc}$.

If F is broadly-pluriminimal, we get the following very simple final expression for $\Delta \kappa$ on Ω^0_{2k} ,

$$\Delta \kappa = 4i \sum_{1 < \beta < k} Ricci^{N}(JdF(\beta), dF(\bar{\beta})).$$

Consequentely,

Proposition 3.1 [5] If N is Kähler-Einstein and F is broadly-pluriminimal without complex directions, then, on each Ω_{2k}^0

$$\Delta \kappa = -2R \Big(\sum_{1 \le \beta \le n} \cos \theta_{\beta} \Big).$$

The main problem in applying the maximum principle to this equation at a maximum point p_0 of κ for $n \geq 2$, as Wolfson did in [7] for the case n=1, is that p_0 may not lie on a open set where κ is smooth. Since we can write $\kappa = \kappa_1 + \kappa_2$, where $\kappa_1 = \sum_{1 \leq \alpha \leq 2k} \log \left(\frac{1 + \cos \theta_\alpha}{1 - \cos \theta_\alpha} \right)$ (with 2k the rank of $F^*\omega$ at p_0) is the (smooth) piece of κ defined by the angles whose cosine is not zero near p_0 , and κ_2 with the remaining angles, κ_1 and κ_2 having at p_0 a maximum and a minimum respectively, we can prove that κ is differentiable at p_0 , but we do not know if it is C^2 on a neighbourhood of that point. The following lemma is an immediate conclusion from the above formula and will lead to the next theorem.

Lemma 3.1 [5] If N is Kähler-Einstein with R < 0, and if F is broadly-pluriminimal but not Lagrangian and has no complex directions, then p_0 is not in $\Omega^0_{2k} \,\,\forall 0 \leq k \leq n$. That is, if the rank of $F^*\omega$ is 2k at p_0 , then there exists a sequence $p_m \to p_0$ such that the rank of $F^*\omega$ at p_m is > 2k.

Theorem 3.1 [5] Assume N is Kähler-Einstein with R < 0, and M is compact.

- (i) If F is broadly-pluriminimal, then F either has complex or Lagrangian directions.
- (ii) If F is broadly-pluriminimal without complex directions, and $F^*\omega$ has constant rank or $rank \leq 2$, then F is Lagrangian.
- (iii) If n = 2, that is, M has real dimension 4 and N complex dimension 4, and if M is orientable and F is broadly-pluriminimal without complex directions, then F is Lagrangian.

To prove (iii) we replace the continuous map κ by a smooth map $\tilde{\kappa}$ which coincides with κ on an open set that has p_0 at the boundary and allows p_0 as a maximum as well. Namely,

$$\tilde{k} = \log\left(\frac{1+\cos\theta_1}{1-\cos\theta_1}\right) + \log\left(\frac{1+s_2}{1-s_2}\right),$$

where $s_2(p) = \epsilon(p) \cos \theta_2(p)$ for p near p_0 , with $\epsilon(p)$ equal to +1 or -1 according as X_1, Y_1, X_2, Y_2 is a direct or inverse basis, respectively. We can prove that s_2 is smooth by using the smoothness of $F^*\omega \wedge F^*\omega$. Unfortunately, a similar argument does not seem to work in higher dimensions.

4. Immersions with equal Kähler angles

We say that F has equal Kähler angles if $\theta_{\alpha} = \theta \, \forall \alpha$. In this case

$$F^*\omega = \cos\theta J_\omega$$
 and $\hat{g} = \sin^2\theta g_M$,

with $\cos \theta$ a locally Lipschitz map on M, smooth on the open set where it does not vanish, and $\Omega_{2k}^0 = \emptyset \ \forall k \neq 0, n$. On the open set $\Omega_{2n}^0 = \cos \theta^{-1}(\mathbb{R} \setminus \{0\})$, J_{ω} defines a smooth almost complex structure g_M -orthogonal. On the open set $\cos \theta^{-1}(\mathbb{R} \setminus \{1\})$, \hat{g} is a smooth metric conformally equivalent to g_M . Thus, if $n \geq 2$, $\hat{\nabla} = \nabla$ iff θ is constant. Note that in this case any local orthonormal frame of the type $\{X_{\alpha}, Y_{\alpha} = J_{\omega} X_{\alpha}\}$ diagonalizes $F^*\omega$ on the whole set it is defined. Moreover, from (1.2) of Lemma 1.1, we get

$$\Phi(T'(X,Y)) = 2\cos\theta(\nabla dF)^{(1,1)}(J_{\omega}X,Y). \tag{4.1}$$

This shows that

Proposition 4.1 [6] If F is a minimal immersion with equal Kähler angles and without complex directions, then T' = 0, that is, $\nabla' = \hat{\nabla}$ iff Φ is parallel iff F is pluriminimal.

We may extend $\Phi: T^cM \to NM^c$ by \mathbb{C} -linearity to the complexified spaces, and we define Re(u+iv) = u, for $u, v \in NM$.

Proposition 4.2 [6] If F is any immersion with equal Kähler angles and no complex directions, then

$$\Phi\left(\frac{1-n}{2}\nabla\log(\sin^2\theta)\right) = \frac{4\cos\theta}{\sin^2\theta}Re\left(i\sum_{\beta,\mu}\left(g(\nabla_{\bar{\mu}}dF(\mu),JdF(\beta)) - g(\nabla_{\bar{\mu}}dF(\beta),JdF(\mu))\right)\Phi(\bar{\beta})\right).$$

where $\nabla \log(\sin^2 \theta)$ is the gradient with respect to g_M .

Since $\{\Phi(\beta), \Phi(\bar{\beta}) = \overline{\Phi(\beta)}\}_{1 \leq \beta \leq n}$ multiplied by $\frac{\sqrt{2}}{\sin \theta}$ constitutes an unitary basis of NM^c , we immediately conclude

Corollary 4.1 [6] Let F be an immersion with equal Kähler angles, no complex directions, and $n \geq 2$. Then θ is constant iff

$$\sum_{\mu} g(\nabla_{\mu} dF(\mu), JdF(\beta)) = \sum_{\mu} g(\nabla_{\mu} dF(\beta), JdF(\mu)) \quad \forall \beta.$$
 (4.2)

In particular, if F is a pluriminimal immersion, then $\nabla = \hat{\nabla} = \nabla'$ and $\theta = constant$.

To prove Proposition 4.2 we relate the three connections of M, ∇ , $\hat{\nabla}$, and ∇' . Any local g_M -orthonormal frame of the form $\{e_1, \ldots, e_{2n}\} = \{X_{\mu}, Y_{\mu} = J_{\omega}X_{\mu}\}_{1 \leq \mu \leq n}$ diagonalizes $F^*\omega$. Let

$$S'(X,Y) = \nabla_X' Y - \hat{\nabla}_X Y.$$

174 G. Valli and I. M. C. Salavessa: Minimal submanifolds ... without complex directions ...

Then S'(X,Y) - S'(Y,X) = T'(X,Y) and so S' = 0 iff $\nabla' = \hat{\nabla}$ iff S' is symmetric. In [6] we prove

$$\sum_{i} \hat{g}(S'(e_i, e_i), X) = -\sum_{i} \hat{g}(T'(e_i, X), e_i). \tag{4.3}$$

We may compute

$$\frac{(1-n)}{4}\nabla \log \sin^2 \theta = \sum_{\mu} \hat{\nabla}_{\bar{\mu}}\mu - \nabla_{\bar{\mu}}\mu.$$

Now

$$\Phi(\nabla'_X \mu) = \left((J - i \cos \theta) \nabla_X dF(\mu) \right)^{\perp} + \Phi(\nabla_X \mu).$$

It follows that

$$\Phi(\sum_{\mu} \hat{\nabla}_{\bar{\mu}} \mu - \nabla_{\bar{\mu}} \mu) = \left((J - i \cos \theta) \frac{H}{4} \right)^{\perp} - \sum_{\mu} \Phi(\nabla'_{\bar{\mu}} \mu - \hat{\nabla}_{\bar{\mu}} \mu) = \frac{1}{4} \left(2n(JH)^{\perp} - \Phi(Trace_{g_M} S') \right),$$

where $H = \frac{1}{2n} \sum_i \nabla dF(e_i, e_i) = \frac{2}{n} \sum_{\mu} \nabla dF(\bar{\mu}, \mu)$ is the mean curvature of F. On the other hand, using (4.3) and Lemma 1.1, we have

$$\Phi(Trace_{g_M}S') = \frac{4}{\sin^2\theta} \sum_{\mu,\beta} 2i\cos\theta \Big(g(\nabla_{\bar{\mu}}dF(\beta), JdF(\mu)) \Phi(\bar{\beta}) - g(\nabla_{\mu}dF(\bar{\beta}), JdF(\bar{\mu})) \Phi(\beta) \Big).$$

With this, and writing $(JH)^{\perp}$ in terms of $\Phi(\beta)$ and $\Phi(\bar{\beta})$, we prove Proposition 4.2.

Note that (4.2) of Corollary 4.1 is a sort of symmetry property (we may commute μ with β , and sum over μ), and the first term is just $\frac{n}{2}g(H,JdF(\beta))$. In [6] we compute the divergences of $F^*\omega$ and of J_{ω} considering $F^*\omega$ as an operator of TM. It is particularly interesting the case n=2.

Proposition 4.3 Let F be an immersion with equal Kähler angles and $\nabla \cos \theta$ denote the gradient $w.r.t \ g_M$.

- (i) For n = 1, $\delta J_{\omega} = 0$ (obviously!). Moreover, $\delta(F^*\omega) = 0$ iff θ is constant.
- (ii) For n=2, $\delta(F^*\omega)=0$ and $J_{\omega}(\nabla\cos\theta)=\cos\theta(\delta J_{\omega})$. Hence, $\delta J_{\omega}=0$ iff θ is constant.
- (iii) For $n \neq 1, 2$, $\delta(F^*\omega) = (n-2)J_{\omega}(\nabla \cos \theta) = \frac{n-2}{n-1}\cos \theta(\delta J_{\omega})$. Hence, $\delta(F^*\omega) = 0$ iff $\delta J_{\omega} = 0$ iff θ is constant iff (4.2) holds.

If N is Kähler-Einstein, expression (2.1) for the Laplacian of κ , for F minimal with equal Kähler angles at a maximum point p_0 of κ with $\cos \theta(p_0) \neq 0$ and $\cos \theta(p_0) \neq 1$, can be simplified to

$$\Delta \kappa = \cos \theta \Big(-2nR + \frac{32}{\sin^2 \theta} \sum_{\beta,\mu} R^M(\beta,\mu,\bar{\beta},\bar{\mu}) + A + B \Big), \tag{4.4}$$

where R^M is the Riemannian curvature of M, and

$$A = \frac{4}{\sin^2 \theta} \|\nabla J_{\omega}\|^2 \qquad B = \frac{8(n-1)}{\sin^2 \theta} \|\nabla \cos \theta\|^2.$$

Then $A, B \ge 0$, and A = 0 on an open set of M iff (M, J_{ω}, g) is Kähler on that set. If B = 0 on an open set, then the equal Kähler angle is constant. The curvature term of (4.4)

$$\sum_{\beta,\mu} R^M(\beta,\mu,\bar{\beta},\bar{\mu}) \tag{4.5}$$

is a hermitian trace of the curvature of M restricted to a maximal isotropic subspace of T^cM . To require it to be ≥ 0 seems to be strictly weaker than the non-negative isotropic sectional curvature defined by Micallef and Moore in [3], namely

$$K(\sigma) = \frac{g_M(\mathcal{R}(z \wedge w), \bar{z} \wedge \bar{w})}{||z \wedge w||^2} \geq 0,$$

where $\sigma = span_{\mathbb{C}}\{z, w\}$ is a totally isotropic two-plane in T^cM , that is, $u \in \sigma \Rightarrow g_M(u, u) = 0$, and where $g_M(\mathcal{R}(x \wedge y), u \wedge v) = R^M(x, y, u, v)$. Finally, we present the following result.

Theorem 4.1 [6] Let F be minimal with equal Kähler angles, M compact orientable, and N Kähler-Einstein with $R \leq 0$. If n=2 or $\theta=constant$, and M has non-negative isotropic sectional curvature, then one and only one of the following cases holds:

- (i) M is a complex submanifold of N.
- (ii) M is a Lagrangian submanifold of N.
- (iii) R = 0, $\cos \theta = constant \neq 0, 1$, and J_{ω} is a complex integrable structure, with (M, J_{ω}, g_M) a Kähler manifold.

To prove the theorem for n=2, we use the Weitzenböck formula applied to $F^*\omega$ (see [2]). In this case $F^*\omega$ is a harmonic 2-form, because it is closed and co-closed (by Proposition 4.3). Moreover, since F has equal Kähler angles, the curvature term (4.5) can be also expressed as a multiple of $\langle SF^*\omega, F^*\omega \rangle$, where S is the Ricci operator applied to forms. We may then conclude that $\nabla F^*\omega = 0$, and so the Kähler angle is constant, and if $\cos \theta \neq 0$, (M, J_{ω}, g_M) is a Kähler manifold. If $n \neq 2$, we assume the Kähler angle is constant. Then, in both cases, equation (4.4) is valid on all M, with $\Delta \kappa = 0$. Of course, we may replace the condition on the curvature of M by the weaker condition (4.5) ≥ 0 .

This theorem can for instance be applied to flat minimal tori immersed in Calabi-Yau manifolds.

References

- [1] S.S. Chern, J.G. Wolfson: *Minimal surfaces by moving frames*. Amer. J. Math. **105** (1983), 59–83.
- [2] J. Eells, L. Lemaire: Selected topics in harmonic maps. C.B.M.S. Regional Conf. Series 50, Amer. Math. Soc. 1983.
- [3] M.J. Micallef, J.D. Moore: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Annals of Math. 127 (1988), 199–227.
- [4] Y. Ohnita, S. Udagawa: Stability, complex analicity and constancy of pluriharmonic maps from compact Kähler manifolds. Math. Z. 205 (1990), 629-644.

- 176 G. Valli and I. M. C. Salavessa: Minimal submanifolds . . . without complex directions . . .
- [5] I. Salavessa, G. Valli: Broadly-pluriminimal Submanifolds of Kähler-Einstein Manifolds. Preprint, submitted for publication.
- [6] I. Salavessa, G. Valli: Minimal submanifolds of Kähler-Einstein manifolds with equal Kähler angles. In preparation.
- [7] J.G. Wolfson: Minimal Surfaces in Kähler Surfaces and Ricci Curvature. J. Diff. Geom. **29** (1989), 281–294.