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1 Introduction

The work presented in this talk was motivated by the following question: Is it possible
to find a computational technique for solving the linear system resulting from Mixed
Finite Element discretizations of certain self-adjoint second order elliptic boundary
value problems at the computational cost of a standard Galerkin FEM? There are two
main obstacles to achieving the above stated goal. First, Mixed FEM formulations
lead to a significantly larger number of unknowns compared to a standard conforming
FEM of a comparable accuracy on the same triangulation of the domain. And secondly,
the Mixed FEM produces a symmetric indefinite matrix problem as opposed to a
symmetric and positive definite matrix in the standard FEM. The combined effect of
these difficulties can often discourage end users from using Mixed Methods even in
applications where a mixed approach can be beneficial (see [MSAC94]).

A number of researchers have studied this problem over the years and have
contributed to developing several efficient iterative solvers. We acknowledge all their
work, but for brevity, we will only consider in this talk approaches that involve Domain
Decomposition ideas.

In [EW92], Ewing and Wang considered and analyzed a domain decomposition
method for solving the discrete system of equations which result from mixed finite
element approximation of second-order elliptic boundary value problems in two
dimensions. The approach in [EW92] is first to seek a discrete velocity satisfying
the discrete continuity equation through a variation of domain decomposition (static
condensation), and then to apply a domain decomposition method to the reduced
elliptic problem arising from elimination of the pressure and part of the velocity
unknowns in the saddle-point problem. The crucial part of the approach in [EW92]
is to characterize the divergence-free velocity subspaces. This is also the essential
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difference with those in [GW87], [MR94], and [CMW95]. The Lagrange multipliers
approach used in [GW87, CMW95] does produce a symmetric and positive definite
matrix, but fails to address the other issue: the large number of unknowns. Recently,
Chen, Ewing and Lazarov suggested in [CEL96] to reduce the number of unknowns by
eliminating on a element by element basis the pressure variables. Then they applied
a DD algorithm on the Lagrange multiplier variables only.

When comparing the two basic ideas (i.e. Lagrange multipliers and div-free
subspace) one notes that they both re-formulate the original saddle-point problem
into a symmetric and positive definite one and then apply some known DD algorithm.
The difference is the number of unknowns in the discrete system. The dimension of the
div-free velocity subspace is always smaller than the number of Lagrange multipliers.

In this paper, we will use the domain decomposition approach in [EW92] for the
solution of the algebraic system resulting from the mixed finite element method applied
to second-order elliptic boundary value problems in three dimensions. As mentioned
above, the basis of the divergence-free velocity subspace plays an essential role in
the approach; hence we will construct a basis of this subspace for the lowest-order
rectangular Raviart-Thomas-Nedelec [RT77, Ned80] velocity space. The construction
in two dimensions is rather easier than in three dimensions due to the fact that any
divergence-free vector in 2-D can be expressed as the curl of a scalar stream function.
Extension of this work to triangular or irregular meshes and to multilevel domain
decomposition will be discussed in a forthcoming paper.

This approach has several practical advantages. For an n X n x n grid in 3-D,
the number of discrete unknowns is approximately 4n3, essentially one pressure and
three velocity components per cell. Using the divergence-free subspace, we decouple
the system in such a manner that the velocity can be obtained directly by solving a
symmetric positive definite system of order roughly 2n® thus coming closer than any
other approach so far to the number of degrees of freedom in a standard Galerkin FEM.
In contrast to some other proposed procedures, this does not require the introduction
of Lagrange multipliers corresponding to pressures at cell interfaces, and it permits
direct computation of the velocity, which is often the principal variable of interest,
alone. If the pressure is also needed, it can be calculated inexpensively in an additional
step. Furthermore, the approach deals readily with the case of full-tensor conductivity
(cross-derivatives), where the mass matrix is fuller than tridiagonal and methods
based on reduced integration (mass lumping) are difficult to apply. This case results,
for example, from anisotropic permeabilities in flows in porous media, where highly
discontinuous conductivity coefficients are also common. For such problems, mixed
methods are known to produce more realistic velocities than standard techniques
[MSACY4].

2 Mixed Finite Element Method

In this section, we begin with a brief review of the mixed finite element method with
lowest-order Raviart-Thomas-Nedelec [RT77, Ned80] approximation space for second-
order elliptic boundary value problems in three dimensions. For simplicity, we consider
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a homogeneous Neumann problem: find p such that

—V-(kVp) = f, in Q=(0,1)3, 1
(kVp) -n 0, on 09, @

where f € L?(Q) satisfies the relation [, f = 0, and n denotes the unit outward
normal vector to Q. The symbols V- and V stand for the divergence and gradient
operators, respectively. Assume that k£ = (kij)sx3 is a given real-valued symmetric
matrix function with bounded and measurable entries k;; (¢, j =1, 2, 3) and satisfies
an ellipticity condition a.e. in 2.

We shall use the following space to define the mixed variational problem. Let

H(div; Q) = {w € L*(Q)®| V- w € L2(Q)},

which is a Hilbert space when equipped with the standard norm and the associated
inner product. By introducing the flux variable

v =—kVp,

which is often of practical interest for many physical problems, we can rewrite the
PDE of (1) as a first-order system

{k‘1v+Vp = 0,

Vv = f,

and obtain the mixed formulation of (1): find (v, p) € V x A such that
a(v,w)—b(w,p) = 0, VweV, )
b(v, A) = (f, N, VieA

Here V = Hy(div; Q) = {w € H(div;Q)|w-n = 0 ondf}, A is the quotient
space L3(2) = L2(Q)/{constants}, the bilinear forms a(-,-) : V x V — R and
b(-,-): VX A — IR are defined by

a(w,u) = /Q(k_lw) -udrdydz and b(w, \) = /Q(V-W))\dm dy dz

for any w, u € V and X € A, respectively, and (-,-) denotes the L%(f2) inner product.
To discretize the mixed formulation (2), we assume that we are given two finite
element subspaces
V*CcV and A"cCA

defined on a uniform rectangular mesh with elements of size O(h). The mixed
approximation of (v,p) is defined to be the pair, (v?, p*) € V* x A", satisfying

a(vh, w) —b(w,p") = 0, VYweVh, 3
{b(vh,A) — (f,)), VAreAh (3)

We refer to [RT77] for the definition of a class of approximation subspaces V" and
A", In this paper, we shall only consider the lowest-order R-T-N space defined on a
rectangular triangulation of 2. However, as shown in [CPRY95], this construction can
readily be generalized to higher-order elements on non-orthogonal meshes and more
general boundary conditions.
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3 Domain Decomposition

Problem (3) is clearly symmetric and indefinite. To reduce it to a symmetric positive
definite problem, we need a discrete velocity v? € V" satisfying

b(vi, A) = (f, N), VYreAm (4)
Define the discretely (as opposed to pointwise) divergence-free subspace D" of V.
D" = {w e V" |b(w,\) =0, VXeA"}, (5)

and let

h o h h
vp =Vv"'—vy,

which is obviously in D" by the second equation of (3) and satisfies
a(vp, w) = —a(vi, w), VweD", (6)

by the first equation. This problem is symmetric and positive definite.

This suggests the following procedure to obtain v*, the solution of (3): find v# € V*
satisfying (4), compute the projection v/, € D" satisfying (6), then set v = v + v
This procedure will be the basis for Algorithms 3.1 and 3.2 below. Given v?, (6) leads
to a unique v*, which is independent of the choice of v?. For an n x n x n grid,
computing the projection v% involves solving a SPD system of order approximately
2n3. Solving for p” is optional; if it is desired, it can be obtained from the first equation
in (3) once v" is known.

There are many discrete velocities in V* satisfying (4), and several approaches have
been discussed in the literature for seeking such a discrete velocity (e.g., [EW92],
[GW8T7], and [MR94]). All of these approaches are based on a type of domain
decomposition (static condensation) method applied to problem (3). In a recent paper
[CPRY95], we suggested a different approach which only requires solving a number of
independent one-dimensional problems.

We shall use additive and multiplicative domain decomposition methods for
approximate computation of the solution of problem (6). As usual, we first decompose
the original domain ) into non-overlapping subdomains = UQJ-, where each
subdomain Q; has a diameter of size H and then extend generously (i.e. with overlap
of order H) each Qj. The restriction of any FE space to the coarse grid defined by
the non-overlapping subdomains will be denoted by the index H, and the restriction
to ; by the index j. Next, we define the family of discretely divergence-free velocity
subspaces {Dj}]J:o by Do = D¥, and for j € {1, 2, ..., J},

Dj:{UEVjHJ(U, )\):0, V)\EA]}

For any u € D", we define the projection operators P; : D" — D, associated with
the bilinear form a(-,-) by

a(Pju, w) = a(u, w), VweD,,

for j € {0, 1, ..., J}.
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Algorithm 3.1 (Additive Domain Decomposition) 1. Compute v €
V" as in [CPRY95].

2. Compute an approzimation, vp, of v € D" by applying conjugate gradient
iteration to

Pvp=F (7)

wh6T€P=P0+P1+"‘+P_],F=F0+F1+"'+F,], andszPjv'b.
3. Set

vh =Vp +v?.

Remark 3.1 The right-hand side F in (7) can be computed by solving the coarse-
grid problem and local subproblems. Specifically, for each j € {0, 1, ..., J}, F; is the
solution of the following problem:

a(F;, w) = a(P;v}h, w) = —a(v}, w), VweD,;. (8)

Algorithm 3.2 (Multiplicative Domain Decomposition) 1. Compute v
as in the first step of Algorithm 4.

2. Given an approzimation vi, € D" to the solution v of (6), define the next

approrimation vlgl € D" as follows:

a) Set W_; = le.
b) For j =0,1, ..., J in turn, define W; by

W; =W,_1 +wP;(vh —W;_1)

where the parameter w € (0, 2).
c) Setviit =W;.

3. Set

vh :v? +VII3.

Remark 3.2 P; (vl — W;—_1) can be computed by solving the following problem:
a(Pj(vf7 —W;_1), w) = —a(vh + Wi_1,w), VweD;. 9)

A simple computation implies that the error propagation operator of multiplicative
domain decomposition at the second step of Algorithm 3.2 has the form of

E=(I-P;)I-Ps_1)---(I-Py). (10)
Define a norm associated with the bilinear form a(-, -) by
lulla = au, w2, VueD"

We shall show in the last section that ||E||, is bounded by a constant which is less
than one and independent of the mesh size h and the number of subdomains.
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4 Construction of Divergence-Free Basis

Since the technique of the mixed method leads to a saddle-point problem which causes
the final system to be indefinite, many well-established efficient linear system solvers
cannot be applied. As we mentioned earlier, (3) could be symmetric and positive
definite if we discretize it in the discrete divergence-free subspace D”. The construction
of a basis for D" is essential.

In this section, we will construct a computationally convenient basis for D*—the
divergence-free subspace of V*. We will do this by first constructing a vector potential
space U" such that

D" = curl U™ (11)

Next, we will find a basis for U and we will define a basis for D" by simply taking
the curls of the vector potential basis functions.

Denote the mesh on 2 = (0,1)3 by 0 =29 < --- < z; < -+ <, = 1, and similarly
with y; and 2z, 0 < j,k < n. The assumption of the same number n of intervals in
each direction is merely for convenience and is not necessary for the construction to
follow. Let U” be defined as follows:

¢i(yaz) 0 0
U”" = span 0 A i(z2) |, 0 , (12)
0 0 ¢k(ma y)

where 1 < i < (n—1)2 (thus, only the first yz-slice is included) and 1 < j,k < n(n—1)2
(all z2- and zy-slices are included) and ¢; is the standard bi-linear nodal basis function
associated with the edge ¢ and is piece-wise constant in the third dimension. Note
that the number of excluded ¢;’s is (n — 1)3. If the number of intervals in the a-,
y-, and z-directions were £, m, and n, respectively, the number excluded would be
(£ — 1)(m — 1)(n — 1), and would be the same if all but one zz- or zy-slice were
excluded instead of all but one yz-slice.

Next, we list some properties of U” which follow directly from the definition of the
potential space.

Remark 4.1 U* ¢ H(div; ) , and hence, U* ¢ H'(Q)3.
Remark 4.2 Every ® € U" satisfies ® x n =0 on 99 .

Remark 4.3 U" is locally divergence-free, i.e. V- ® = 0 on each element K € T"
for every ® € U,

Remark 4.4 U" C H(curl;Q), and hence curl U" C V",
Since div curl = 0, we have curl U* ¢ D". Counting dimensions,
dimU" = (2n + 1)(n — 1) = 2n® — 3n? + 1.

Also, div V" consists of those piecewise constants with integral zero over {2, hence has
dimension n3 — 1, and we obtain

dim D" = dim V* — dim divV" = 3(n — 1)n? — (n® — 1) = 2n® — 3n% + 1.
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Figure 1 The support of a typical potential basis function
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We show in [CPRY95] that the curls of the vectors in (12) are linearly independent,
so that
dim D" = dim curl U" = dim U = 2n% — 3n? + 1,

which implies that for every divergence-free vector v € D" there exists a unique
potential vector ® € U” such that

v =curl ®.
The vector functions in (12) constitute only one possible choice of a basis for U".

Remark 4.5 The above-defined basis for U" (and hence for D") consists of vector
functions with minimal possible support (4 elements).

In [CPRY95] we prove the following Poincaré-type inequality:

Lemma 4.1 There ezists a constant C () > 0 independent of the quasi-uniform mesh
size h, such that for all ® € U" we have

H(I)”LZ(Q)-? < C(Q) ||curllI>||Lz(Q)3. (13)

(Since the vector potential space U" ¢ H'(Q)2, inequality (13) does not follow from
the standard Poincaré inequality.)

Corollary 4.2 The linear system (6) to be solved in D" has a symmetric and positive
definite matriz with condition number of order O(h=2).

The result of the Lemma suggests that the curl semi-norm behaves like the Hj semi-
norm for scalar functions and thus allowing us to use fairly standard DD tools (as in
[BPWX91, BX91, Cai93, DW87, Lio88, GR86]) to prove in [CPRY95] the following
uniform convergence rate estimates:



DD FOR A MIXED FEM IN THREE DIMENSIONS 195

Theorem 4.1 For any vector v € D", we have
Cla(v7 V) < a(Pv, V) < C2a(v7 V) (14)
where the positive constants C1 and Cy are independent of h and J.

Theorem 4.2 The iterative method defined at the second step in Algorithm 3.2 is
uniformly convergent, i.e.,

[Elle <v<1 (15)

where 7y is a constant that does not depend on the number of subdomains and the mesh
size.
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