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1. Introduction

This paper aims at investigating and proposing a new learning method by formalising a
representationparadigmfor thedomain’sandlearner’sknowledge.Indeed,we meanto setforward
a representationmethodof the treatedmathematical(and,moregenerally,formalisable)domainin
which additionalpointsarestressedbesidesthe traditionalhierarchical,deductiverepresentations.
First of all, inductiveaspects,consideringtheproblemof finding out which partsof a structure,an
exampleor a problemfit a generalframework,thereforegoing from the particularto the general.
This allows,in particular,to thoroughlyanalyseandovercomemisconceptions(oftenactuallybuilt
up by direct or socially mediated experience).As a further point we mean to carry out a
decompositioninto building blocks(of definitions,proofs,exercisesetc.)with a point characteras
closeto humanexperienceaspossible(e.g., in the sensesuggestedby modernmereotopologyas
theory of partsand wholes). Moreover,study of interdisciplinaryand infra−disciplinary aspects
(links, dependencies,motivations, history etc.) will also be taken into account. Partly as a
consequenceof this decompositioninto blocks, the treated domain is endowedwith a richer
structurethan ordinary textbooks.Moreover,using the graphparadigm,different arcsof several
ˆcolours˜ (correspondingto different typesof links) may link the samecoupleof nodes.Another
aspectis relatedto taking into accountpossible relationshipsamongtriples, quadruplesetc. of
notionsandconcepts;in fact, somekind of n−ary relationshipappearsnecessary.This will in fact
bemodelledthroughtheuseof supplementarynodes.Ourapproachwill moreoveralsocontribute:

1. to increasethecapabilityandtheintelligenceof trainingandlearningsoftwareenvironmentsby
building up the framework for a knowledge−leveltool able to representand structurethe
learner’s acquired knowledge. This may be accomplishedby using decomposition into
informational atomic units and finding the connections among the units themselves:
motivationalor historicaltype,difficulty degreesetc.Thestructurethereforeactuallyconsistsof
both the information units and their links. This, in turn, permits the constructionof a tool -
basedon anabstractenvironmentandan object−orientedapproach-which cantreatknowledge
with mathematical/symbolicalinstruments,at least in cases(which constitutea significant
majorityof e.g.Universitycourses)whenformalisationanddecompositionarepossible.

2. to obtainintegratedinformationon learner’spreferences,attitudesandflaws, includingpossible
misunderstandingsand internal links betweendifferent piecesof information, mapping the
learner’s knowledge and attitudes onto the complete domain knowledge model. This
informationwill thusbe usedin orderto supportand improvethe learningprocess.Questions
will bechosenin orderto obtainmaximalinformationaboutthe learner’sknowledge,assuming
a suitableclosurepropertyof the learner’smodel. The obtainedclosedgraphmodel is thus



mapped(imbedded)in the domain’s knowledgemodel and subsequentlytestedwith suitably
chosenredundantquestions.An optimisation algorithm may then be usedto designa path
towardsthe chosen(model) targetfor learner’sknowledge.Effectivenessof an actualprocess
will be testedby actuallyallowing learnersto selecttargets,e.g.in termsof rating,andtesting
the resultsobtainedwhenhumanexpertsexaminethe candidates.Our approachmay integrate
graph optimisation procedures (question choice, optimal paths) with a collaborative
environment,by e.g.automatedrecordingof activity within sucha (say,VR−type)environment.

3. To createa knowledgemediationmethodthrougha problem−solvingapproachwhosebasis
relieson thesub−divisionof notionsandexercisesinto atomicsteps.Thesolvingtechniquesfor
exercisesconcerningthedomainwill besplit into atomicsteps.

4. To developtoolsandmethodsusinga behaviour−basedapproachin thesensethat themodelis
to be built through the study of reactionto stimuli (input/output: answersto questionsand
exercises).Once the path to knowledgeripening is startedas in 2. above,and one or more
informational units have been submitted to the learner, the actual knowledge structure
(units/nodes, relations/arcsetc.) is tested and the set of weights used in the optimisation
algorithm is possibly dynamically changedaccordingto the actual behaviourof the learner
during the learningprocess.Statisticaltestswill be usedto verify whetherthe initially chosen
setof weightsactuallycorrespondsto theaverageor mediancase.

2. Basic methodologies and mathematical background

Themainmethodologythatwill allow theconstructionof thedomainandlearner’smodelsis Graph
Theory.

We recall thata graph is G definedby anorderedpair (V,E), whereV denotesthesetof thenodes
(or vertices)of G and E denotesthe set of the edgesconnectingpairs of nodes.We define G a
multigraph if nodesu andv canbe connectedby parallel edges.A subgraph of G is a graphG’
whosenodesandedgesareall containedin G. A directedgraph is a graphwhereanorientationis
assignedto the edges.More preciselya directedgraphG is definedby thepair (V, A), whereV is
thesetof nodesandA is thesetof arcs.

In fact, atomic concepts,notionsand techniques- obtainedby meansof a suitable irreducibility
criterion - will be representedasnodesof a directedgraph,andlinks amongthemaremodelledas
arcs.Indeed,within the greatamountof variationsin definitionsandnames,we usewhat may be
called a coloured multigraph where multiple connections between nodes are permitted.
Connectionsmay havedifferent ˆcolours˜andlabelsaccordingto the degreeof difficulty: indeed,
we are describinga colouredn−tupleor sequenceof ordinary graphs(whereat most one line is
permittedto join a givencoupleof nodes).Concerningtheconstructionof the learner’sknowledge
model,someconceptsborrowedpartially from geometryandoperationsresearchwill beused,viz.
theconceptof ˆextremal˜pointsof a graphandof hull (with respectto a certainclosureoperation).
Indeed,in orderto minimisethenumberof testquestions,it is assumedthat thepresenceof certain
arcs (of e.g. greater degreeof difficulty) necessarilyentails the existenceof certain others.
Therefore,a recursiveclosureoperationon graphsmaybedefined,yielding their hull (with respect
to the operationitself). Moreover,a minimal setof ˆextremal˜nodesandarcshasto be chosen,in
sucha way to obtaina given targetclosure.In the geometricalparadigm,this propertysinglesout
e.g. vertices of a polygon. Finally, graph−theoretic,operations researchalgorithms will be



constructedto yield optimalpathsfrom theobtainedgraphmodelof the learner’sknowledgeto the
chosentargetknowledge.

A commonframeworkfor theaforesaidproblemsis the identificationof ˆminimal˜ (accordingto a
givenobjectivefunction)subgraphsof the learner’smodelgraphfor which somespecialproperties
hold. It follows that theyarecomputationallŷ difficult˜ CombinatorialOptimisationproblems.For
their solution new heuristic algorithms may need to be developed, basedon metaheuristic
paradigmsusedin the field of CombinatorialOptimisation,like GreedyLocal Searchand Tabu
Search.Roughlyspeaking,bothmethodsarebasedon a ˆcombinatorial ẽxtensionof theconceptof
ˆneighbourhood:̃ we startfrom a seedsolutionandexploreits neighbourhood;if a bettersolution
is found, it replacesthe seedsolution and the procedureis iterated.They havebeensuccessfully
appliedto manyCombinatorialOptimisationproblems(Travelling SalesmanandVehicle Routing
problems,for instance).

3.  Knowledge Domain Model

Oneof the fundamentalstepsof themodelis theconstructionof a sufficiently rich structureon the
raw setof data,notionsandexercises.Indeed,while a traditionaltextbook’sstructureis essentially
linear, a more ramified type of backboneappearsnecessaryin this context.In fact, the richer the
structure,the greaterthe information that canbe recoveredfrom dataand feedback- the simplest
exampleof this being a time seriesas a part of the real line, where both algebraicand order
structuresplaya meaningfulroleandconveyinformation.

Accordingto this very generalidea,we planto usethegraphparadigm.Thefirst stepis to choosea
suitable level of granularity in splitting the various types of knowledgeinto atomic parts. An
irreducibility criterionappearsto bereasonablein thenotionjoining sense.More precisely,we may
definea semigroupstructureon notions,wherethe internaloperationis given by joining notions;
irreducibility now meansthata givennotionis a ˆprime˜i.e. it cannotbeexpressed(in a non−trivial
way) asthe productof two or morenotions.Of coursewe may not havea uniquefactorisationso
that, although irreducible elementsappearto be well defined, an arbitrary element may be
factorisedin morethanoneway into ˆprimes˜- thuspossiblyrequiringrandomchoicesduring the
factorisationprocess,or additionalnodesandlinks to accountfor.

Actually, a coloured multigraph seems a suitable extension of the more traditional
(black−and−whiteandsimple)definition of graph.More precisely,different ˆcolours˜for arcsmay
accountfor differenttypesof links betweenconceptsandnotions(technical,historical,motivational
etc.)so that morethanonearc may connectthe samecoupleof nodes;at the sametime, eachlink
will be labelled with a degree of difficulty. We remark that this approach is focused on
bi−directional links rather than on hierarchical (linear orderings and linear graphs)
connections.Sincethe definition of a graph is by its own naturebinary, someextensionsof the
standardbasicideasin graphtheoryseemnecessaryto takeinto accountmoregeneralpatterns.In
fact, in manycasesnotionsandideasarelinked not only in pairsbut alsoin setsof threeor more.
Therefore,ratherthanconsideringan n−termextensionof graphtheory(hypergraphs),a reduction
argumentmay well fit asfollows: a three−termrelationis regardedasa binary relationbetweena
singlenodeanda coupleof nodes(hence,an arc). This meansthat supplementarynodesmustbe
added,so as to give the graphthe necessaryadditional dimensionsneededto turn a multi−term
relationinto a two−termone.Themainreasonfor this is thatwe canexploit thelargeavailability of
methodsandtechniquesdesignedfor binarygraphs,at thecostof a slight increasein thecomplexity



in the setof nodes(real and fictitious), and, consequentlyin a larger amountof memoryneeded.
This seemsto be suitablealso taking accountof the relatively small cardinality of non−binary
relations.

4.  Learner model

The learnermodel is the sourceof all typesof information abouta typical student.The rangeof
functionsandcapabilitiesof the studentmodelvaries.Usually a studentmodelis requiredto keep
trackof thecorrespondingstudent’sactivitiesandusethis informationto give a controllerguidance
and adviseat proper times. Thereare many approachesto implementa studentmodel. The two
main approachesare basedon Rule−basedsystemand Semantic−netsystem respectively.In
rule−basedsystems,the studentmodel is representedasa collectionof declarativestatementsand
conditionalrules.Thesestatementsareusedto showin which state−of−knowledgethe studentis,
andthe rulesspecifyhow thesestatementsarerelatedto eachotherandalsohow theycanbeused
for future tutoringschedulingandstrategies.This modelis rathereasierto implement,comparedto
the semantic−netsystem,but it hastwo main drawbacks.The first, andthe most importantone,is
that it is very difficult to maintaindomain−independencein this model.It is very difficult to write
declarativestatementssuchthat they are leastdependenton the subject−domainandat the same
time arerich in content.Thesecondproblemis that thenumberof rulestendsto grow very rapidly
andthusdramaticallyaffectsthesystem’sperformance.

The secondapproachis basedon the semanticnet model.The skeletonof this model is a general
connectednon−cyclic directedgraph.This graph hierarchically containsall the subjectmatters,
correspondingto a theme,andtheir subdivisionsat its nodes.Oneof the importantfeaturesof this
semanticnetis a partialdomain−independence.Thegraphis organisedin a tree−likefashion.At the
root of thenetis themaindomain’sname,for instanceDiscreteMathematics.

Eachnodehasanarbitrarynumberof parentnodesandchild nodes.Theparent−childrelationis of
dominanceanddependencytype.This is obviouslya uni−directionalrelationwhich specifieshow
different subjectarerelatedanddependon eachother.Eachrelationedgebetweentwo nodeshas
multiple fieldswhich determinethespecificdetailsof thecorrespondingrelationandits nature.

For exampleif the relation is of the general−to−specific type or of the semanticallydependent
type. The tree−like structure of the graph shows how different subjects are related in a
general−to−specific\parent−childrelation.For example,a noderepresentinga topic namedgraph
circuit is theparentof thenoderepresentingHamiltoniancircuit andalsoof thenoderepresenting
Euler circuit . Thesetopicswould makethenodegraphcircuit oneof their parents.Eachnodecan
havean arbitrary numberof children and parentnode.Eachof theseparent−childedgecarriesa
relevancefactor which showsthestrengthof the correspondingparent−childrelation.Of coursea
strongdependenceis representedby a relevancefactorequalto oneandon theotherhandwhenthe
relationis veryweak,thecorrespondingfactoris muchcloserto zerothanto one.

A fundamentalissueconcerningthe constructionof the learner’smodel is a suitableandpossibly
optimisedchoiceof questions(including exercises).A possiblemodelthat tries to mimic anexpert
teacher’sstrategymaybedevisedasfollows. First, anorder−basedrelationis definedsothat,once
a correctanswerestablishesa link betweenconcepts,someothers(somewhatsubordinateto the
previousone)areassumedto be present.This recursivelyyields a hull operator:somenodesand
links spana certainset.The choiceof testquestioncannow be madein sucha way asto obtaina
minimal set of nodesand arcs spanninga given target set - just like vertices optimally spana



polyhedronanda baseoptimally spansa linearspace.

A particularlyrelevantpoint in theconstructionof anaccuratemodelof a learner’smodel,bothin a
traditional and in non−traditional context, is answer evaluation.A first, widely used, method
imposesrestrictionsto possible answers,such as length restrictions(to reduceambiguity and
decreaseanswersprocessingtime) or even pre−definedmultiple−choice questions.A possible
drawback is a correspondingrestriction on the type and quantity of information that can be
recoveredby the analysisof the answers- becauseof greatersignificanceof guessesandsmaller
scopeof answers.On the otherhand,evengreaterdifficulties arisewhen dealingwith automatic
interpretation and analysis of natural language; thus, for example, even if a question has a
supposedlya uniqueanswer,the lack of a normal form (a standardsimplification algorithm that
determineswhethertwo elementsof a given domainareequal,suchasfor the word problemfor
groupsor semigroups)may evencauseambiguity in the identificationof the answerascorrector
incorrect.A possiblealternativeis the creationof a suitable communicationprotocol and tools
betweenhumanexpertevaluatorsand learners.We emphasisethat, while this choiceis far from
making the whole approachtrivial, it effectively focusesattentionon the learner’s knowledge
modellingaspects.

Oncethe global knowledgegraphis constructed,the naturally following steprelatesto its local
version,i.e. the learner’sknowledgemodel.The latter is conceivedasa subgraphof the former,
sinceonly a (generallyspeaking,proper)partof thearcsandnodesmayactuallybepresent.Sincea
complete direct reconstruction,through questionsand exercises,of the learner’s subgraphis
obviously impracticable,a more subtlestrategyis necessary.Indeed,the difficulty level degrees
will beusedasa linear orderingcriterion.More precisely,oncea correctanswerestablishesa link
betweenconcepts,all links (within a certainsubject)whosedegreeis not greaterthanthegivenlink
are assumedto be present.The processmay now be iterateduntil no more changesoccur (i.e. a
ˆfixed point˜ is reached).Incidentally, the previously sketchedapproachnaturally fits the useof
such ComputerAlgebra Systemsas Mathematica�,wherea rule−basedevaluation procedureis
recursivelyappliedto abstractsymbolicexpressionsuntil a fixed point is reached.

Besidesthe more hierarchicalmatters,it seemsnecessaryto accountfor logical dependenceof
conceptsandnotionsbelongingto different subjects.Therefore,a supplementarysetof arcs− with
weightsaccountingfor e.g.strengthof logical correlation− will haveto beusedin orderto serveas
a modelof moregeneralideasthanlogical subordinationof a conceptto another.

While a tree−pruningprocedureappearsessentialin orderto constructthe learner’smodelusinga
reasonablerangeof questions,somekind of hypothesistestingseemsnecessaryto preventover−
andunderestimationof errors.Therefore,someredundancywill beintroducedin theextremalsetof
test questions- whosespanoptimally coversthe knowledgedomain.Thus,a randomnumberof
randomlychosentestnodeswill be chosenat a (possiblyrandomlychosen)recursionlevel of the
closureprocedure(whosefinal resultactuallycoverstheknowledgedomain).In casethetestnodes
(correspondingto correctanswers)actuallyspana subgraphwhich greatlydiffers from the parent
nodes(belongingto the minimal set),the learner’smodelconstructionprocedurewill restartusing
fewer recursionlevels (hencebecomingmore conservative).The whole process(questionsand
compatibility tests)will be iterateduntil no more changesin the learner’smodel occur - with a
possibleupperboundon thenumberof questionsanda low reliability warningin casetheprocess
is for somereasonstopped.

Evaluationis an immediateconsequenceof the proposedway of constructingthe learner’smodel,
sincea snapshotof the learnergraphwill automaticallyyield this result:a level k knowledgeof
subjectj . Again, a more refined strategymay yield better results;whence,an evaluationmatrix
(indeed,a tensorwith three indices: subject,typesand ˆcolour˜ of links) will be constructed,a



statisticalanalysisof which will give a moreaccuratedescriptionof thelearner’sknowledgeaswell
asan additionalcompatibility test.Thus,a correlationmatrix (indeed,a still higher−ordertensor)
will be computed,whoseentriesarethe(e.g.linear) correlationcoefficientsof thesnapshotmatrix
Thelatterare(well−known)numbersaccountingfor thestatisticalinterrelationbetweenhighor low
marksin a given subject,type etc. and another.Finally, hypothesistesting techniqueswill yield,
within a givenlevel of uncertainty,anevaluationof theconsistencyof theoveralldata.

5. Learning support model

In order to devisea learning support strategy,a fundamentalstep is the choice of a minimum
subgraphto be attained.Sucha graphmay possibly be different accordingto e.g. the learner’s
choicesand the learning context.The target subgraphwill thus be obtainedthrougha recursive
procedure,just like the ones sketchedabove for hierarchical subgraphgenerationand logical
closuregeneration,now varying suchparametersasthe numberof iterations,the type of arcsand
possiblyboundingthedegreeof difficulty.

Knowledgeripeningis theprocessof addingnewnotionsandconnections.In orderto exploit graph
formalism,a combinatorialalgorithmwill be developed,basedon a generalisationof well−known
labellingalgorithmsfor shortestpathcomputationin simplegraphs.

Weightsareassignedto eachnodeandlink of thegraph.We point out thatweightsaredifferent in
naturefrom − althoughconnectedwith− thedifficulty degreesintroducedbefore;actually,we may
think of them as the time neededto an averagelearnerin order to acquaintwith this notion. A
startingsetof weightsis assignedby experts.Then,basedon answerevaluation,a fuzzy algorithm
will allow redistributing weights.The learning processis thus modelledin a dynamicalsystem
fashionin a suitablespaceof graphs.Analysis of the correspondingtime serieswill yield both a
statisticalsignificancetestof thepossiblediscrepanciesfrom thestartingsetof weights,and- in an
aggregateform - a possiblecompatibility testof the actualaverage−casecharacterof the weights
themselves.

Once the adaptivealgorithm has determinedthe set of weights that best describesthe learning
process,in regardto a given learner,the final set of weights - comparedwith the averagecase
weights - will yield a quantitative description of the learner’s attitudes and preferences(i.e.
historical,technicaletc.).Thus,the latter maybe representedby the final setof weights,while the
formermaybemodelledthroughtherateof changeof theweights.

6. Conclusions

We introduceda possibleline of developmentfor knowledgelevel tool, particularly suitableto
mathematicallearning modelling and support. The proposedmodel is basedon well founded
mathematicaltheoriessuchas GraphTheory, OperationsResearchand Statistics,thus appearing
reliable;at the sametime, the non−trivial useof the latter theoriesandtheir synergiccombination
seemto makethechosenapproachusefulandcapableof interestingfuturedevelopment.This holds
true both from the strict point of view of knowledgemodelling and from the vantagepoint of
learningsupporttoolsdevelopment.
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