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It is claimed that, since mathematics is essentially a self-contained system, 
mathematical objects may best be described as abstract-apart. On the other hand, 
fundamental mathematical ideas are closely related to the real world and their 
learning involves empirical concepts. These concepts may be called abstract-general
because they embody general properties of the real world. A discussion of the 
relationship between abstract-apart objects and abstract-general concepts leads to 
the conclusion that a key component in learning about fundamental mathematical 
objects is the formalisation of empirical concepts. A model of the relationship 
between mathematics and mathematics learning is presented which also includes 
more advanced mathematical objects. 
This paper was largely stimulated by the Research Forum on abstraction held at the 
26th international conference of PME. In the following, a notation like [F105] will 
indicate page 105 of the Forum report (Boero et al., 2002). 
At the Forum, Gray and Tall; Schwarz, Hershkowitz, and Dreyfus; and Gravemeier 
presented three theories of abstraction, and Sierpinska and Boero reacted. Our 
analysis indicates that two different contexts for abstraction were discussed at the 
Forum: abstraction in mathematics and abstraction in mathematics learning. 
However, the Forum did not include a further meaning of abstraction which we 
believe is important in the learning of mathematics: The formation of concepts by 
empirical abstraction from physical and social experience. We shall argue that 
fundamental mathematical ideas are formalisations of such concepts.  

The aim of this paper is to contrast abstraction in mathematics with empirical 
abstraction in mathematics learning. In particular, we want to clarify “the relation 
between mathematical objects [and] thinking processes” (Boero, [F138]). 

ABSTRACTION IN MATHEMATICS 
What does it mean to say that mathematics is “abstract”? 
Mathematics is a self-contained system separated from the physical and social world: 
 Mathematics uses everyday words, but their meaning is defined precisely in 

relation to other mathematical terms and not by their everyday meaning. Even the 
syntax of mathematical argument is different from the syntax of everyday language 
and is again quite precisely defined. 
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 Mathematics contains objects which are unique to itself. For example, although 
everyday language occasionally uses symbols like x and P, objects like x0 and
(-1) are unknown outside mathematics. 

 A large part of mathematics consists of rules for operating on mathematical objects 
and relationships. Sierpinska calls these “the rules of the game” [F132]. It is 
important that students learn to manipulate symbols using these rules and no 
others.

We claim that the essence of abstraction in mathematics is that mathematics is self-
contained: An abstract mathematical object takes its meaning only from the system 
within which it is defined. Certainly abstraction in mathematicsat all 
levelsincludes ignoring certain features and highlighting others, as Sierpinska 
[F130] emphasises. But it is crucial that the new objects be related to each other in a 
consistent system which can be operated on without reference to their previous 
meaning. Thus, self-containment is paramount. 
Historically, mathematics has seen an increasing use of axiomatics, especially over 
the last two centuries. For example, numbers were initially mathematical objects 
based on the empirical idea of quantity. Then mathematicians such as Dedekind and 
Peano reconceptualised numbers in axiom systems which were independent of the 
idea of quantity. Euclid, Hilbert, and others performed a similar task for geometry. 
But, as Kleiner (1991) states, “whereas Euclid’s axioms are idealizations of a 
concrete physical reality … in the modern view axioms are … simply assumptions 
about the relations among the undefined terms of the axiomatic system” (p. 303). In 
other words, mathematics has become increasingly independent of experience, 
therefore more self-contained and hence more abstract.
To emphasise the special meaning of abstraction in mathematics, we shall say that 
mathematical objects are abstract-apart. Their meanings are defined within the world 
of mathematics, and they exist quite apart from any external reference.
So why is mathematics so useful? 
Mathematics is used in predicting and controlling real objects and events, from 
calculating a shopping bill to sending rockets to Mars. How can an abstract-apart 
science be so practically useful?
One aspect of the usefulness of mathematics is the facility with which calculations 
can be made: You do not need to exchange coins to calculate your shopping bill, and 
you can simulate a rocket journey without ever firing one.  Increasingly powerful 
mathematical theories (not to mention the computer) have led to steady gains in 
efficiency and reliability.
But calculational facility would be useless if the results did not predict reality. 
Predictions are successful to the extent that mathematics models appropriate aspects 
of reality, and whether they are appropriate can be validated by experience. In fact, 
one can go further and claim that the mathematics we know today has been developed 
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(in preference to any other that might be imaginable) because it does model 
significant aspects of reality faithfully. As Devlin (1994) puts it: 

How is it that the axiomatic method has been so successful in this way? The answer is, in 
large part, because the axioms do indeed capture meaningful and correct patterns. … 
There is nothing to prevent anyone from writing down some arbitrary list of postulates 
and proceeding to prove theorems from them. But the chance of those theorems having 
any practical application [is] slim indeed. (pp. 54-55) 

Many fundamental mathematical objects (especially the more elementary ones, such 
as numbers and their operations) clearly model reality. Later developments (such as 
combinatorics and differential equations) are built on these fundamental ideas and so 
also reflect realityeven if indirectly. Hence all mathematics has some link back to 
reality.

EMPIRICAL ABSTRACTION IN MATHEMATICS LEARNING 
Learning fundamental mathematical ideas 
Students learn about many fundamental, abstract mathematical objects in school. In 
this section, we discuss the meaning of abstraction in this learning context. We begin 
by looking at some examples. 
Addition. Between the ages of 3 and 6, most children learn that a given set of objects 
contains a fixed number of objects. A little later, they realise that two sets can be 
combined and that the number of objects in the combined set can be determined from 
the number of objects in each seta procedure which later becomes the operation of 
addition. Students learn these fundamental arithmetical ideas from counting 
experiences: They find that repeatedly counting a given set of objects always gives 
the same number, no matter how often it is done and in which order. As they 
recognise more and more patterns, counting a combined set is gradually replaced by 
“counting on” and eventually the use of “number facts” (Steffe, von Glasersfeld, 
Richards, & Cobb, 1983). 
Angles. There is good evidence that, at the beginning of elementary school, students 
have already formed classes of angle situations such as corners, slopes, and turns 
(Mitchelmore, 1997). To acquire a general concept of angle, students need to see the 
similarities between them and identify their essential common features (two lines 
meeting at a point, with some significance to their angular deviation). Even secondary 
students find it difficult to identify angles in slopes and turns, where one or both arms 
of the angle have to be imagined or remembered (Mitchelmore & White, 2000). 
Rate of change. The most fundamental idea in calculus is rate of change, leading to 
differentiation. A major reform movement over the last decade or so has been 
concerned with making this idea more meaningful by initially exploring a range of 
realistic rate of change situations. In this way, students build up an intuitive idea of 
rate of change before studying the topic abstractly. A leading US college textbook 
(Hughes-Hallett et al., 1994) devotes a whole introductory chapter to exploring 
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realistic situations, and in Australia similar materials have been published for high 
school calculus students (Barnes, 1992).
Characteristics of empirical abstraction 
The above examples show how fundamental mathematical ideas are based on the 
investigation of real world situations and the identification of their key common 
features. Hence, a characteristic of the learning of fundamental mathematical ideas is 
similarity recognition. The similarity is not in terms of superficial appearances but in 
underlying structurefor example, in counting, space, and relationships. To get 
below the surface often requires a new viewpoint, as when a student imposes 
imaginary initial and final lines on a turning object in order to obtain an angle.  
There is a leap forward when students recognise such a similarity: As students relate 
together situations which were previously conceived as disconnected, they become 
able to do things they were not able to do before. More than that, they form new ideas 
(such as addition, angle, and rate of change) and are incapable of reverting to their 
previous state of innocence. In a sense, these new ideas embody the similarities 
recognised. Of course, single ideas rarely evolve in isolation; for example, the idea of 
angle is inextricable linked to ideas such as point, line, parallel, intersection and 
measurement which can also be traced to similarities students recognise in their 
environment.  
This process of similarity recognition followed by embodiment of the similarity in a 
new idea is an empirical abstraction process. It is well described by Skemp (1986): 

Abstracting is an activity by which we become aware of similarities ... among our 
experiences. Classifying means collecting together our experiences on the basis of these 
similarities. An abstraction is some kind of lasting change, the result of abstracting, 
which enables us to recognise new experiences as having the similarities of an already 
formed class. ... To distinguish between abstracting as an activity and abstraction as its 
end-product, we shall ... call the latter a concept. (p. 21, italics in original) 

Thus number, addition, angle and rate of change are all empirical concepts, and they 
take their place in students’ learning alongside other empirical concepts such as 
colour, friend, and fairness.
Piaget (1977) made a distinction between abstraction on the basis of superficial 
characteristics of physical objects (abstraction à partir de l’objet) and abstraction on 
the basis of relationships perceived when the learner manipulates these objects 
(abstraction à partir de l’action). But both are based on the child’s physical and 
social experience, and in both similarity recognition is essential. In using the term 
empirical abstraction to cover both cases, we are making the distinction between 
abstraction on the basis of experience and what we shall call theoretical abstraction
(see below).
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EMPIRICAL ABSTRACTION AND MATHEMATICAL ABSTRACTION 
From empirical concept to mathematical object 
When students learn a fundamental mathematical idea in the way described above, 
three things happen: They learn an empirical concept, they learn about a 
mathematical object, and they learn about the relationship between the empirical 
concept and the mathematical object. Empirical concepts are often rather fuzzy and 
difficult to define. For example, the empirical concept of circle is that of a perfectly 
round objectbut “perfect roundness” can only be defined by showing examples. A 
circle becomes a mathematical object only when it is defined as the locus of points 
equidistant from a fixed point: It is then clearly defined in terms of other 
mathematical objects. However, for this definition to be meaningful, an individual 
must see that the locus of points equidistant from a fixed point gives a perfectly round 
object and vice versa.
We have already referred to mathematical objects as abstract-apart. To emphasise the 
distinction between abstraction in mathematics and mathematics learning, we shall 
call empirical concepts abstract-general: Each concept embodies that which is 
general to the objects from which the similarity is abstracted.  
Gravemeier also focuses on how “formal mathematics grows out of the mathematical 
activity of the students” [F125], calling the process emergent modelling. The 
Realistic Mathematics Education movement, to which Gravemeier belongs, has 
previously called it vertical mathematisation (Treffers, 1987). We prefer to call this 
process formalisation, since its main purpose is to select abstract-apart relationships 
which capture the form of an abstract-general concept. (So “formal mathematics” is 
the study of mathematical forms.) For example, the locus definition of a mathematical 
circle precisely expresses the perfect roundness of an empirical circle.   
Linking mathematical objects to empirical concepts 
There is strong evidence that many student difficulties in learning mathematics can be 
traced to the fact that, when they learned about an abstract-apart mathematical object, 
they made no link to the corresponding abstract-general concept (Mitchelmore & 
White, 1995).  Consider again the previous three examples.  
Addition. Many young students experience difficulty learning elementary arithmetic. 
One explanation is that they do not understand the empirical meaning of the 
operations: Symbols such as + and  are learned apart from the abstract-general 
concepts of addition and multiplication on which they are based. Early number 
research (Steffe et al., 1983; Wright, 1994) has led to projects such as Count Me In 
Too which have closely linked early arithmetic to students’ counting experiences, 
with a measurable improvement in learning (Mitchelmore & White, 2003). 
Angle. Many student difficulties with angles arise because the angle diagram is 
abstract-apart. Williams (2003) gives a particularly extreme example: Her case-study 
secondary school student successfully made a generalisation about the angle sum of a 
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polygon, but he could not identify the angles of the triangles into which he had 
divided the polygon. In fact, it is quite possible to teach an abstract-general concept 
of angle as early as Grade 3, as White & Mitchelmore (2003) have shown.  
Calculus. Calculus instruction based on abstract-apart differentiation leads to a 
manipulation focus (White & Mitchelmore, 1996). Students do not see symbols as 
representing anything, so they cannot use the manipulative techniques they have 
learned to solve contextual problems. Their concept of differentiation has been truly 
decontextualised and therefore impoverished, instead of being abstract-general and 
rich (Van Oers, 2001). 
The preceding discussion emphasises the value of making a clear distinction between 
empirical concepts and mathematical objects.

MORE ADVANCED MATHEMATICS LEARNING
The learning of fundamental mathematical ideas is only one component of learning 
mathematics: More advanced ideas need to be developed out of the fundamental 
ideas. Some of these ideas (such as square roots) can be readily linked back to 
abstract-general concepts; others (such as a zero exponent) seem to have no 
counterpart in normal experience. In addition, students need to learn to operate within 
an abstract-apart systeman aspect of mathematics learning which takes on 
increasing significance in university mathematics as the links to experience become 
thinner and thinner. But even professional mathematicians use empirical concepts as 
an aid to intuition (Boero, [F137]).   
The formation of new ideas within mathematics is well described by the Schwarz-
Hershkowitz-Dreyfus Nested RBC Model of Abstraction. They define abstraction as 
“an activity of vertically reorganizing previously constructed mathematics into a new 
mathematical structure” [F121]. New mathematical objects are constructed by “the 
establishment of connections, such as inventing a mathematical generalization, proof, 
or a new strategy of solving a problem” [F121]. This abstraction process is quite 
different from empirical abstraction, and is best described as theoretical abstraction. 
Sierpinska’s ignoring/highlighting process is another example of theoretical 
abstraction.
Gray & Tall’s idea of a procept“the amalgam of three components: a process
which produces a mathematical object, and a symbol which is used to represent either 
process or object” [F117]also clarifies the development of ideas within 
mathematics. The construction of a procept seems to us, however, to be more akin to 
formalisation than abstraction.  
Historically, some more advanced mathematical objects have been constructed by a 
process similar to empirical abstraction. An example is group theory:  

The abstract concept of a group arose from different sources. Thus polynomial theory 
gave rise to groups of permutations, number theory to groups of numbers and of “forms” 
… and geometry and analysis to groups of transformations. Common features of these 
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concrete examples of groups began to be noted, and this resulted in the emergence of the 
abstract concept of a group in the last decades of the 19th century. (Kleiner, 1991, p. 302) 

Other examples are rings, fields and vector spaces. Our arguments above would 
suggest that the learning of such mathematics would be most effective if it were 
based on a process of similarity recognition followed by formalisation.  

SUMMARY AND CONCLUSION 
The term abstraction has different meanings in relation to mathematics and the 
learning of mathematics. Previous abstraction theorists have tended to focus on the 
process of developing ideas within mathematics. In this paper, we have tried to 
redress the balance by exploring the role of empirical abstraction in the formation of 
fundamental mathematical ideas. This is a crucial process, since many fundamental, 
abstract-apart mathematical objects need to be linked to abstract-general empirical 
concepts if their learning is to be meaningful.   

Grossly over-simplified, we see the whole picture as follows: 

In practice, the formation of mathematics-related empirical concepts and their 
formalisation into mathematical objects may occur simultaneouslyespecially in 
school learning. Also, more advanced mathematical objects may be linked directly to 
empirical concepts and not only indirectly via fundamental objects.  
Like Boero [F138], we believe that “we are still far from a comprehensive theoretical 
answer to the challenge of mathematical abstraction in mathematics education”. A 
clear response to this challenge would be of great value to researchers and teachers 
alike. Examining and differentiating the different forms of abstraction involved in 
learning mathematics constitute one step along the path to this goal.  
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