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In this paper, we investigate the predominance of the linear model in 12-13 year old
Cypriot students, while solving non-proportional word problems involving area and
volume of rectangular figures. Using three different kinds of tests related to the
context of the word problems presented we attempt to identify a differentiation in
students’ responses. The results reveal students’ tendency to apply proportional
reasoning in problem situations in which this kind of reasoning is not suited. This
tendency appears to decrease in the second phase of the study when the context of the
problems was changed. The data also suggest that students are not able to detect the
common non-linear character of area and volume tasks and therefore, deal with them
in a different way.

INTRODUCTION

The rule of three, or in modern terminology the linear function, has been an important
mathematical tool of explaining and mastering phenomena in different fields of
human activity (Freudenthal, 1973; De Bock, Verschaffel, & Janssens, 1998). This
suggests that proportionality, ratio preservation and linearity are universal models, a
view that is reinforced by their frequent use. Moreover, the importance and
significance of proportionality, as a mathematical tool, is also determined by the fact
that its use dispenses one from rethinking a situation. Such a dispensation is usually
gladly accepted.

The basic linguistic structure for problems involving proportionality includes i) four
quantities (a, b, ¢, d), of which, in most cases, three are known and one unknown, and
i) an implication that the same relationship links a with » and ¢ with d. In the case of
true proportionality, this relationship is a fixed ratio (Behr, Harel, Post, & Lesh,
1992). However, if a problem matches this general structure, the tendency to evoke
direct proportionality can be extremely strong even if this is not the case
(Verschaffel, Greer & De Corte, 2000).

As Freudenthal (1983) points out, linearity is such a suggestive property of relations
that one is readily seduced to dealing with each numerical relation as though it were
linear. This phenomenon can be found even in traditional word problems where
mathematical procedures, such as the rule of three, tended to be applied to problem
situations without consideration of the realistic constraints (Verschaffel et al., 2000).

Students’ tendency to apply proportional reasoning in problem situations for which it
is not suited is partially caused by characteristics of the problem formulation, with
which pupils learned to associate proportional reasoning throughout their school life.
Multiplicative structures, notably those that on a superficial reading may create an
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illusion of proportionality, provide examples of inappropriate invocation of
proportionality, as a result of an unconscious reaction to linguistic form (Greer,
1997). Thus, both at the level of individual students, and throughout history, there is a
non-reflective link built up between the mathematical structure of proportional
relationships and a stereotyped linguistic formulation (Verschaffel et al., 2000).

Freudenthal (1983) focuses on the appropriateness’ of the linear relation as a
phenomenal tool of description and indicates that there are cases in which this
primitive phenomenology fails. One of these cases, which will be the focus of the
present study, is the case of the non-linear behavior of area and volume under linear
multiplication.

As De Bock, Verschaffel, & Janssens (2002b) point out, students’ former real life
practices with enlarging and reducing operations do not necessarily make them aware
of the different growth rates of lengths, areas and volumes. Therefore, students
strongly tend to see the relations between length and area or between length and
volume as linear instead of quadratic and cubic. As a consequence, they apply the
linear scale factor instead of its square or cube to determine the area or volume of an
enlarged or reduced figure. This tendency is in line with the Intuitive Rule Theory
(Stavy & Tirosh, 2000) which suggests that a change in a quantity A causes the same
change in a quantity B.

Understanding that multiplication of lengths by d, of areas by d? and of volumes by d*
is highly associated with the geometrical multiplication by d, is mathematically so
fundamental, that, phenomenologically and didactically it should be put first and
foremost (Freudenthal, 1983). Students should be able to distinguish that for instance,
volume is proportional to length only when width and height are held constant; and
similarly to width (or height) only when the other two variables are held constant. It
is conceptually important and essential for students to understand the difference
between the product of two variables in double proportion tasks, and the product of
one variable by a constant in simple proportion problems (Vergnaud, 1997). Students
have to break the pattern of linearity and become aware of the multi-dimensional
impact of increase.

In recent years, there has been a considerable effort from researchers (De Bock et al.,
1998; De Bock, Van Dooren, Janssens, & Verschaffel, 2002a; De Bock et al., 2002b;
De Bock, Verschaffel, Janssens, Van Dooren, & Claes, 2003; Van Dooren, De Bock,
Hessels, Janssens, & Verschaffel, 2003) to examine and overcome students’ tendency
to deal with non-proportional tasks concerning area as if they were proportional. In
particular, De Bock et al., (1998) revealed an alarmingly strong tendency among 12-
13 year old students to apply proportional reasoning in problem situations concerning
area for which it was not suited. However, even the use of a number of different
experimental scaffolds like the increase of the authenticity of the problem context
(De Bock et al., 2003) and the use of metacognitive and visual scaffolds (De Bock et
al., 2002b), did not yield the expected result. Only the rephrasing of the usual missing
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value problems into comparison problems proved to substantially help many students
to overcome the “illusion of linearity” (De Bock et al., 2002b).

The actual processes and the mechanisms used by students while solving non-
proportional problems were unraveled by means of interviews. It appears that not
only is the "illusion of linearity" responsible for inappropriate proportional responses,
but also intuitive reasoning, shortcomings in geometrical knowledge, and inadequate
habits and beliefs about solving word problems (De Bock et al., 2002a; De Bock, Van
Dooren, Janssens, & Verschaffel, 2001). All these aspects appear to favor a
superficial and deficient mathematical modeling process, which leads to the
unwarranted application of linearity.

From the literature review it becomes evident that the “illusion of linearity” is not a
result of a particular experimental setting. In contrast, it is a recurrent phenomenon
that seems to be quite universal and resistant to a variety of forms of support aimed at
overcoming it (De Bock et al., 2003). Proportions appear to be deeply rooted in
students’ intuitive knowledge and are used in a spontaneous and even unconscious
way, which makes the linear approach quite natural, unquestionable and to a certain
extend inaccessible for introspection or reflection (De Bock et al., 2002a). Therefore,
as Verschaffel et al. (2000) illustrate, it takes a radical conceptual shift to move from
the uncritical application of this simple and neat mathematical formula to the
modeling perspective that takes into account the reality of the situation being
described.

In order to achieve this radical conceptual shift in the present study, we asked
students to confront two different experimental settings with a common aim; to
investigate the predominance of the linear model in 12-13 year old Cypriot students
and to create a cognitive conflict in order to differentiate students’ behavior while
solving non-proportional word problems involving area and volume of rectangular
figures.

METHODS

Participants in the study were 307 students of grades 7 and 8 of 6 different
gymnasiums of Cyprus. Specifically, the sample of the study consisted of 163
students of grade 7 (12 year olds) and 144 students of grade 8 (13 year olds).

The study was completed in three different phases in each of which a different
written test was administered. All three tests were administered separately in the span
of 15 days for about 30 minutes each. The first test (Test A) was administered to all
307 students of both grades and consisted of 5 different word problems, two of which
concerned volume (pr.1, 4), two area (pr. 3, 5) and the fifth one length (pr.2). All
problems were in a multiplicative comparison form where the area or volume of the
rectangular figure was given as well as the relation that connected it with the area or
volume of the new figure, respectively. The purpose of this test was to examine the
extend to which Cypriot students apply proportional reasoning while solving non-
proportional word problems involving area and volume of rectangular figures.
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The second test (Test B) was administered to only 157 of the students that
participated in Test A and consisted of the same 5 word problems of the first test, but
with a differentiation in the amount of data given for solving each problem. In
particular, in each problem in addition to the area or volume of the rectangular figure
and the relation that connected it with the area or volume of the new figure,
respectively, the dimensions of the first rectangular figure were also given. The
purpose of this test was to examine whether the inclusion of the dimensions of the
figures would influence students in such a degree as to execute the multiplicative
comparison first with the dimensions of each figure and then find out the area or
volume of the new figure, instead of applying direct proportionality between length
and area or volume respectively.

The third test (Test C) was administered to the remaining 150 students that were not
administered Test B and consisted of the same 5 word problems of Test A, but with a
different presentation. In particular, each item of the test was accompanied by two
alternative answers of two fictitious peers. One expressed the dominant
misconception that the area and volume are directly proportional to length whereas
the other expressed the correct answer. Students were then asked to find the solution
strategy each peer used to find the answer given and then to choose the correct
reasoning justifying their choice. Purpose of this scaffold was to create a cognitive
conflict in students’ minds in order to question the appropriateness of the direct
proportionality between length and area and length and volume.

It is worth mentioning that all three tests included the formulas for finding the area
and volume of rectangular figures. As for the grading of the tests, each correct answer
was assigned the score 1, each wrong answer the score 0, whereas in the cases that
the mathematical expression for the problem was correct but not the answer, the score
0.5 was given.

For the analysis and processing of the data collected the statistical package of SPSS
was used as well as an implicative statistical analysis by using the computer software
CHIC (Bodin, Coutourier, & Gras, 2000). The statistical package CHIC produces
three diagrams: (a) the similarity diagram which represents groups of variables which
are based on the similarity of students’ responses, (b) the implication graph which
shows implications A= B. This means that success in question A implies success in
question B and (c) the hierarchical tree which shows the implication between sets of
variables. In this study we use only the similarity diagram.

RESULTS

The analysis of the data collected revealed the tendency of 12-13 year old Cypriot
students to apply proportional reasoning in problem situations, concerning area and
volume of rectangular figures, for which it was not suited. From Table 1, one can
detect the great difference in students’ achievement at the non-linear tasks of area and
volume in relation to the linear tasks of length. This difference, even though more
prominent in Test A, is statistically significant in all three tests (tA=40,9, p=0,00,
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tB=15,29, p=0,00, tC=21,92, p=0,00). Students’ achievement at the non-proportional
tasks of area and volume is also differentiated, at a statistically significant level, in
the experimental settings of Tests B and C. More specifically, students have greater
success while dealing with the non-linear tasks of Tests B and C compared with the
respective tasks of Test A. As far as the difference in students’ achievement at the
non-linear tasks of area and volume is concerned, this is statistically significant and
in favour of the area tasks, only in Test A (t =-2,99, p=0,003) and in none of the other
two tests. Therefore, it seems that both interventions assisted the diminution of this

difference.
Problem Test A Test B Test C  Test t P

A-B  -7,38 0,00*

0 Y 0 > 2
Area 3 7% 3% % e 351 001
A-B  -4,86 0,00*%

0 0 9 . 2
5 13% 34% 24% A-C  -3,07 0,00%
A-B -6,78 0,00*

0 0 0, 2 2
Volume : o 30% 19% A-C_ -4,17 0,00*
A 7o, 31% 21% A-B  -6,43 0,00*%
A-C -4,51 0,00%
A-B  -0,43 0,67

0 0 D 2 >
Lenght 2 90% 0% 9% = 132 019

*p<0, 01

Table 1: Students’ percentages at Tests A, B and C

Figure 1 illustrates the similarity diagram of all variables (tasks) of Tests A and B.
Students’ responses to the tasks are responsible for the formation of three clusters
(i.e., groups of variables) of similarity. The two first groups consist of the same tasks
(1, 3, 4 & 5), which represent the non-linear problems of area and volume of Tests A
and B, respectively. The third group consists of the linear problems of Tests A and B,
something quite natural since both tasks are the same.

A A A
1 A

L L

A

!

B
4

L

B

!

Figure 1: Similarity diagram of the variables of Tests A and B

Note: Similarities presented with bold lines are important at significant level 99%.
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The first similarity cluster is formed by two distinct sub-groups of tasks that
correspond to the problems of volume (1 & 4) and area (3 & 5) of Test A. The fact
that the area and volume tasks are separated in Test A indicates that, prior to the
intervention, students deal with these problems in a different way, without taking into
consideration their common non-linear character.

The above tendency does not seem to apply to the non-proportional tasks of Test B,
that constitute the second similarity cluster, since at this intervention all the problems
of area and volume are mingled together. Consequently, students seem to realize that
the tasks that are asked to deal with are not just problems of different mathematical
content, but also problems that are characterised by the same phenomenon. That is,
they realise the common non-linear character of the tasks despite the differentiation
of the dimension number of the rectangular figures.

In Figure 2 all the similarity relations of the tasks of Tests’ A and C are illustrated.
As in Figure 1, three distinct similarity groups are formed. The first two groups
consist of the same tasks (1, 3, 4 & 5), which represent the non-linear problems of
area and volume of Tests A and C respectively, whereas the third group consists of
the linear problems of Tests A and C.

A A A A L C [+ c A [
4 3 3 4 3 3 2 2

L

Figure 2: Similarity diagram of the variables of Tests A and C

In this figure, in contrast with the previous one, the first and the second similarity
cluster, are formed by two distinct sub-groups of tasks that correspond to the non-
proportional problems of volume (1 & 4) and area (3 & 5) of Tests A and C,
respectively. The existence of this task separation indicates that students, prior and
after the intervention, do not take into consideration the common non-linear character
of the tasks and deal with them in a different way.

DISCUSSION

The results of our study reveal the great discrepancy in students’ performance while
dealing with linear and non-linear geometrical tasks. The existence of this difference
was due to the mathematical errors students’ made, while dealing with the non-linear
tasks of area and volume, because of their tendency to see the linear function
everywhere (Gagatsis & Kyriakides, 2000). One explanation could be that students,
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especially in Test A, failed to realise the multidimensional increase of the rectangular
figure’s size, since proportional reasoning appeared to be deeply rooted in students’
intuitive knowledge. It could also be asserted that students’ weak performance in
non-proportional items may be merely the result of a superficial reading of the tasks
that spontaneously connected them with a stereotype problem formulation, which is
linked with proportional reasoning (De Bock et al., 2002b). Therefore, it seems that
students matched the area and volume tasks with the primitive linear model, since the
words double, triple etc., that were used in the problems, triggered the operation of a
linear multiplication. Consequently, the operation of linear multiplication was applied
to the two numbers embedded in the problem text and the result of the calculation
was found, without referring back to the problem text to check for reasonableness
(Greer, 1997). Another explanation could be their tendency to respond in line with
the intuitive rule Same A — Same B, according to which the same change that occurs
to the length will also occur in the area and volume.

Students’ quite natural and spontaneous use of proportional reasoning appears to be
questioned when Tests B and C were administrated. In particular, the cognitive
conflict that both experimental settings promote seems to impel an examination of the
appropriateness of the linear model for the solution of all tasks. Therefore, both
interventions yield significant positive effects on students’ performance on non-
proportional items. However, these effects, as with other experimental manipulations,
were disappointingly small and thus did not suffice to make the illusion of linearity
disappear (De Bock et al., 2003).

Students’ performance on non-proportional tasks was differentiated, depending on
whether the task concerned the area or the volume of a rectangular figure, only at
Test A. The experimental design of Test B succeeded in making students realize the
common non-linear character of the area and volume tasks, despite the differentiation
of the dimension number of the rectangular figures. The main reason for this is the
fact that in Test B, all the students that overcame the illusion of linearity used the
dimensions of the figures, which were given in the problems, in order to find the area
or the volume of the figure. In particular, they first performed the multiplicative
comparison with the dimensions of the figures and then used the formula for finding
either the area or the volume of the figure. It must be noted that this was students’
favoured method in most non-proportional tasks of all three tests, even if the
dimensions of the figures were not included in Tests A and C. However, students in
Tests A and C treated volume and area tasks differently, without understanding their
uniformity.

In a subsequent research, the cognitive factors that prevent students from realising the
common non-linear character of area and volume tasks can be investigated.
Moreover, the results of a more systematic didactical intervention, concerning the
non-proportional nature of geometrical tasks, can be evaluated with regard to their
sufficiency to modify Cyprus’s mathematics curriculum, so that this illusion of
linearity be diminished.
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