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Twelve linear algebra students were interviewed about the concept of a Solution of a 
System of Equations. The interviews were analyzed using APOS tools, in particular 
the ideas of Action, Process, Object and Schema, and Genetic Decomposition. The 
analysis of the interviews revealed several misconceptions of Solution. The analysis 
also revealed shortcomings of the questionnaire that was used in the interviews: It 
did not permit making a distinction between lack of knowledge and partial 
knowledge. Research tools were improved (questionnaire, GD, and suggestions for 
teaching materials) and prepared for the next cycle of research. 

THEORETIC PERSPECTIVE
The research reported here is part of a broader research effort conducted by the 
RUMEC (Research in Undergraduate Mathematics Education) group, which is 
dedicated to research within the scope of the theory named APOS. APOS is an 
acronym for the ideas of Action, Process, Object and Schema. This theory is an 
elaboration of Piaget’s cognitive theory (Piaget, 1975) for learning mathematics. 
Detailed description of this theory can be found, for example, in Asiala et al., (1996). 
Here we will only describe such elements of this theory that are used in this report. 

Action
According to APOS, the development of every concept begins in the learner’s mind 
with an action. At this level the learner can only perform the action one step at a time. 
For example, given a system of linear equations with n unknowns, as well as several 
tuples and matrices of different sizes, students are asked which of the givens is a 
possible solution. If the students start substituting each tuple separately, we suspect 
that they cannot imagine in advance whether a given tuple can be substituted and 
hence be a prospective solution. The theory accounts for such inability by the 
explanation that at the action level, the learners are able to complete the action step 
after step, but cannot think of it as a whole and predict its outcome; Sometimes they 
can also not describe it verbally. 
On the other hand, the behavior described above might indicate that substitution in 
order to check equality is the action used by these students as the starting point for 
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conceptualizing solution. We will show findings indicating the possibility that some 
of our students used a different action for the development of the concept solution.

Process
When a learner successfully predicts the outcome, invents shortcuts and can describe 
the action verbally without actually performing it, we say that the concept has 
developed in his or her mind to the level of a process. For example, in the situation 
described above, if students can point to appropriate tuples as possible candidates for 
solutions, as well as explain the relation between the tuples’ length and the number of 
unknowns - we might infer that their conception of solution is at least at the process 
level. They are able to envision the action of substitution without actually performing 
it.

Object
When the learner can already perform a new mathematical operation on the process 
itself, or consider the process as an element of a set of processes of its type, with rules 
or operations within that set – we say that the concept has developed in the learner’s 
mind into an Object. Examples: 
a) If students, when confronted with a system of linear equations are asked “what 

does a solution look like”, are able to describe the form of a solution of that system 
- we may conclude that their understanding of solution is at the object level. 

b)  Another example of object level of solution concerns understanding the rule that 
the sum of two solutions of a homogeneous system is also a solution. Such 
understanding also requires an object understanding of solution, for otherwise the 
student would not be able to relate to the binary operation “sum of two solutions”. 

Genetic Decomposition 
Learners can begin the development of a certain concept out of different actions. 
These will result in different understandings of the concept (as opposed to different 
levels of understanding). A genetic decomposition of a specific concept consists of a 
detailed description of such possible action, and the typical mathematical behaviors 
and reactions of a student who has developed that same concept, beginning with that 
action, throughout the different levels (Action, Process, Object and Schema). Hence, 
a satisfactory GD can first of all be used as a diagnostic tool, providing the teacher 
and investigator with insight into the learner’s situation in the development of the 
concept. In addition, it helps the teacher and material developer to provide the student 
with activities which will enhance his progress in developing his understanding of the 
concept through the different levels Action-Process-Object-Schema.
It should be emphasized that a GD of a concept is in itself a developing structure. 
Also, it cannot be assumed to be unique. (DeVries et al., 2001.) 
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METHODOLOGY OF THE REPORTED RESEARCH 
The research reported here is the first cycle in such a research program. Fifteen 
students at a Teachers’ College took a one-semester course in linear algebra. Of the 
15 students, 12 were interviewed shortly after completing the course (the rest did not 
show up for the interview). The interviews were conducted individually. They 
consisted of a structured questionnaire, which each student solved in front of the 
interviewer and discussed his work with her. Each interview lasted about 45 
minutes, and was video-recorded. Question 1 was constructed to investigate the 
concept of solution (see appendix 1). 
The purpose of this part of the interview was two-fold:  Getting to know students’ 
ideas about solution, and getting started with a first version of a GD for this concept. 
We were not interested in statistical data about the occurrence of the different 
reactions, as the group of interviewees was not sampled and hence not 
representative.

FINDINGS
What we discovered after interviewing the students was that our questionnaire was 
not adequate for providing sufficient insight into our research questions. The 
responses to this questionnaire gave us little information about the constructions that 
students have made in their understanding of the concept solution of an equation.
This basically occurred because only students who had constructed a solution of an 
equation as an Object could answer the questions in a meaningful way. Also, this 
provided little possibility of distinguishing between “no understanding” and “partial 
understanding” (between the Action or Process levels). 
In the first part of this report we describe some of the responses obtained. Their 
analysis leads to suggesting an improved protocol for the interview, an initial 
version of a GD for solution, and a proposed teaching sequence. 

Response type 1:  What does it mean “What does a solution look like”
Some students at first tended not to reply to the question What does a solution look 
like?. Some explained they did not understand the question: 

Interviewer: We now deal with question 1:A. 
Hersch:        What does it mean “What does a solution look like” 
Interviewer: What do you think it will look like? 
Hersch:        The solution here is a number? 
Interviewer: What number for instance? Can you give an example? 
Hersch:        No, because I don’t understand the question. 

Upon further probing Hersch concluded: 
“If it’s a solution of such a thing, there are four elements here. ...So we should also get 
four solutions for such an equation.” 
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Hersch really could only think of a solution as a number. Consequently, questions 
regarding sums of solutions and number of solutions did not provide insight into 
Hersch‘s thinking. 

Response type 2:  Memorized rules about the sum of two solutions. 
Lin relied on a memorized rule rather than reason in answering questions about 
solutions.

Interviewer: Okay suppose we had two solutions u and v. Is u+v also a solution? 
Lin:             Yes by the rule that the sum of two solutions is also a solution. 

The interviewer questioned him as to why this rule was true and all Lin could do was 
repeat the rule. 
There is another indication of the fact that the rule students quoted was memorized 
without understanding. Some of them applied it both to homogeneous and to non-
homogeneous systems. Example: 
Earlier in the interview, Tania was certain that the sum of two solutions of a 
homogeneous system is also a solution. Now she is asked about a non-homogeneous 
system: 

Interviewer: Here is an equation. Is it homogeneous? 
Tania:          No. 
Interviewer: Why not? 
Tania:          It is not equal to zero. 
Interviewer: If we took two solutions of these infinitely many, and added them the way 

one adds vectors, will it also be a solution?… We’ll take an actual sum. 
Will the sum also be a solution? 

Tania:         Yes. 

We suspect that students who provided responses of types 1 and 2 have certainly not 
developed solution into the Object level. The deficiencies of our questionnaire 
prevented us from tracing any lower levels of knowledge, if such existed. 

Response type 3
Some students confused a solution of an equation (or system), with the constant 
"Right Hand Wing” of the equation (or system). This might be related to findings 
about the concepts associated by college (as well as k-12) students with the equality 
sign. Research shows that students of different ages tend to interpret the equality 
sign to mean: ”the result is”, rather than symbolizing equivalence (such as the 
equivalence accomplished when substituting a solution into both sides of the 
equations).  See for example Kieran, 1981. 

Response type 4: Solution as solving
Several students in response to the question of what a solution looked like, 
proceeded to solve the equation. Tania provides an example of this. She correctly 
described the procedure for finding the solutions of the equation. She did not think 
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of substitution to verify equality being a defining property of being a solution. It was 
apparent that most such students were confusing the concepts of solution and 
solving.
Our explanation of responses of type 4 is that for these students the concept of 
solution developed out of the action of solving the equation (or system of equations), 
rather than the action of substitution.  By this we mean the solving methods 
(algorithms) they used (such as Gaussian elimination, or any other).  Such 
algorithms are difficult to interiorize, and do not make it easy for the student to 
predict the form of the outcome, the solution, without actually calculating it.  Using 
APOS terms, we suspect that for these students, solution as solving is at the Action 
level of development, and we know that when a concept is still at that level of its 
development, the student can only perform the action one step at a time. Hence their 
tendency to start solving when asked about the solutions. Another characteristic of 
this level is that the student has no ability to predict the outcome without actually 
performing the action. Here - the students could not predict the mathematical form 
of the solution, of the outcome of the solving procedure, before they actually carried 
it out.  We predict that using the action substitution as basis for the development of 
the concept solution will end up with easier interiorization of the action and its 
transforming into process. 

AN INITIAL GENETIC DECOMPOSITION FOR SOLUTION 
We will sum up this discussion with a proposal of an initial GD for a solution of an 
equation:
An equation is an ordered pair of functions (f, g) with a common domain and a 
common co-domain.  A solution of an equation is an element s of the domain for 
which f(s)=g(s).  The solution set of an equation is the set of all solutions. 
Note: In linear algebra we are usually interested in linear functions from Fn to Fm , 
and the function g is constant. The pair (f, g) can be represented by means of a 
system of linear equations, matrices or linear transformations. 

SUGGESTED LEARNING SEQUENCE 
Action level of the concept equation, including solution.

We propose to start by helping students construct the Action level of the concept of 
equation, including the ability to identify the two functions, their common domain 
and co-domain, and solution in the sense of an element of the domain, the 
substitution of which produces a true equality. Here we propose to have them 
substitute elements of the domain into the two functions and learn to identify 
solutions and non-solutions. 

Process level of equation (including solution)
Students should be taught to identify the functions and their domains and co-
domains for various forms of equation, without being given examples of elements 
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for substitution.  They might also be asked to describe the format of possible 
solutions and non-solutions. 

Object level of solution
Here we recommend working on finite fields. Students might be asked to design a 
computer program that receives an equation as its input and produces the solution set 
of the equation as its output. The program does this by substituting and checking all 
the elements of the finite Zp

n for equality. The programming language ISETL was 
found to be adequate for that purpose (see Asiala et al., 1996).  Later, when we give 
students a system of equations over an infinite field they will face a need for other 
methods, as the previous method has now become useless for both computers and 
humans. Learning to solve algorithms will now include the understanding of what 
the algorithm does: It produces only substitutions that are truth-valued, and all such 
substitutions.

IMPROVED QUESTIONNAIRE 
In appendix 2 we presented our improved questionnaire. In the first interview 
(Appendix 1) most of the questions required an object level understanding of solution
in order to give any answer at all to the questions.  Consequently, we did not get any 
sense of the level of cognitive development regarding the concept.  So in the second 
round we tried to probe more fundamental constructions regarding the solution.  For 
example, in Question 1 we give the student a specific ordered pair and ask if it is a 
solution, rather than asking what a solution would look like.  This would indicate at 
least an Action conception if the student substitutes into the equation.
Further on, in Question 2, checking by substitution whether a matrix is a solution 
demands some tedious calculations.  If the students have reached process conception 
of solution, they might realize without actually substituting, that the 3x2 matrix (b) 
is non-substitutionable.  Thus we can identify a process conception of solution. 

CONCLUSION
In the present research cycle we learned a little about what students think of 
solution. We also recognized the deficiencies of our research tools. As a result, we 
constructed an improved questionnaire, an initial version of GD for solution, and a 
suggestion for a teaching sequence resulting from that GD. We are now ready for the 
next cycle of our research. 
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Appendix 1: The questionnaire of the reported research 
A. What is a solution of this equation (what does it look like)?  3x1+2x2 –x3+x4=5     

     How many solutions does the equation have? 

     Is the sum of two solutions also a solution?  What about a scalar multiplication? 

B. What does a solution of this equation look like? 1 2 3 4

1 1 1 1 3
x 1 x 2 x 0 x 1 1

0 2 1 1 0

         
                         
         
         

     Which of the following might be a solution? a. 1 0
2 1
 
 
 

b. 7 c. (1, 0, 1, 7) d.

2
0

1.5
7

 
 
 
 
  
 

     How would you check whether it is a solution? 

C. Here is a homogenous system of equations    Ax=0.   Suppose each of the vectors u and v 
is a solution of this system. What do you think of the vector  u+v?  Is it a solution of the 
system or not? 

(If no answer)  Would you like to use an example? 

(If no answer) Would you like me to present an example to you?

Here is an example:  
1

2

3

4

x1 2 3 0 0
x0 1 1 2 0
x1 0 1 1 0
x2 3 5 3 0

    
    
     
    
               

   What would be a solution of this 

system?

      Which of the following vectors is a solution 

1
2
0
0

 
 
 
 
  
 

,

2
2

2
0

 
  
 
  
 

,

8
8
8

0

 
 
 
 
  
 

  ?   How can we check? 

     Is the sum of two vectors which are solutions, also a solution? 

D. What about a non-homogenous system?  How does it differ from a homogenous system? 

      Here is a non-homogenous system:      
1

2

3

4

x1 2 3 0 1
x0 1 1 2 1
x1 0 1 1 0
x2 3 5 3 1

    
    
     
    
               



2–62  PME28 – 2004

Suppose each of the vectors u and v is a solution of this system. What do you think of 
the vector  u+v?  Is it a solution of the system as well?  How can we check/prove? 

E.      A and B  are nxn matrices of the same order.  What would be a solution of such an 
equation: AX=B 

Appendix  2:  The new questionnaire 
1. Consider the equation 2x1 + 3x2 = 6 

(a) Explain why [6,-2] is a solution.    (b) Find another solution. 

(c) What is the sum of the solution in (a) and your solution in (b)? 

(d) Is the sum you found in (c) also a solution? Why or why not? 

(e) Is a scalar multiple of a solution also a solution? Why or why not? 

(f) How many solutions does this equation have? Explain. 

2. Consider the equation: 
1 2 7 0
0 1 X 3 0
3 2 9 0

   
      
      

(a) Is 1 0
3 0
 
 
 

 a solution?  Why or why not?      (b) Is 
1 0
4 1
6 2

 
 
 
  

 a solution?  Why or why not? 

3. Consider the system of equations:  3x1 + 2x2  - x3= 0     x1 -   x2  + x3= 0 

(a) Is [2,-3,0] a solution? Why or why not? (b) Is [3,-2,-5] a solution? Why or why not? 

(c) Does the system have more than one solution? Explain. 

(d) Find the solution set of the system. 

(e) Is the sum of two solutions also a solution? Why or why not? 

(f) Is a scalar multiple of a solution also a solution? Why or why not? 

4.  Consider the equation: 

1 2 3
0 0 1
1 0 1
0 0 2

 
 
 
 
 
  

 X  = 

0
1
0
2

 
 
 
 
 
  

(a) Is 

0
1
0
2

 
 
 
 
 
  

a solution to this equation?  Why of why not?  (b) Is  
0
0
1

 
 
 
  

 a solution to this 

equation?  Why or why not? 


