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The major idea in this paper is the formulation of a theory of three distinct but 
interrelated worlds of mathematical thinking each with its own sequence of 
development of sophistication, and its own sequence of developing warrants for truth, 
that in total spans the range of growth from the mathematics of new-born babies to 
the mathematics of research mathematicians. The title of this paper is a play on 
words, contrasting the act of ‘thinking through’ several existing theories of cognitive 
development, and ‘thinking through’ the newly formulated theory of three worlds to 
see how different individuals may develop substantially different paths on their own 
cognitive journey of personal mathematical growth. 

INTRODUCTION
The International Group for the Psychology of Mathematics Education is a broad 
organisation with many ‘voices’ expressing a wide range of issues in mathematical 
teaching, learning and thinking. So broad are the views of its members that it moves 
over the years in ways that may not seem to present an overall universal picture. Yet 
there are themes that occur which focus on the psychology of cognitive growth of 
different individuals in mathematics education that begin to recur and link together to 
build a global framework. In this paper such themes are drawn out to formulate a 
long-term theory of cognitive development from conception to mature adult that 
encompasses a wide range of different paths taken by individuals, from discalculic 
children who make little progress, to research mathematicians who move forward the 
boundaries of the subject. 

THINKING THROUGH A RANGE OF THEORIES 
It is probably difficult for those of us looking at the huge range of current 
mathematics education research to imagine the state of the theory when the 
International Group for the Psychology of Mathematics Education was first 
conceived. Psychology was still in the grips of behaviorism, with the teaching of 
mathematics largely in the hands of mathematical practitioners and general educators, 
and just a few major theorists, such as Piaget (1965), Dienes (1960) and Bruner  
(1966), having something to say that had particular relevance in mathematics. At the 
time, Piagetian theories held sway, with an emphasis on successive stages of 
development and a particular focus on the transitions between stages. Underlying 
Piagetian theory was a tripartite theory of abstraction: empirical abstraction focusing 
on how the child constructs meaning for the properties of objects, pseudo-empirical 
abstraction, focusing on construction of meaning for the properties of actions on 
objects, and reflective abstraction focused on the idea of how ‘actions and operations 
become thematized objects of thought or assimilation’ (Piaget, 1985, p. 49). 
Meanwhile, in a somewhat different direction, Bruner focused on three distinct ways 
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in which ‘the individual translates experience into a model of the world’, namely, 
enactive, iconic and symbolic (Bruner 1966, p.10). The foundational symbolic system 
is language, with two important symbolic systems especially relevant to mathematics: 
number and logic (ibid. pp. 18, 19). 
Our founding President, Efraim Fischbein, with his wide experience of psychology 
and mathematics, was from the very beginning interested in three distinct aspects of 
mathematical thinking: fundamental intuitions that he saw as being widely shared, the 
algorithms that give us power in computation and symbolic manipulation, and the 
formal aspect of axioms, definitions and formal proof (Fischbein, 1987). 
Our second President, Richard Skemp, balanced his professional knowledge of 
mathematics and psychology with both theory and practice, not only producing his 
own textbook series for both primary and secondary schools, but also developing a 
general theory of increasingly sophisticated human learning (Skemp, 1971, 1979). He 
saw the individual having receptors to receive information from the environment and 
effectors to act on the environment forming a system he referred to as ‘delta-one’; a 
higher level system of mental receptors and effectors (delta-two) reflected on the 
operations of delta-one. This two level system incorporate three distinct types of 
activity: perception (input), action (output) and reflection, which itself involves 
higher levels of perception and action. 
The emphases in these three-way interpretations of cognitive growth are very 
different, but there are underlying resonances that appear throughout. First there is a 
concern about how human beings come to construct and make sense of mathematical 
ideas. Then there are different ways in which this construction develops, from real-
world perception and action, real-world enactive and iconic representations, 
fundamental intuitions that seem to be shared, via the developing sophistication of 
language to support more abstract concepts including the symbolism of number (and 
later developments), the increasing sophistication of description, definition and 
deduction that culminates in formal axiomatic theories. 
In geometry, van Hiele (1959, 1986) has traced cognitive development through 
increasingly sophisticated succession of levels. His theory begins with young 
children perceiving objects as whole gestalts, noticing various properties that can be 
described and subsequently used in verbal definitions to give hierarchies of figures, 
with verbal deductions that designate how, if certain properties hold, then others 
follow, culminating in more rigorous, formal axiomatic mathematics. In a recent 
article, van Hiele (2002) asserts differences between his theory and those of others, 
for instance, denying a change of ‘level’ between arithmetic and algebra, but 
asserting a change in level from the symbolism of algebra and arithmetic and an 
axiomatic approach to mathematics. This suggests a significant difference between 
his theory of development applied in geometry and the cognitive development of 
arithmetic and algebra, while reasserting a distinction between elementary 
mathematics (by which I mean school geometry, arithmetic and algebra) and 
advanced mathematical thinking with its formal presentation of axiomatic theories. 
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Meanwhile, process-object theories such as Dubinsky’s APOS theory (Czarnocha et 
al., 1999) and the operational-structural theory of Sfard (1991) gave new impetus in 
the construction of mathematical objects from thematized processes in the manner of 
Piaget’s reflective abstraction. Gray & Tall (1994) brought a new emphasis on the 
role of symbols, particularly in arithmetic and algebra, that act as a pivot between a 
do-able process and a think-able concept that is manipulable as a mental object (a 
procept). This, in its turn, amplifies and extends Fischbein’s algorithmic mode of 
thinking, to include not only procedures, but their meanings in an integrated theory. 
At the same time, the advanced mathematical thinking group of PME, organised by 
Gontran Ervynck in the late eighties, surveyed the transition to formal thinking and 
began to extend cognitive theories to the construction of axiomatic systems. 
Two further strands were also emerging, one encouraged by the American Congress 
declaring 1990-2000 as ‘the decade of the brain’ in which resources were offered to 
expand research into brain activity. The other related to a focus on embodiment in 
cognitive science where the linguist Lakoff worked with colleagues to declare that all 
thinking processes are embodied in biological activity. 
In the first of these, brain imaging techniques were used to determine low grain maps 
of where brain activities are occurring. Such studies focused mainly on elementary 
arithmetic activities (eg Dehaene 1997, Butterworth 1999), but others revealed how 
logical thinking, particularly when the negation of logical statements is involved, 
causes a shift in brain activity from the visual sensory areas at the back of the brain to 
the more generalised frontal cortex (Houdé et al, 2000). This reveals a distinct 
change in brain activity, consistent with a significant shift from sensory information 
to formal thinking. At the other end of the scale, studies of young babies (Wynn, 
1992) revealed a built-in sense of numerosity for distinguishing small configurations 
of ‘twoness’ and ‘threeness’, long before the child had any language. The human 
brain has visual areas that perceive different colours, shades, changes in shade, edges, 
outlines and objects, which can be followed dynamically as they move. Implicit in 
this structure is the ability to recognize small groups of objects (one, two or three), 
providing the young child with a fundamental intuition for small numbers. 
In the second development, Lakoff and colleagues theorized that human embodiment 
suffused all human thinking, culminating in an analysis of Where Mathematics 
Comes From (Lakoff & Nunez, 2000). Suddenly all mathematics is claimed to be 
embodied. This is a powerful idea on the one hand, but a classification with only one 
category is not helpful in making distinctions. 
If one takes ‘embodiment’ in its everyday meaning, then it relates more to the use of 
physical senses and actions and to visuo-spatial ideas in Bruner’s two categories of 
enactive and iconic representations. Following through van Hiele’s development, the 
visual embodiment of physical objects becomes more sophisticated and concepts 
such as ‘straight line’ take on a conceptual meaning of being perfectly straight, and 
having no thickness, in a way that cannot occur in the real world. This development, 
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from physical embodiment to increasingly sophisticated conceptual embodiments is 
quite different from the symbolic development encountered in arithmetic where 
actions on objects (such as counting and sharing) are symbolised and the symbols 
themselves take on a character that allows them to be mentally manipulated at a 
higher level. The latter may be functionally embodied (in that we use our hands to 
write symbols and think metaphorically about ‘moving symbols around’) but the 
encapsulation of processes into mental objects is fundamentally different from the 
reflective sensory focus on objects themselves, sufficient to place it in a different 
category, analogous to Sfard’s (1991) distinction between operational and structural. 
The category focusing on the increasing sophistication of representations of objects 
includes two of Bruner’s three forms of representation: the enactive and iconic. 
Meanwhile, symbolic representations include the technical forms of number and 
logic that resonate with Fischbein’s algorithmic and formal categories. 
These re-alignments of categories are usefully seen in relation to the SOLO 
(Structure of Observed Learning Outcomes) theory of another president of PME, 
Kevin Collis (Biggs & Collis, 1982). This incorporates a revised stage theory that 
builds on aspects from both Piaget and Bruner, with successive stages named sensori-
motor, ikonic, concrete-symbolic, formal, and post-formal. An essential aspect of this 
theory is that, once a stage has been constructed, it becomes available together with 
previous stages. Seeing cognitive development in a cumulative light can combine 
sensori-motor interactions and ikonic visuo-spatial ideas to give an embodied basis 
for mathematics. This goes in one direction towards geometry through the focus on 
properties of objects underpinned with language, in another direction, actions on 
embodied objects build a distinct development operating with symbols in arithmetic 
and algebra. All these activities grow in sophistication and the study of their 
properties lead on later to more formal, abstract, logical aspects. Language continues 
to underpin all of this activity. A visual picture is nothing without meaning being 
given to what it represents. While embodiment is fundamental to human 
development, language is essential to give the subtle shades of meaning that arise in 
human thought. 
Taking the lead from Collis in seeing successive developments as cumulative, rather 
than as the replacement of earlier ways of thinking, we may now see mathematical 
development beginning before language with an implicit sense of numerosity. By the 
time the child arrives at school, sensori-motor and ikonic aspects are already working 
together with language making more subtle conceptions possible. This is the 
beginning of a van Hiele development in visuo-spatial ideas of figures in particular 
and other graphical concepts in general. The introduction of arithmetic (concrete-
symbolic) brings a distinct mode of operation focusing on the symbolisation of 
counting processes as number concepts; the properties encountered in the elementary 
mathematics of arithmetic, algebra, geometry and calculus lead on to a new property-
based focus using axiomatic definitions and proof. 
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THREE WORLDS OF MATHEMATICS 
The foregoing discussion leads to a possible categorisation of cognitive growth into 
three distinct but interacting developments. 
The first grows out of our perceptions of the world and consists of our thinking about 
things that we perceive and sense, not only in the physical world, but in our own 
mental world of meaning. By reflection and by the use of increasingly sophisticated 
language, we can focus on aspects of our sensory experience that enable us to 
envisage conceptions that no longer exist in the world outside, such as a ‘line’ that is 
‘perfectly straight’. I now term this world the ‘conceptual-embodied world’ or 
‘embodied world’ for short. This includes not only our mental perceptions of real-
world objects, but also our internal conceptions that involve visuospatial imagery. It 
applies not only the conceptual development of Euclidean geometry but also other 
geometries that can be conceptually embodied such as non-Euclidean geometries that 
can be imagined visuo-spatially on surfaces other than flat Euclidean planes and any 
other mathematical concept that is conceived in visuo-spatial and other sensory ways. 
The second world is the world of symbols we use for calculation and manipulation in 
arithmetic, algebra, calculus and so on. These begin with actions (such as pointing 
and counting) that are encapsulated as concepts by using symbol that allow us to 
switch effortlessly from processes to do mathematics to concepts to think about. This 
second world I call the ‘proceptual-symbolic world’ or simply the ‘proceptual
world’. It does not develop in the same way as the van Hiele development of 
geometry, but by expanding the context of counting to new contexts, sharing, using 
fractions, allowing debts using negative numbers, decimal representations, repeating 
and non-repeating decimals, real numbers, complex numbers, vectors in two and 
three, then n dimensions, and so on. 
The third world is based on properties, expressed in terms of formal definitions that 
are used as axioms to specify mathematical structures (such as ‘group’, ‘field’, 
‘vector space’, ‘topological space’ and so on). This is termed the ‘formal-axiomatic 
world’ or ‘formal world’, for short. It turns previous experiences on their heads, 
working not with familiar objects of experience, but with axioms that are carefully 
formulated to define mathematical structures in terms of specified properties. Other 
properties are then deduced by formal proof to build a sequence of theorems. Within 
the axiomatic system, new concepts can be defined and their properties deduced to 
build a coherent, logically deduced theory. 

JOURNEYS THROUGH THE THREE WORLDS 
Different individuals take very different journeys through the three worlds. A few 
children have such difficulties with numbers that the phenomenon has been given the 
name ‘discalculia’. Most children cope with the action-schema of counting leading to 
the development of the number concept. However, there are growing differences in 
the ways children cope with arithmetic. Some remain focused much longer on the 
procedures of counting, while others are developing more flexible number concepts. 



4–286  PME28 – 2004

Failure to compress counting procedures into thinkable concepts can lead to the 
learning of facts by rote. For many (perhaps most) individuals rote-learning can 
become a way of life. This may give success in a variety of routine contexts, but the 
longer-term Piagetian vision in which ‘operations become thematized objects of 
thought’ requires compression of knowledge into thinkable mental entities. 
As an individual travels through each world, various obstacles occur on the way that 
require earlier ideas to be reconsidered and reconstructed, so that the journey is not 
the same for each traveller. On the contrary, different individuals handle the various 
obstacles in different ways that lead to a variety of personal developments, some of 
which allow the individual to progress through increasing sophistication in a 
meaningful way while others lead to alternative conceptions, or even failure. 
For instance, the transition from whole numbers to fractions is highly complex; the 
embodied representation of a number as a physical collection of counters must be 
replaced by a sharing of an object or a collection of objects into equal parts and 
selecting a number of them. In new contexts, old experiences can cause serious 
conflicts. I call such old experiences ‘met-befores’. In experiencing whole numbers, 
the child will encounter the idea that each number has a next number and there are 
none in between. This met-before can cause confusion with fractions wherein there is 
no ‘next’ fraction, and two fractions always have many others in between. Likewise, 
in moving from arithmetic to algebra, a typical met-before is the idea that every sum 
has an answer, for instance, 2+3 is 5. But an expression such as 2+3x has no ‘answer’ 
unless x is known. So if x is unknown, the child who regards a sum as an operation to 
carry out is faced with something that cannot be done. Other met-befores include 
ideas such as letters stand for codes (for example, a 1, b  2, etc) so 30  x  is 6 
(because x is 24), or the idea of place value that interprets 23 as two tens and a 3, so if 
x  3, then 2x is 23. It is my belief that such met-befores are a major source of 
cognitive obstacles in learning mathematics and, when conflict occurs, the safe thing 
is to stick to routines and learn, at best, in a procedural fashion. 
Watson (2001) considers the notion of vector, which is met in school in various 
guises such as journeys, or forces. These met-befores can give insight in some ways, 
but can cause serious problems in others. For instance, if a vector is a journey, then 
one can follow a journey from A to B then B to C to give the journey from A to C, so 
that AB  BC  AC . But what is BC  AB? As journeys, one can go from B to C to 
start, but if C is not the same as A, then physically, one needs to jump from C to A
before finishing the journey. At the physical embodied 
level of a journey, addition of journeys is not 
commutative, it may not even be defined. In another 
instance, it is a common mistake for a student to say 
that the sum of two vectors with the same endpoint as 
in figure 1 is zero. If the picture evokes a sense of two 
fingers pushing together, then they cancel out. 

Figure 1 
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The concept of vector has many meanings. It 
has several distinct physical manifestations 
that lay down different met-befores that need 
to be resolved at more sophisticated levels. 
The problems just enunciated do not occur 
once the individual has focused on the concept 
of free vector, which has only magnitude and 
direction. At this level commutativity occurs 
for different reasons in each world of 
mathematics. In the embodied world, the truth 
of u  v  v  u  follows from the properties of 
a parallelogram (figure 2) and meaning is 
supported by tracing the finger along two sides to realise that the effect is the same, 
whichever way one goes to the opposite corner of the figure. In the symbolic world of 
vectors as matrices, addition is commutative because the sum of the components is 
commutative. At the formal level of defining a vector space, commutativity holds 
because it is assumed as an axiom. 
More generally, each world develops its own ‘warrants for truth’ (in the sense of 
Rodd, 2000) in different ways. Initially something is ‘true’ in the embodied world 
because it is seen to be true. This is truth in the intuitive sense of Fischbein. 
Increasing sophistication in geometry leads to Euclidean proof, which is supported by 
a visual instance and proved by agreed conventions, often based on the idea of 
‘congruent triangles’. In arithmetic, something is ‘true’ because it can be calculated; 
in algebra, because one can carry out an appropriate symbolic manipulation such as 
 (a  b)(a  b)  (a  b)a  (a  b)b  a 2  ba  ab  b2  a 2  b2 .
In the formal world, something is ‘true’ because it is either assumed as an axiom or 
definition, or because it can be proved from them by formal proof. 
By becoming aware of the different developments in the different worlds and of the 
way in which experiences may work at one stage, yet create met-befores that interfere 
with later development, a broader, more coherent view of cognitive development 
becomes possible. The theory proposed builds on the fundamental human activities of 
perception, action and reflection and, by tracing these through the worlds of 
embodiment and proceptual symbolism to the formal world of mathematical proof, a 
global vision of mathematical growth emerges. Some make only a small journey 
before encountering obstacles. Some remain in the initial embodied world of 
perception and action and cling to procedural thinking, some reflect on embodiments 
and become fluent in algorithms to encapsulate them into thinkable entities. These 
achievements may be entirely appropriate for the use of mathematics in a wide range 
of situations. A few may take matters further into the world of formal mathematical 
thinking. The purpose of developing such a theory is to gain an overview of the full 
range of mathematical cognitive development. It is a goal that I suggest is appropriate 
for the overall study of the Psychology of Mathematics Education. 

Figure 2: u+v is the 
same as v+u
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