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In this paper we report on some patterns of reasoning, which emerged during an 
activity of proving a mathematical statement performed by nine grade and university 
mathematics students. The statement in question involves drawing figures, working in 
arithmetic and in algebra. As for secondary students we detected fluency, flexibility 
and ability of verbalizing their reasoning. In particular, we will focus on the behavior 
of a student who through drawings succeeded in giving meaning to algebraic 
manipulation. The solutions of the university students were conditioned by the burden 
of the formal style used in university course of mathematics.

INTRODUCTION AND THEORETICAL FRAME 
In works presented in PME meetings, see (Furinghetti & Paola, 2003), and in 
journals, see (Furinghetti, Olivero & Paola, 2001) we have focused on patterns of 
reasoning emerging when students are involved in activities of exploring, producing 
and validating conjectures. To rouse motivation and non-routine behaviors we set 
these activities in stimulating contexts such as group working, classroom discussion, 
and use of technology. In the present paper we go on in our investigation on patterns 
of reasoning by studying the results of an experiment in which proof was proposed as 
an intellectual challenge. In history this challenge has been fundamental for 
producing of new mathematical ideas and some authors, (De Villiers, 1996) for one, 
think that even nowadays it may be a motivation in classroom. The aim of the study 
is twofold: • as researchers in math education to collect information about students’ 
reasoning, • as teachers or teachers educators to outline some didactical implications. 
In our investigation we had in mind certain aspects of students’ reasoning to be 
analyzed, which guided the choice of the statements to be proved. In the following 
we briefly discuss these aspects. One of the driving forces in performing 
mathematical tasks is transformational reasoning. According to (Simon, 1996) 
transformational reasoning is a third type of reasoning (beyond deduction and 
induction), which is not a mere gathering of information, but rather the development 
of a feeling for the mathematical situation a person is facing. It is the realization 
(physical or mental) of an operation or a set of operations on objects that brings to 
reconsider the transformations which the objects undergone to and the results of that 
operations. In transformational reasoning it is central the ability to consider not a 
static state, but rather a dynamic process in which a new state or a continuity of states 
are generated. Transformational reasoning is reasoning by analogy and anticipation. 
It may produce a different way of thinking to mathematical objects, as well as a 
different set of questions and problems. Transformational reasoning is enhanced by 
fluency and flexibility, that is to say the abilities to overcome fixations in 
mathematical situations and to produce creative thinking within mathematical 
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situations, see (Haylock, 1987). Gray & Tall (1994) focus on the flexibility as a mean 
for linking processes and concepts. 
Among the abilities necessary to mathematical activities Selden and Selden (1995) 
take into consideration concepts reformulation. When a statement to be proved is 
given, the solver firstly needs to understand it. This may happen through 
reformulating the statement by paraphrase with words, by gestures, by figures, by 
symbols, by the production of examples. Among proving difficulties Moore (1994) 
considers the generation and the use of examples. Examples may work as prototypes, 
but have not to become stereotypes, see (Presmeg, 1992). In the examples the solver 
has to develop a process of abstraction and generalization, that is, borrowing the 
expression from (Mason & Pimm, 1984) “seeing the general in the particular”. 
A student’s behavior in proving may be analyzed according to the framework of 
proof schemes defined by Harel and Sowder (1998) as what constitutes ascertaining 
and persuading for a student. The proof schemes are grouped in three main classes: 
• external conviction (three types: ritual, authoritarian, symbolic) 
• empirical (two types: inductive, perceptual) 
• analytical (two types of proof schemes: transformational, axiomatic). 
A ritual proof scheme manifests itself in the behavior of judging mathematical 
arguments only on the basis of their surface appearance: false arguments are accepted 
because they look like usual proofs, and on the contrary justifications that are even 
convincing are rejected because “they don’t look as mathematical proofs”. In a 
symbolic scheme mathematical facts are proved using only symbolic reasoning, i.e. 
using symbols without reference to their meaning. An authoritarian proof scheme 
relies on the authority of someone (book, teacher). An inductive proof scheme relies 
on few examples without generalization. A perceptual proof scheme is based on 
rudimentary mental images without resorting to deduction. A transformational proof 
scheme encompasses a deductive process including generality, goal-oriented and 
anticipatory mental operations, and transformational images. In addition to that an 
axiomatic proof scheme contemplates the presence of an axiomatic system. 
According to Rodd (2000, p.231) the following questions are crucial: “(b) What is the 
personal nature of proof? […] Or why are students’ personal justifications different 
from the paradigmatic mathematical proof? […], And (c) What might warranting 
mean in classroom practice?” These issues are discussed in (Hanna, 1990; Hersh, 
1993) as for students and mathematicians, Barbin (1988) as for the history. 

METHOD 
Our experiment took place in two different settings (setting A: secondary school, 
setting B: university). A set of problems centered on proof was given to students. The 
students knew that their performance would not be assessed with a mark. They were 
only asked to engage as much as possible in the solution of the problems and to write 
all their thoughts during the solution. We also asked them to write the difficulties 
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encountered and if they enjoyed the problems. All students signed with a pseudonym 
their protocols. In the present paper we will focus on the following problem: 

Given a cube made of little cubes all equal, take away a full column of little cubes. The 
number of the remaining little cubes is divisible by six. Try to explain why this happens. 

It has had been chosen according to the following requirements: 
• it is expressed by words 
• it involves concepts that are at the grasp of the students 
• it does not involves only rote manipulation, but rather requires to look at algebraic 

formulas with meaning and awareness 
• even if the property to be proved is given, the form of the statement (which includes 

the invitation “Try to explain…”) fosters exploratory activity and the devolution of 
the teacher’s authority to the students, as it happens in the case of open problems 

• the statement requires to consider different aspects: geometrical and visual (the cube 
formed by little cubes), the numerical aspects (divisibility by six), symbolic (the 
formulas which express the number of remaining cubes and the algebraic 
manipulation on them). Thus the students have to use different frames and to pass 
from a frame to another 

• it is not similar to statements proved by the students in other circumstances, thus 
students are stimulated to find their own way. 

The setting A (secondary students grade nine) 
In secondary school 18 students of grade nine (aged about 14) faced the problem in 
question. They had worked before in collaborative groups and thus we allowed them 
to work in group. The students were used to be involved in activities of exploration, 
production and validation of conjectures. In particular, they were able to perform 
these activities with the symbolic pocket calculator. The classroom was really a 
community of practice, as advocated by (Schoenfeld, 1992). The allowed time was 90 
minutes. In the first 15 minutes the students were asked to work individually on the 
problem before starting the work in group. This splitting in two phases was decided 
because it happens that without an initial phase of personal reflection the interaction 
in the group may be only apparent and some members of the group follow passively 
the solving strategies proposed by their mates. During the work the teacher and the 
observer were at disposal of students for giving explanations and to foster the 
exploration. At the moment of the experiment the students did not know the algebraic 
manipulation of formulas, but they had used regularly the symbolic calculator; they 
mastered the commands Factor and Expand. The command Factor, indeed, has been 
used before only for decomposing numbers, but it was easy to extend this use to 
algebraic formulas. To have at disposal the calculator allowed keeping the focus on 
the problem and not on ‘side issues’ such as algebraic manipulation. In our intentions 
the resulting atmosphere in the classroom should have been rather relaxed so that the 
moments of strong emotions for stops or failures should have been avoided or, at 
least, overcome through collaboration and communication. In this situation all 
students, even the weak ones, had the possibility of producing some materials. 
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The setting B (university students) 
The five university students participating to the experiment were attending the third 
year of the mathematics course. They had already passed examinations such as 
analysis, algebra, geometry, and topology. They worked alone and did not interact 
with the university lecturer and the observer. The allowed time was 60 minutes for 
the problem in question and another problem that we do not consider here. 

FINDINGS
The teacher or the lecturer (the authors D. P. in school and F. F. in university) 
together with an external observer (the author M. C.) assisted to the experiment. The 
data were collected through the students’ protocols and the observer’s field notes. 
Findings in the setting A (secondary students grade nine) 
We have at disposal 18 protocols coming from six groups. All groups, but one, 
reached the solution. In Fig.1 we report the cognitive pathway towards successful 
proof, which emerges from the protocols. 

reading the text

reformulation
numerical
examples

arithmetical
formula

algebraic
manipulation

verbalization
in arithmetic 

proof

drawing

Fig.1

Each step of the pathway requires a shift from one frame 
to another. The word ‘cube’ in the statement pushed 
naturally towards the representation of a cube in the flat 
sheet according to empirical rules of perspective 
(graphical frame). Through the drawing the statement was 
reformulated in a more telling way. After the exploration 
of the drawing the students used it as a starting point for 
producing a few numerical examples (arithmetic frame). 
The drawing worked as a generic example that allowed to 
generalize and to produce the solving formula n3-n.
Borrowing the metaphor from (Tall & Gray, 1994) we 
may say that the drawing plays the role of the pivot 
between the particular (numerical examples) and the 
general (formulas). At this point the shift into the algebraic 
context allowed obtaining the decomposition n(n-1)(n+1).
The conclusion was reached by verbalizing the property 
that the product of three consecutive numbers is divisible 
by six. 

To stress the importance and the peculiarity of the role plaid by the students’ drawing 
we consider the work of a group of three boys (Andrea, Luca, Simone) in which an 
interesting process was produced. They started by drawing a cube. Firstly they 
explored a cube formed by 33 little cubes and went on by alternating exploration of 
inductive type (the cases of cubes formed by 43, 53,… little cubes) with reflections on 
the particular case of the cube they had drawn. The drawing acted as a generic 
example. The exploration of particular cases went on also after the determination of 
the formula n3-n. The solving strategies were a continuous ‘come and go’ from 
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consideration of concrete situations (particular cubes and calculation on them) to 
reasoning on formulas and attempts to write them in different ways. In this phase the 
teacher acted in the proximal development zone of Vygotskij (1978). He asked to 
students which ideas they were relating to divisibility. Simone mentioned multiples, 
Luca and Andrea decomposition. The new idea of decomposing n3-n came through a 
process by abduction, see (Otte, 1997). At this point the teacher suggested using the 
symbolic calculator to decompose the formula. Immediately after having obtained the 
decomposition x(x-1)(x+1) the students verbalized the solution: “Given three 
consecutive numbers at least one is even and one is divisible by three”. We note that 
the decomposition was written exactly as we reported (the name of the variable n was 
changed into x.) This was a spontaneous sign given by the students of their shift from 
the arithmetic to the algebraic frame.
Andrea, however, was not satisfied with this solution and looked for a different 
process. One of the reasons of this dissatisfaction could have been the fact that the 
solution was found through the teacher’s intervention and thus Andrea felt that he 
was not controlling the situation and needed to ‘take possession’ of the solution. He 
reflected on his drawing and we saw him to make gestures by hands, to think 
intensely until he found a new solution, based on the decomposition and composition 
of the original cube until a parallelepiped was obtained, see Fig.2. The teacher asked 
Andrea to write how he reached the new solution and why he looked for it. He wrote 
(for the reader convenience we have translated): 

I was not satisfied at all with the decomposition made with the symbolic calculator (I was 
thinking: Why I have not suddenly thought to the factorization?) [He is referring to the 
fact that before decomposing n3-n he worked a lot around the figure] and I was ‘looking 
at’ [The inverted commas are in Andrea’s text] the figure, partly to see that ‘monster’ and 
partly because I wished to find a geometrical proof [Andrea tries to give meaning to what 
is doing. He seems disturbed by the contamination between the geometric context of the 
problem and algebra]. Rather unconsciously - may be by vent - I started to strike off the 
column in question. When I saw the column struck off I realized that the two remaining 
columns should have been moved so that a rectangle [he means, indeed, a parallelepiped] 
is formed, which is high a column less (x-1), deep equally (x), and large one column 
more (x+1). Since the formula which gives the volume of the rectangle [parallelepiped] is 
b•h•p, I wrote x(x-1)(x+1), which was the same to the factorization of the calculator. To 
better understand my idea see the sheet [Fig.2] with the steps of the operation. 

The expression ‘to look at’ suggests that the student’s behavior is guided by ways of 
thinking oriented to the production of a proof. The process carried out by Andrea is 
mainly based on transformational reasoning. This reasoning was enhanced by three 
different kinds of signs used in an integrated way. We know that Peirce distinguishes 
among three kinds of signs: - icon, i.e. something which designates an object on the 
ground of its similarity to it; - index, i.e. something which designates an object 
pointing to it in some way; - symbol, which designates an object on the ground of 
some convention. Andrea uses all these kinds of signs in an integrated way. Initially 
the icon (drawing) is the way of paraphrasing the problem. The gestures by hands are 
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a means to enhance transformational reasoning. In the very words written by the 
student (“I would have wished to find a solution only with numbers”) we see that for 
him symbols hide meaning, while the drawing is a carrier of meaning. We note that 
the student operates on his drawing in a symbolic mode. He, indeed, manipulates the 
pieces of the cube as representatives of the algebraic symbols x, x-1, x+1.

Fig.2
The first mode of solution produced by the group of Andrea may be ascribed to an 
axiomatic-like proof scheme (they ‘derives’ that the number of the remaining cubes is 
multiple of six), while the second mode enacted by Andrea alone belongs to the 
transformational proof scheme (he ‘sees’ that that number is multiple of six). The 
discrepancy of schemes shown by this student is an evidence of a discrepancy 
between proofs which prove and proofs which explain, see (Hanna, 1990). We found 
interesting that in the group the two mates of Andrea acted in a different way. They 
both worked only inside the algebraic frame asking for formal aspects and avoided 
reference to concrete situations. 

Fig.3 x

 x
10/4

 10/4

The process conceived by Andrea has resemblance with the ‘cut and paste’ process 
realized by Al-Khwarizmi (1838) for solving second degree equations. In the case of 
the equation x2+10x=39 Al-Khwarizmi starts from a square of side x, sticks on the 
four sides four rectangles of sides 10/4 and x. He obtains a cross (see Fig.3) whose 
area is x2+10x (which is equal to 39). Four squares of side 10/4 are added to the cross 
to obtain the final square whose area (x+10/2)

2
 is equal to 39+4(10/4)

2
. By equalizing 
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these quantities the usual solving formula for second degree equations follows. Al-
Khwarizmi was interested only on positive solutions. 
Findings in the setting B (university students) 
We have at disposal five protocols. One student produced the solution in 10 minutes 
writing only seven lines. He did not draw any figure: he only reformulated the 
statement by words introducing the variable n for the number of the little cubes in the 
edge and then immediately generalizing the problem. Afterwards he wrote the 
solving formula n3-n, decomposed it and through verbalization proved the divisibility 
by six. The rapidity of the succession of steps shows a strong anticipatory thinking. 
The other four students followed a different pattern (more or less the same for all). 
They drew a cube with three little cubes in the edge and used it very easily as a 
generic example to produce the solving formula without the need of exploring other 
cubes or numerical examples. The divisibility by six was expressed by writing n3-
n=6q, q being a natural number. This formula is an example of formula which has not 
future, that is it is not “formally operable” in the sense of (Bills & Tall, 1998, p.105) 
since it is not easy to use it “in creating or (meaningfully) reproducing a formal 
argument”. One student was suddenly discouraged and stopped after just one attempt. 
Other students went into the tunnel of the ritual proof scheme. They acknowledged 
the status of real proof only to proofs that appear as the usual proofs they have seen 
in university courses. For this reason they did not consider verbalization as a means 
for proving. This pattern of reasoning is clearly evidenced in the protocol of the 
student G. After having wrote the formula n3-n=6q she decided to prove the statement 
by induction. We guess that this choice was inspired by the presence of the generic 
number n. She used properly the technique of induction and arrived at a statement 
requiring mere arithmetical considerations. At this point, since she had ‘paid her 
debt’ to the ritual aspect of formalism, she dared use verbalization (that she refused at 
the beginning) to conclude the proof. 

DIDACTICAL IMPLICATIONS 
The university students offer materials to answer the question “Why in education 
more does not always mean better?” The great amount of formal mathematical 
knowledge and the habit to use it as the only resource for doing mathematics has 
inhibited the ability to look for meaning in algebraic formulas. Our analysis of the 
secondary students’ behavior has evidenced many aspects. Here we stress the fact 
that the message of the teacher had different outputs even when the conditions were 
the same. We owe the opportunity to grasp this fact to the style of teaching in the 
classroom where the experiment took place. As told before, only one in a group of 
three students adopted the ‘cut and paste’ method, his two mates preferred to look for 
a formal approach inside the algebraic frame. The filter of the individual’s 
personality changes the way in which students perceive proof. The ascertainment of 
this fact brings to the fore the importance of studying the forms of classroom 
communication in relation with the different students’ needs. 
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