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CASE STUDIES OF CHILDREN’S DEVELOPMENT  
OF STRUCTURE IN EARLY MATHEMATICS:  

A TWO–YEAR LONGITUDINAL STUDY 
Joanne Mulligan*, Michael Mitchelmore* & Anne Prescott** 

*Macquarie University, Sydney, Australia 
**University of Technology, Sydney, Australia 

Two-year longitudinal case studies of 16 Sydney children extended a study of 103 
first graders’ use of structure across a range of mathematical tasks. We describe how 
individual’s representations change through five stages of structural development. 
Children at the pre-structural stage showed inconsistent development presenting 
disorganised representations and incoherent mathematical ideas. High achievers 
progressed to a more advanced stage of structural development depicted by an 
increased level of abstraction. 

INTRODUCTION 
In our PME 28 report (Mulligan, Prescott & Mitchelmore, 2004) we described an 
analysis of structure present in 103 first graders’ representations as they solved 30 
tasks across a range of mathematical content domains such as counting, partitioning, 
patterning, measurement and space. We found that: 

• Children’s perception and representation of mathematical structure 
generalised across a range of mathematical content domains and contexts. 

• Early school mathematics achievement was strongly linked with the child’s 
development and perception of mathematical structure.  

Individual profiles of responses were reliably coded as one of four broad stages of 
structural development: 

1. Pre-structural stage: representations lacked any evidence of mathematical or 
spatial structure; most examples showed idiosyncratic features. 

2. Emergent (inventive-semiotic) stage: representations showed some elements of 
structure such as use of units; characters or configurations were first given 
meaning in relation to previously constructed representations.   

3. Partial structural stage: some aspects of mathematical notation or symbolism 
and/or spatial features such as grids or arrays were found.   

4. Stage of structural development: representations clearly integrated 
mathematical and spatial structural features. 

We build further upon previous analyses (De Windt-King & Goldin, 2001; Goldin, 
2002; Gray, Pitta & Tall, 2000; Mulligan, 2002; Thomas, Mulligan & Goldin, 2002), 
by providing longitudinal case study data with the aim of making as explicit as 
possible the bases for our identification of developmental stages of mathematical 
structure. We focus particularly on cases representing extremes in mathematical 
ability.  
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THEORETICAL BACKGROUND 
Our interest in children’s development of structure in early mathematical concepts 
has been highlighted in our studies of number concepts, multiplicative reasoning 
(Mulligan, 2002; Mulligan & Mitchelmore, 1997) and measurement concepts 
(Outhred & Mitchelmore, 2000; Outhred & Mitchelmore, 2004). Related studies have 
identified that mathematically gifted children’s representations show recognisable 
structure and dynamic imagery, whereas low achievers’ representations showed no 
signs of underlying structure, and the use of static imagery (Thomas et al., 2002). Our 
findings support the hypothesis that the more that a child’s internal representational 
system has developed structurally, the more coherent, well-organised, and stable in 
its structural aspects will be their external representations, and the more 
mathematically competent the child will be.  

Our theoretical framework is based essentially on Goldin’s model of cognitive 
representational systems (Goldin, 2002) where we examine our data for evidence of 
structural development of internal cognitive mathematical ideas and representations. 
Current analyses have also been influenced from two other perspectives: the study of 
spatial structuring in two and three dimensional situations (Battista, Clements, 
Arnoff, Battista & Borrow, 1998); and the role of imagery in the cognitive 
development of elementary arithmetic (Gray, Pitta & Tall, 2000). We consider 
‘spatial structuring’ a critical feature of developing structure because it involves the 
process of constructing an organization or form. This includes identifying spatial 
features and establishing relationships between these features. Pitta-Pantizi, Gray & 
Christou (2004) discuss qualitative differences between high and low achievers’ 
imagery. Children with lower levels of numerical achievement elicit descriptive and 
idiosyncratic images; they focus on non-mathematical aspects and surface 
characteristics of visual cues.   

Goldin (2002) emphasises that individual representational configurations, whether 
external or internal, cannot be understood in isolation. Rather they occur within 
representational systems. Such systems of representation, and sub-systems within 
them develop in the individual through three broad stages of construction: 

1. An inventive/semiotic stage, in which characters or configurations in a new 
system are first given meaning in relation to previously-constructed 
representations; 

2. An extended stage of structural development, during which the new system is 
“driven” in its development by a previously existing system (built, as it were 
on a sort of pre-existing template); and 

3. An autonomous stage, where the new system of representation can function 
flexibly in new contexts, independently of its precursor.  

Our analysis of developmental stages of structure was initially framed by Goldin’s 
three broad stages of construction. From our data with young children we have 
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identified an initial pre-structural stage and two sub-stages (partial structure and 
structure) preceding Goldin’s stage 2 (extended stage). We seek to extend Goldin’s 
model based on longitudinal evidence from young children.   

Our analyses have not yet tracked our proposed stages of structural development for 
individuals over time. Thus, we pose further research questions: 

• Do young children continue to develop and use structure consistently across 
different mathematical content domains and contexts over time?  

• Do all young children progress through these identified stages similarly? 

METHOD  
The sample comprised 16 first grade children, 7 girls and 9 boys, ranging from 6.5 to 
7.8 years of age, drawn from the initial 103 subjects. Four children representing each 
stage of structural development were tracked as case studies in the second year. 
Selection of a representative sub-sample of children of low or high mathematical 
ability was supported by clinical assessment data such as IQ tests, and system-based 
assessments. Four low ability children were classified at the pre-structural stage; one 
low ability child at the emergent stage; and four high ability children at the stage of 
structural development. The case study sample was drawn from five state schools in 
Sydney and represents children of diverse cultural, linguistic and socio-economic 
backgrounds. 

Cases representing extremes in mathematical ability were subject to in-depth study 
and supporting evidence compiled from classroom assessment data. The same 
researchers conducted videotaped task-based interviews at approximately three 
intervals: March and October in the first year and August/September in the second 
year, including a second phase of interviews.  

Thirty tasks, developed for the first year of the study were refined and/or extended to 
explore common elements of children’s use of mathematical and spatial structure 
within number, measurement, space and graphs. Tasks focused on the use of 
patterning and more advanced fraction concepts were included. Each task required 
children to use elements of mathematical structure such as equal groups or units, 
spatial structure such as rows or columns, or numerical and geometrical patterns. 
Number tasks included subitizing, counting in multiples, fractions and partitioning, 
combinations and sharing. Space and data tasks included a triangular pattern, 
visualising and filling a box, and completing a picture graph. Measurement tasks 
investigated units of length, area, volume, mass and time. Children were required to 
explain their strategies for solving tasks such as reconstructing from memory a 
triangular pattern and to visualise, then draw and explain their mental images (see 
Figure 1). Operational definitions and a refined coding system were formulated from 
the range of responses elicited in the first year of interviews and compared with 
analysis of new videotaped data; a high level of inter-rater reliability was obtained 
(92%).  
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Analysis focused on the reliable coding of responses for correct/incorrect strategies 
and the presence of structural features to obtain a developmental sequence. The 
coding scheme developed for the first stage of interviews was extended to classify 
strategies for several new tasks. A fifth stage, an advanced stage of structural 
development was identified, where the child’s structural ‘system’ was developed or 
extended by using features of the previously existing system. We examined whether 
this structural development was consistent for individuals across tasks and over a 
two–year period. Responses to all 30 tasks were coded for all 16 children and the 
matrix examined for patterns. Achievement scores were compared with individuals’ 
types of representations. It was found that the children could be unambiguously 
classified as operating at one of five stages of structural development at each 
interview point. 

DISCUSSION OF RESULTS  
These results support our initial findings indicating consistency in structural features 
of individual children’s representations across tasks at each interview point. Our 
report at PME 28 (Mulligan et al. 2004) represents Interview 1 data. 

Case Study 
No. 

Interview 1  
March 
2002 

Interview 2 
Oct 2002 

Interview 3 
Sept 2003 

Code 

1 PRS PRS PRS Pre-structural Stage (PRS) 
2 PRS PRS ES Emergent structural stage (ES) 
3 PRS PRS ES Stage of partial structural 

development (PS) 
4 PRS ES ES Stage of structural development 

(S) 
5 ES PRS PRS Advanced stage of structural 

development (AS)  
6 ES ES PS  
7 ES PS S  
8 ES PS S  
9 PS PS PS  
10 PS PS S  
11 PS PS S  
12 PS PS S  
13 PS S AS  
14 S S AS  
15 S S AS  
16 S S AS  

Table 1. Classification of cases by interview by stage of structural development 
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Table 1 summarises patterns of structural development for the 16 case studies at three 
interview points across the two-year period. Cases 1 to 5 represent children identified 
as low ability; cases 12 to 16 as high ability. For most cases there was clearly some 
developmental progression by at least one stage; cases 7, 8 and 13 progressed by two 
stages. Cases 1 and 9 showed no observable development of structure in 
representations or in achievement scores at interviews 2, and 3. For all high ability 
children there was progression to an advanced stage of structural development 
encouraged by the inclusion of more advanced tasks. It is not possible to ascertain 
whether these children may have been operating at this advanced stage at interviews 
1 and 2. Cases 1, 4 and 5 showed inconsistencies in their development. Although the 
low ability children (cases 1 to 5) made some progress, there was more dissimilarity 
than similarity in their responses, within and between cases. 

In order to illustrate developmental levels of structure, we discuss representative 
examples below of children’s responses to the triangular pattern task (where the 
pattern was reconstructed from memory and extended). We selected examples from 
each stage of structural development identified at the first interview and some 
exceptions of developmental patterns. The analysis centres on how representations 
conform to structural features such as numerical quantity, use of formal notation, 
spatial organization and shape, and construction of pattern. 

Figure 1 compares responses given by a high ability child showing the extension to a 
spatial and numerical pattern of triangular numbers. There is clear development from 
the stage of partial structure to an advanced stage of structural development. She was 
able to construct and explain the triangular pattern by repeating the previous row and 
adding one more circle. Her response indicated that she recognised the pattern, both 
structurally and numerically, and was therefore, in the early stages of being able to 
generalise pattern. This ability was also found in her other responses, for example, 
where she was able to discuss the pattern of digits in a multiple pattern of threes from 
3 to 60. 

    
 

 

Interview 1 
Partial 

Structure 

Interview 2 
Structure 

Interview 3 
Advanced 
Structure 

Interview 3 (second phase) 
Advanced Structure 

Figure 1: Case No. 13. Triangular Pattern Task: Structural Stages 
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Interview 1 

Partial Structure 
Interview 2 

Partial Structure 
Interview 3 
Structure 

Figure 2: Case No. 10. Triangular Pattern Task: Structural Stages 

In Figure 2 the child’s first interview shows evidence of some structure in the 
organization of circles. This becomes more clearly defined as a triangular pattern by 
interview 3 where superfluous features are excluded. 

In contrast, Figure 3 shows a child’s awareness of a pattern of circles with partial 
structure. This becomes transformed into triangular form at interview 2, but by 
interview 3 the image becomes more complex and there is no awareness of the 
numerical pattern. At a second attempt the image is replicated in a less coherent 
manner. The images become more disorganised and it can be inferred that the child’s 
internal representational system becomes more ‘crowded’ with unnecessary icons. It 
appears that the child loses sight of the initial, clearer numerical and spatial structure 
that he produced at interview 1. His profile of responses showed no improvement 
across tasks from interviews 1 to 3. 

      
Interview 1 
Partial Structure 

Interview 2 
Partial Structure 

Interview 3 
Partial Structure 

Interview 3  
(2nd phase) 
Partial Structure 

Figure 3: Case Study No. 9. Triangular Pattern Task: Structural Stages 

Figure 4 shows an initial idiosyncratic image depicting emergent structure; the child 
draws a triangular form as a ‘Christmas tree’ and attempts to draw a pattern as 
vertical rows of five circles. There is little awareness of the structure or number of 
items in the pattern; there is some indication of spatial structure with equally spaced 
marks. Interestingly the child produces a completely different image of circles drawn 
in a diagonal form at interview 2. She could not provide any explanation for an 
emerging numerical or spatial pattern. At interview 3 the child produced some 
elements of her initial image but it had fewer structural features. In responses to other 
tasks she was unable to use multiple counting, partitioning, equal grouping and equal 
units of measure. 
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Interview 1 

Emergent Structure 
Interview 2 

Pre-structural 
Interview 3 

Pre-structural 

Figure 4: Case Study No. 5. Triangular Pattern Task: Structural Stages 

CONCLUSIONS & IMPLICATIONS 
Longitudinal data supported our earlier findings that mathematical structure 
generalises across a wide variety of mathematical tasks and that mathematics 
achievement is strongly correlated with the child’s development and perception of 
mathematical structure. This study, however, advances our understanding by showing 
that stages of structural development can be described for individuals over time. We 
extend Goldin’s model to include two substages of developing structure and an 
advanced stage of structural development for young children. 

There was wide diversity in developmental stages shown for children of the same age 
range, and some progress shown for most children in their achievement scores across 
tasks and in their representations. However developmental patterns for low ability 
cases were inconsistent; the transition from pre-structural to an emergent stage was 
somewhat haphazard and some children revert to earlier, more primitive images after 
a year of schooling. There was evidence that some children may not progress because 
they complicate or ‘crowd’ their images with superficial aspects. Our data supports 
the findings of Pitta-Pantazi, Gray & Christou (2004) in that different kinds of mental 
representations can be identified for low and high achievers. Low achievers focus on 
superficial characteristics; in our examples they do not attend to the mathematical or 
spatial structure of the items or situations. High achievers are able to draw out and 
extend structural features, and demonstrate strong relational understanding in their 
responses. It was not possible to identify consistently, common features impeding the 
development of structure in the examples presented by low ability children.   

An important new finding gleaned from the cases is the phenomenon of increasingly 
‘chaotic’ responses over time. Representations over time became more complex with 
configurations and characters of the child’s earlier ‘system’ used inappropriately. In 
terms of Goldin’s theory, we infer that these children fail to perceive structure 
initially and continue to rely on reformulating superficial and/or idiosyncratic, non-
mathematical features in their responses. It appears that these children may benefit 
from a program that assists them in visual memory and recognising basic 
mathematical and spatial structure in objects, representations and contexts.   
However, our findings are still limited to a sample of 16 cases at three ‘snapshots’ of 
development. We plan to undertake longitudinal investigations (using multiple case 
studies) to track the structural development of low achievers from school entry, and 
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to evaluate effects of an intervention program focused on pattern and structure. In 
2003, a school-based numeracy initiative, including 683 students and 27 teachers, 
was successfully trialled using our research instrument. This initiative implemented a 
professional development program aimed at developing teachers’ pedagogical 
knowledge and children’s use of pattern and structure in key mathematical concepts. 
References 
Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. (1998). Students’ 

spatial structuring of 2D arrays of squares. Journal for Research in Mathematics 
Education, 29, 503-532.  

DeWindt-King, A. & Goldin, G. (2001). A study of children’s visual imagery in solving 
problems with fractions. In M. van den Heuvel-Panhuizen (Ed). Proceedings of the 25th 
Annual Conference of the International Group for the Psychology of Mathematics 
Education (Vol 2, pp.345-353). Utrecht, The Netherlands: Freudenthal Institute.  

Goldin, G.A. (2002) Connecting understandings from mathematics and mathematics 
education research. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th 
Annual Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 1, pp. 161-166). Norwich, England: Program Committee. 

Gray, E., Pitta, D., & Tall, D. (2000). Objects, actions, and images: A perspective on early 
number development. Journal of Mathematical Behavior, 18, 401-413.  

Mulligan, J. T. (2002). The role of structure in children’s development of multiplicative 
reasoning. In B. Barton, K. C. Irwin, M. Pfannkuch, & M. O. J. Thomas (Eds.), 
Proceedings of the 25th Annual Conference of the Mathematics Education Research 
Group of Australasia (pp. 497-503). Auckland, New Zealand: MERGA.  

Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children's intuitive models of 
multiplication and division. Journal for Research in Mathematics Education, 28, 309-
331.  

Mulligan, J.T., Prescott, A., & Mitchelmore, M.C. (2004). Children’s development of 
structure in early mathematics. In M. Høines & A. Fuglestad (Eds.) Proceedings of the 
28th annual conference of the International Group for the Psychology of Mathematics 
Education (Vol. 3, pp. 393-401). Bergen, Norway: Bergen University College. 

 Outhred, L., & Mitchelmore, M. C. (2000). Young children’s intuitive understanding of 
rectangular area measurement. Journal for Research in Mathematics Education, 31, 144-
68.  

Outhred, L., & Mitchelmore, M.C. (2004). Student’s structuring of rectangular arrays. In M. 
Høines & A. Fuglestad (Eds.) Proceedings of the 28th annual conference of the 
International Group for the Psychology of Mathematics Education (Vol. 3, pp. 465-472). 
Bergen, Norway: Bergen University College. 

Pitta-Pantazi, D., Gray, E. & Christou, C. (2004). Elementary school students’ mental 
representations of fractions. In M. Høines & A. Fuglestad (Eds.) Proceedings of the 28th 
annual conference of the International Group for the Psychology of Mathematics 
Education (Vol. 4, pp. 41-48). Bergen, Norway: Bergen University College. 

Thomas, N., Mulligan, J. T., & Goldin, G. A. (2002). Children's representations and 
cognitive structural development of the counting sequence 1-100. Journal of 
Mathematical Behavior, 21, 117-133. 

 



 

 

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 9-16. Melbourne: PME.  4-9 
 

A CASE STUDY OF HOW KINESTHETIC EXPERIENCES CAN 
PARTICIPATE IN AND TRANSFER TO WORK WITH 

EQUATIONS 
Ricardo Nemirovsky Chris Rasmussen 

TERC San Diego State University 

The broad goal of this report is to describe a form of knowing and a way of 
participating in mathematics learning that contribute to and further alternative views 
of transfer of learning. We selected an episode with an undergraduate student 
engaged in a number of different tasks involving a physical tool called “water 
wheel”. The embodied cognition literature is rich with connections between 
kinesthetic activity and how people qualitatively understand and interpret graphs of 
motion. However, studies that examine the interplay between kinesthetic activities 
and work with equations and other algebraic expressions are mostly absent. We show 
through this episode that kinesthetic experience can transfer or generalize to the 
building and interpretation of formal, highly symbolic mathematical expressions. 

INTRODUCTION 
How experiences and knowledge from one situation transfer or generalize to another 
situation has long been a topic of interest (e.g., Thorndike, 1906; Judd, 1908; 
Wertheimer, 1959). In recent decades researchers have posed alternatives to what 
now is commonly referred to as a classical or traditional view of transfer (Lobato, 
2003; Tuomi-Grohn & Engestrom, 2003). Many of these alternatives are grounded in 
situated and socioconstructivists perspectives rather than in behaviorist or 
information processing perspectives. For example, Hatano and Greeno (1999) argue 
that rather than treating knowledge as a static property of individuals that is correctly 
or incorrectly applied to new tasks (which is compatible with traditional views of 
transfer), more emphasis should be placed on the norms, practices, and social and 
material interactions that afford the dynamic and productive generalization of 
learning. Hatano and Greeno further argue that alternative views of transfer offer 
researchers insights into how “students may develop quite different forms of knowing 
when they learn in practices that involve different ways of participating” (p. 650, 
emphasis added).  

The broad goal of this report is to bring together a different form of knowing with a 
different way of participating in mathematics learning and in so doing contribute to 
and further alternative views of transfer. Classic forms of knowing include knowing-
how and knowing-that (Ryle, 1949). These forms of knowing tend to be static, purely 
mental, and compatible with traditional views of transfer that look for direct 
application of knowledge. A different distinction in forms of knowing that is 
potentially more useful for alternative views of transfer is that of knowing-with and 
knowing-without. Knowing-with characterizes aspects of meaning making as it 
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relates to developing expertise with tools. Knowing a mathematical idea with a tool, 
for example, (1) engages multiple and different combinations of dwelling in the tool, 
(2) invokes the emergence of insights and feelings that are unlikely to be fully 
experienced in other ways, and (3) is in the moment. The opposite of knowing-with is 
knowing-without. We all have had experiences of knowing-without embedded in 
feelings of something being alien, foreign, and belonging to others. The difference 
between knowing-with and without is not absolute but contextual (Rasmussen & 
Nemirovsky, 2003; Rasmussen, Nemirovsky, Olszewski, Dost, & Johnson, in press). 
These characteristics of knowing-with resonate with many of the features of Lobato’s 
(2003) actor-oriented perspective on transfer and Greeno, Smith, and Moore’s (1993) 
situated view of transfer.  

In addition to different forms of knowing, Hatano and Greeno (1999) direct our 
attention to different ways of participating in mathematics learning. In this work we 
draw on recent advances in embodied cognition that highlight the centrality and 
significance of learners’ gestures and other ways of kinesthetically participating in 
mathematical ideas. Nemirovsky’s (2003) review of embodied cognition distills two 
conjectures regarding the relationship between kinesthetic activity and understanding 
mathematics that help frame this research report. First, mathematical abstractions 
grow to a large extent out of bodily activities. Second, understanding and thinking are 
perceptuo-motor activities that are distributed across different areas of perception and 
motor action. We also note that the embodied cognition literature is rich with 
connections between kinesthetic activity and how people qualitatively understand and 
interpret graphs and motion (e.g., Nemirovsky, Tierney, & Wright, 1998; Ochs, 
Jacobs, & Gonzales, 1994). It is noteworthy, however, the absence of studies that 
examine the interplay between kinesthetic activities and work with equations and 
other symbolic expressions. Thus, the focused goal of this report is to investigate the 
ways in which kinesthetic activity can participate and transfer to work with 
conventionally expressed equations. 

LITERATURE REVIEW ON TRANSFER  
At the beginning of the century Thorndike (Thorndike, 1906; Thorndike & 
Woodworth, 1901) conducted the first series of “transfer studies.” Since then, the 
overall scheme of these studies became established: subjects who have had 
experience with a source or learning task are asked to solve a target or transfer task, 
and their performance is compared to a control group. In looking back at the many 
studies and debates on the notion of transfer of learning that were developed during 
the twentieth century, we will describe what we recognize as dominant themes and 
concerns in the literature. 

The aim of most of the transfer research has been to predict and identify the 
conditions under which transfer does or does not happen. On the one hand we 
intuitively know that in everyday life we are constantly "transferring” in the broad 
sense; that is, we are making connections to our past experience, bringing metaphors 
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to life, sensing a stream of thoughts populated by unexpected associations, and so 
forth. On the other hand, the results of transfer research have led many researchers to 
conclude that transfer is rare and difficult to achieve unless it is “near” or based on 
source and target situations that are markedly similar (Singley and Anderson, 1989). 
This mismatch between common expectations and the results of the transfer studies 
is, to this day (Anderson, Reder, & Simon, 1996; Lave, 1988), a centerpiece of the 
debates.  

In order to predict the occurrence of transfer and to conduct empirical corroboration, 
theorists postulated several different types of transfer mechanisms. These 
mechanisms have centered on the preservation of structures, that is, on the thesis that 
transfer takes place when certain structures present in the subject dealing with the 
source task are re-activated when dealing with the target tasks. Thorndike proposed 
that what one learns in a certain domain transfers to another domain only to the 
extent that the two domains share "identical elements."  

On the other hand, during the period dominated by information-processing 
approaches, the preservation of mental structures came to be seen as the key for the 
occurrence of transfer. The idea was that, rather than the features of the tasks 
themselves, what matters is how people conceptualize the tasks; in other words, the 
mental structures that subjects bring to bear when they deal with the tasks (Singley & 
Anderson, 1989).  

Transfer studies often cite the literature on “street mathematics” which examined the 
ways in which people in different cultures solve arithmetic problems from everyday 
life (e.g., Lave, 1988; Nunes, Schliemann, and Carraher, 1993; Saxe, 1982). We think 
these studies question the idea that there are some mathematical procedures that are 
optimal for everyone at all times. This research has repeatedly shown that people 
compose solutions to the problems they face by combining multiple approaches as 
well as the resources and demands of the situation at hand. There is nothing exotic 
about creating idiosyncratic procedures and merging practices, on the contrary it is 
common and widespread.  

As new teaching practices inviting students to invent algorithms are becoming part of 
schooling, it is increasingly clear that the diversity of approaches and dynamic 
composition of solutions can be as typical in the school as it is in the street. The old 
idea that there are some mathematical procedures that are optimal for everyone at all 
times is an artifact of cultural practices traditionally associated with schooling. The 
main issue made prominent by research on street mathematics is not, we believe, that 
school-based algorithms fail to transfer, but that people, rather than using pieces of 
knowledge as ready-made structures that get applied to new situations, compose 
solutions by making use of multiple approaches and tuning them to the resources and 
demands at hand. In this report we examine how prior kinesthetic experiences with a 
physical tool can offer students resources that can be generalized to work with 
symbolic equations. 
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METHOD 
We conducted a total of eight, 90- to 120-minute open-ended individual interviews 
with three students. In the interviews students engaged in a number of different tasks 
involving a physical tool called the water wheel. As shown in Figure 1, the water 
wheel consists of a circular plexiglass plate with 32 one-inch diameter plastic tubes 
around its edge. Each tube has a small hole at the bottom. The plate turns on an axle 
and is free to rotate. The tilt of the axle can be adjusted between 0 and 45 degrees 
from vertical. Water showers into the eight uppermost tubes from a curved pipe with 
holes along its underside.  

 
          Figure 1. The water wheel 

A computer interface permits users to graph angular velocity versus time, angular 
acceleration versus time, and angular velocity versus angular acceleration while the 
wheel is turning (Nemirovsky & Tinker 1993). Water showers into the tubes when 
they are carried underneath the shower pipe. As the wheel turns, the water gathered in 
each tube provides a torque around the axis of the wheel. Because each tube leaks 
water from the bottom, the amount of water in each tube decreases over time, until 
that tube again swings upward to the shower pipe to receive more water. With 
different choices of tilt angle, flow rate, bearing friction, and initial water 
distribution, the motion of the wheel exhibits a variety of periodic, almost periodic 
and chaotic motions, as well as period doubling and transitions into chaos. During 
periodic motion, water tends to accumulate in a bell-shaped distribution in the tubes, 
which students often call “the heavy spot” (see Figure 1). 

Touching and sensing the heavy spot was a critical and significant experience for 
students. For example, in the second interview “Jake” predicted that a certain graph 
of velocity versus acceleration would be circular in shape. Computer generated 
graphs of actual data, however, indicated the graph to be dimpled on the top and 
bottom, like an apple. Jake ultimately concluded that the apple shape had to be the 
case by physically touching and sensing the forces at play in the motion of the wheel 
(see Rasmussen & Nemirovsky, 2003 for more detail).  

Each student we interviewed had completed three semesters of calculus and had 
taken or was taking differential equations. The interviews used a set of preplanned 

shower pipe 

the heavy spot 

photogates A submersible pump sends water to 
the pipe, with a valve to regulate the 
flow. An oil bath between nested 
cylinders provides dynamic friction 
for the axis of rotation. Raising or 
lowering an oil reservoir varies the 
oil level in the cylinders. The 
angular velocity of the water wheel 
is measured by two photogates that 
detect the motion of a pattern of 
black lines on the wheel top.  
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tasks as a springboard for exploration of mathematical ideas that were of interest to 
the student, rather than as a strict progression of problems to complete. We also 
actively worked in the interviews to establish an environment in which the student 
felt comfortable exploring new ideas and explaining their thinking, however 
tentative. All interviews were videotaped and transcribed. Summaries of each 
interview were developed and compared across all interviews. In this report we focus 
on the learning of one student, Jake, in his third and final interview because it was 
most helpful in our understanding how kinesthetic activity with a tool can transfer to 
work with symbolic equations. 

MATHEMATICAL IDEAS INVESTIGATED 
The first two interviews focused on qualitative and graphical interpretations of 
motion while the third interview, which is the source of data for this paper, focused 
on interpretation of the system of differential equations that model the motion of the 
water wheel.  

We planned for students to engage in reasoning about a variety of different phase 
plane representations. A typical example of a phase plane is the R-F plane for a 
system of two differential equations dR/dt and dF/dt, which might, for example, 
model the evolution of two interacting populations of animals such as rabbits R and 
foxes F. For instance, consider the system of differential equations, dR/dt = 0.2R – 
RF, dF/dt = -F + 0.8RF, intended to model the population of rabbits and foxes. 
Students in modern approaches to differential equations are often required to interpret 
the meaning of the individual terms in the equations. For example, why is it the case 
that the first equation has a minus RF term while the second equation has plus RF 
term? Students in these interviews had engaged in similar analyses in their 
differential equations course for equations like dR/dt and dF/dt and had developed a 
number of interpretive strategies. One strategy was to view the RF terms as an 
indication of what happens to the populations when the two species interact. Another 
strategy was to interpret the equations when either R or F is zero. An information 
processing approach would judge successful (or not) transfer in terms of the extent to 
which these interpretive strategies were employed in the novel task with the water 
wheel. 

The phase plane analyses that we planned to use with the water wheel centered on 
graphs in the angular velocity-angular acceleration plane, coordinated with time 
series graphs, and with the motion of wheel. In the third interview we invited students 
to engage in interpretive analyses of the following system of three differential 
equations that model the motion of the water wheel: dX/dt = σ(Y - X), dY/dt = -Y + 
XZ, dZ/dt = R - Z – XY. The variables X, Y, and Z are dimensionless combinations 
of physical variables, each with a fundamental meaning. X represents angular 
velocity, Y represents the left-half right-half water imbalance, and Z represents the 
top-half bottom-half water imbalance. If more water is in the right half of the wheel, 
then Y is positive. A negative value for Y indicates that more water is in the left half 
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of the wheel (such as the instant in time shown in Figure 1). Similarly, a positive Z 
value means that more water is located in the top half of the wheel. The parameter R 
essentially relates to the pump flow rate and tilt while the parameter σ relates to the 
amount of friction (oil level). All of this was explained to the students in the 
interview. 

The -Y term in the equation dY/dt = -Y+XZ accounts for the fact that water flows out 
of the tubes in such a way that any differences in their left-right distribution tend to 
nullify. Both sides tend to have less and similar amounts of water. This happens 
faster if Y is bigger. From this perspective, dY/dt might be understood as the rate at 
which the left-right imbalance is evening out. Jake’s knowing Y with the heavy spot 
cultivated a different perspective on dY/dt. As we elaborate in the next section, 
Jake’s earlier kinesthetic engagement with the water wheel’s “heavy spot” afforded 
him novel and productive ways to make sense of various terms in the differential 
equations.  

ANALYSIS AND DISCUSSION  
We often see students designing graphs to produce narratives of perceptuo-motor 
events, but the use of standard symbolic notations often seems less likely to elicit 
such direct unfolding of interpretation. An important contribution we make in this 
report is to clarify and document that kinesthetic experiences can play the role of 
“bridges” that experientially bring together partial results obtained by symbol 
manipulation with certain “states of affairs” that students have engaged with 
physically. In the following example, which is typical of Jake’s work with the 
equations, kinesthetic experiences anchor his interpretations of why the different 
terms in the differential equations make sense (or not).  

His analysis of the differential equation dX/dt = σ(Y–X) began with an attempt to 
interpret the right hand side of the first equation as a whole. He reasons out what 
happens to the angular acceleration (since that is what he understands dX/dt to mean) 
when the amount of damping increases. As Jake worked through this approach, he 
began to tease out how the individual terms in the right hand side of the first equation 
might make sense to him. To do so, he returned to the idea of a “heavy spot,” which 
he had introduced in earlier investigations, mainly of periodic motion. In this way, 
anchored in a special case, he built interpretations that will hold in general. The 
following excerpt picks up this conversation with Jake reflecting on whether it makes 
sense for the equation to include a positive Y term rather than a negative one (–Y).  

Jake:  OK. Now, the positive term of Y, at least, uh, seem to make sense because, if 
the [holds his hands out, palms up], if it’s the more imbalanced [Chris draws a 
circle on the board next to the equations], the, uh, more [makes a half rotation 
gesture], uh, the higher the acceleration. Because, if it’s much more heavier on 
this side [cups hand over right side of the circle diagram on the board] than this 
side [cups hand over left side of the circle], then it seems to make sense that the 
pull due to this much heavier side [cups right side of circle]. Seems to be, uh, 
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much stronger and, therefore, it [gestures with a grabbing and pulling motion 
downward] seems to accelerate, uh, much more faster.  

Chris: Mmmm. So, that’s when Y is positive. [Jake: Right]. How about when Y is 
negative?  

Jake:  OK, yes. That’s what I was going refer to. Um. Y, Y is negative in a situation 
where the, uh, uh, the heavier side is, on this side [points to left side of the 
circle]. And, um, and, if there’s. So, the pull is this way [gestures down], 
therefore, the acceleration is negative [gestures in a counterclockwise swirling 
motion] instead of positive [gestures in a clockwise swirling motion]. 

As Jake began his explanation, Chris drew a circle on the board next to the 
differential equations. Jake’s gestures (noted in the transcript) transform this circle 
into a diagram of the water wheel, with a heavy spot implicitly in evidence. For 
example, Jake cups a portion of this circle with his hand, as if he were grasping for 
the heavy spot. Jake’s gesture, cupping his hand as if he had taken hold of the heavy 
spot, suggests a form of being the wheel, in the sense that forces and rotational 
movement are brought forth through the way he works with the circle diagram of the 
water wheel drawn on the board. In this way, his physical experience, interpreted 
through his concept of the “heavy spot,” anchors his interpretation of the first 
equation. In a similar way, his physical experience, combined with key ideas that he 
has built in order to reflect on that experience, help Jake make sense of the remaining 
two equations. Other examples will be rendered in the presentation of this paper. 

FINAL REMARKS 
Representations, such as equations and graphs, are indispensable for mathematical 
thinking and expression. It is one thing to know, for example, that the slope of the 
graph of a certain function obeys a certain equation, while it is another thing to sense 
bodily the need to slow down and the different ways of slowing down. While these 
aspects can be dissociated, and in fact they often are (e.g., solving an equation 
without any kinesthetic sense of the motion it describes), they can be related in 
manifold and complex ways. It is possible that this widespread dissociation leads 
students to uncritically accept mistaken results obtained through formal calculation, 
because the latter tends to be performed without the guidance of intuitive 
expectations. In this report we showed that kinesthetic experience can transfer or 
generalize to the building and interpretation of formal, highly symbolic mathematical 
expressions. This existence proof has the potential to open new ground for research 
on embodied cognition and transfer. 

This work has been supported in part by the National Science Foundation (Grants REC-
0087573 & REC-9875388). All opinions and analysis expressed herein are those of the 
authors and do not necessarily represent the position or policies of the funding agency.  
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THE CONSTRUCTION OF PROPORTIONAL REASONING  
Stephen J. Norton 

Queensland University of Technology 

The development of proportional reasoning has long been recognised as a central but 
problematic aspect of mathematics learning. In a Year 6 teaching intervention the 
part/whole notion of fractions was distinguished from the part:part notion of ratio, 
and the “between” and “within” relationships in ratio were emphasised. Numerous 
representations of fractions and ratio including LEGO construction activities were 
used to develop the multiplicative thinking associated with these concepts. The pre-
post results indicated this integrated approach helped students to apply proportional 
reasoning and to enumerate their responses.  

BACKGROUND AND RATIONALE 
Ratio and proportional thinking and reasoning abilities are seen as a corner stone of 
middles school mathematics and this observation is reflected in current syllabus 
documents (e.g., National Council of Teachers of Mathematics, 2004) and by 
educators such as (e.g., Nabors, 2002). In this article the term “proportional 
reasoning” is used to describe the concepts and thinking required to understand rate, 
ratio and proportionality including scale.  

A number of authors (e.g., Ilany, Keret & Ben-Chaim, 2004; Lo & Watanabe, 1997) 
have noted that the essence of such thinking is essentially multiplicative. Ability in 
such thinking is needed for and understanding of percentages, gradient, trigonometry 
and algebra. Lamon (1995) noted that proportional reasoning has typically been 
taught in “a single chapter of the mathematical text book, in which symbols are 
introduced before sufficient ground work has been laid for students to understand 
them” (p. 167). It is hardly surprising then, that many adolescent students who can 
apply numerical approaches meaningfully in addition context, can not apply such 
approaches to the multiplicative structures associated with proportional reasoning 
(e.g., Karplus, Pulos, & Stage, 1983). Indeed many of the error patterns that students 
demonstrate in relation to proportional reasoning problems illustrate that they apply 
additive or subtractive thinking processes rather than multiplicative processes 
(Karplus et al. 1983). Unfortunately, exposing students to routine multiplication and 
division problems alone, has not been effective in helping students to develop deeper 
understanding of proportional reasoning. This is in part because students need to 
understand fractions and decimals as well as multiplicative concepts (Lo & 
Watanabe, 1997).  

The teaching and learning of fractions and decimals is problematic (e.g., Pearn & 
Stephens, 2004). These authors have noted that many misconceptions that students 
hold are the result of inappropriate use of whole number thinking, including not 
understanding the relationship between the numerator and the denominator. Pearn 
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and Stephens (2004) found that a major problem for students because they did not 
understand the part/whole relationships described in fraction notation, and 
recommended the use of multiple representations of fractions using discrete and 
continuous quantities and the number line. Given the challenge in learning fractions, 
it is not surprising that when the multiplicative thinking associated with proportion is 
added to the learning cycle, many students struggle with cognitive overload, an 
observation well noted (e.g., Ilany et al. 2004).  

The linkage between fractions and ratio is seen in many mathematics texts books. In 
particular; “students are shown how to represent the information in proportion word-
problems as an equivalent fraction equation, and to solve it by cross multiplying and 
then dividing” (Karplus, et al. 1983, p. 79). The problem with this approach is that in 
the context of fractions the numerator represents a part and the denominator the 
whole, while in the case of ratio both the numerator and the denominator represent 
parts. Thus, while the use of fraction notation in solving some proportion problems 
may seem expedient in setting out a multiplication and then division algorithm, it is 
likely to confuse students as to what really is the whole, in fractions this is the 
denominator, while in ratio it is the sum of the two parts. Since the mathematics text 
books generally do not teach fractions and proportional reasoning in an integrated 
way, and usually this distinction is not made explicit, student confusion is 
understandable. 

The particular issues described are set in a wider agenda of curriculum reform. In 
particular a curriculum shift towards communication of reasoning, problem bases 
learning and integration based on authentic tasks that include science and technology 
(e.g., NCTM, 2004). A second level of integration, which is integration between 
domains within mathematics subject material has also been recommended (Lamon, 
1995). By coincidence, the intervention planning model was remarkably similar to 
that described by Ilany, Keret and Ben-Chaim, (2004., p. 3-83) in which authentic 
investigative activities for the teaching of ratio and proportion are described. Thus, 
the aim of this study was to use an integrated approach, across and within the subject 
domain of mathematics to the teaching of proportional reasoning and assess the 
cognitive outcomes.  

METHOD  
The research approach was one of participatory collaborative action research 
(Kemmis & McTaggart, 2000). The researcher established a working relationship 
with the teachers and taught one 90 minute lesson in each class, each week over a 10 
week period. The researcher and the two teachers involved in the study planned the 
unit of work during weekly meetings. The collection of data included observations of 
students’ interactions with objects, peers and teachers, students planning and 
construction of artefacts, their explanations of how things worked, and written pre 
and post-tests.  
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Subjects 
The subjects were 46 Year 6 students in two classes in a private girls’ school in 
metropolitan Brisbane. The two classroom teachers were also part of the study. Annie 
(all names are pseudonyms) was a very experienced primary school teacher. Louise 
was a first Year teacher having recently completed her degree in primary teaching 
and quickly adapted to the concepts and pedagogy.  

Procedure and Instruments. 

At the beginning and end of the study were tested for knowledge on proportional 
reasoning. The pencil and paper test had 18 questions. Some questions had simple 
and familiar contexts with structures as follows:  

To make drinks for sports day follow the recipe information given. (a) “Mix 1 litre of 
juice concentrate with 9 litres of water.” What is the ratio of juice to water? (b) How 
many litres of juice concentrate is needed to make a sports drink that is 20 litres in total?  

Such a question can be solved with arithmetic thinking, including the construction of 
tables which can be done with repeated addition. Other questions required a greater 
abstraction of the notion of proportion, and are not easily solved without a structural 
understanding of proportion, e.g.:  

My recipe for ANZAC biscuits states that I need two cups of rolled oats to make 35 
biscuits. I want to make 140 biscuits, how many cups of rolled oats will I need? 

Suppose Challenge College has 800 students and 50 teachers, while Light College has 
750 students and 25 teachers. Use mathematics to explain which school is likely to 
provide better learning opportunities for the students.  

The test included questions directly related to the subsequent construction learning 
contexts such as the inclusion of a diagram, of a bicycle and the following question: 

Explain the effect that turning gear A (attached to the peddles) will have upon gear B 
which has 16 teeth on it (attached to the rear wheel).  

Examine the diagram of the pulleys below. If the circumference of pulley A is 20 cm and 
the circumference of pulley B is 40 cm and the circumference of pulley C is 10 cm, and 
pulley B is spun twice, describe how pulleys A and C will spin. Explain your answer.  

Scoring was on the basis of correctness and completeness of explanations. Simple 
items such as the first question above, were allocated 1 mark, while more complex 
questions requiring symbolic manipulation and justification were allocated 2 marks. 
Over the life of the study student explanations of their understanding of proportional 
reasoning was recorded in their written and verbal explanations, which on occasions 
were trapped on audio or video.  

During the intervention fractions were taught emphasising on the sharing division 
and part/whole relationships. Payne and Rathmall’s (1975) principles of constructing 
relationships between concrete materials, language and symbolism were emphasised 
through out the study. Various representations were used, including area, line set and 
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volume models. Multiple Attribute Blocks (MAB) was used to link common fractions 
with fractions with a denominator of 10 or base 10. For example a 10 rod could be 
viewed as the whole and students were asked to name the fraction shaded if 2 one 
blocks were shaded (2/10 or 1/5). Similarly the students were asked to view the 100 
square as the whole and the 1000 cube as the whole. MAB material was also used to 
make links to decimal notation, with students having to express parts of the whole as 
a decimal. While fraction operations were not taught, the multiplicative relationships 
associated with equivalent fractions were taught using each of the models above 
(area, set, linear and volume) MAB materials and equivalent fraction strips. Students 
then represented simple fractions e.g., 2/100 as decimals (0.02) and percentages 
(2%). That is, percent was seen as a special way of writing decimal fractions with the 
whole being 1, or 100 hundredths. Linking to the base 10 number system capitalises 
on students prior experience with the decimal number system. 

Ratio or proportion was introduced by emphasising the part/part relationship of ratio 
as distinct from the part/whole relationship of fractions. The same models used to 
teach fractions (area, set, line, volume) were used to teach the part:part relationships 
involved in ratios including equivalent ratios. The linkages between common 
fractions, decimals and percentage were taught using the models above including the 
use of MAB and were consolidated in the first one of three critical learning lessons. 
In this lesson students were taken to the science laboratory and asked to make up 
solutions 1 part food dye with 9 parts water (volume model), 1 part food dye with 99 
parts water, 1 part food dye with 999 parts water. As the students made up the 
dilutions they recorded the colour, ratio (1:9); fraction 1/10; decimal 0.1 and percent 
10%. The students repeated the dilution activity, but rather than making up 1 ml of 
dye with 99 ml of water, they took 1 drop of 10% solution and mixed it with 9 drops 
of water to make a 1:99 ratio or 1% solution and compared the colours to the 
solutions they had made earlier. Students repeated the dilution process to make ratios 
to 1 part per million. Through such activities students were given multiple 
opportunities to distinguish between the part/whole relationship of fractions and the 
part:part relationships of ratio. Contextual links were also made. 

The second critical learning activity involved proportional reasoning related to body 
parts. Students designed their methods to test the hypothesis “Is Barbie a Monster?” 
They compared their own proportions (e.g. leg length to abdomen length (part:part); 
waist diameter to bust diameter (part:part), foot length to total height (part/whole) 
with that of the equivalent ratios and fractions on the Barbie dolls they investigated. 
Subsequently the students make 2 dimensional scale models of Barbie with 
cardboard, taking measurements of Barbie and multiplying by 5 to make the scale 
model the height of the average girl in the class. The students concluded that Barbie 
was indeed a monster.  

The third critical lesson involved the students using their knowledge of proportional 
reasoning, to construct cars with LEGO materials. These materials included axels, 
blocks and connecting pieces, motors, gears and pullies, that comprised the Simple 
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and Powered Mechanisms kits (LEGO Educational Division, 2003). The first car was 
designed to be fast, and the second to win a tug of war competition. Throughout the 
design and evaluation phases the students were encouraged to make their gearing 
explanations explicit and formal. In setting out proportion problems, the structural 
relationships associated with proportion including identifying the “within quantity 
relationships” and the “between quantity relationships” as described by Lamon 
(1995. p. 172) was used.  

ANALYSIS 
The written pre and post-test scores were compared using repeated regression 
analysis. In assessing the artefacts the associated explanations the description of ratio 
provided by (Lamon, 1995) and detailed above were used. Emerging assertions were 
discussed with the teachers and colleagues and tested and refined in the light of 
further evidence. Triangulation involved the use of multiple data sources identified 
and this maximised the probability that emergent assertions were consistent with a 
variety of data.  

RESULTS 
The results are presented as a number of assertions.  

Assertion One: Almost all students improved in their ability to complete questions on 
the pencil and paper test.  

Table 1: Pre and post-test paired results on rate and ratio question, total 24 marks. 

Test N mean SD 

Maths pre-test 44 10.35 5.24 

Maths post-test 44 16.17** 4.62 

** significant at p<0.01 

Not surprisingly on the pre-test many students were able to give correct responses to 
questions that could be solved with simple additive projections. For example 35% of 
students correctly answered the drinks question on the pre-test, while only one 
student failed to get this question correct on the post-test. On questions where simple 
arithmetic thinking was less able to assist, such as the ANZAC biscuit question the 
proportion of students who improved was greater for example on the ANZAC 
question, pre-test 5% correct, while on the post-test 32% of students answered 
completely correctly and 33% of the total number of students made computational 
errors rather than errors related to proportional thinking, that is 65% used 
proportional reasoning. On the questions related to the construction contexts such as 
the bicycle gearing; 14% of pre-test answered correctly, while on the post-test 55% 
answered completely correctly and a further 25% used proportional thinking but 
made computational errors. Likewise on pre-test pulley question 27% students 
answered correctly while on the post-test 46% answered completely correctly but 
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only two students failed to recognise the application of ratio concepts. The most 
common misconception of those students who erred in this question was to fail to 
recognise the inverse relationship, for example stating that the smaller pulley would 
turn fewer times. The question relating to the ratio of students to teachers was 
revealing. In the pre-test 9% of students provided a complete solution. However, 38% 
of students provide an answer that indicated the relationship between student and 
teachers had accounted for (e.g., “Challenge College because there are more teachers 
to provide better learning in the classes” or “Challenge College because it is easier 
for the students to ask questions.”). Eight students (18%) provided solutions or 
reasons which indicated they had added or subtracted. In the post-test 20% provided 
complete responses, a further 50% provided responses that indicated they had taken 
account of ratio. While two students provided explanations or solutions indicating 
additive or subtractive thinking, the responses of the remaining students remained 
undetermined.  

Assertion Two: Most students were able to demonstrate proportional understandings 
associated with their investigation as to whether Barbie was a monster. 
All the groups succeeded in constructing scaled cardboard models of Barbie and all 
students made comments that indicated an appreciation for Barbie’s proportionality. 
For example:  

S1 Her thighs are normal, but her legs are too long for her body, her waist is tiny, her 
chest is larger than normal. If she was a human she would die because her organs 
will not fit in her body. 

S2 Barbie’s hands are too small, if she were our height she would have hands the same 
size as a prep kid, we measured one (5 years old) and that is the age her hands are at.  

It is interesting that although students had to use multiplication in the construction of 
their model, no student provided quantitative explanations in the context of justifying 
Barbie’s proportionality.  

Assertion Three: Most students improved in their abilities to construct and explain 
the proportional concepts associated with the gearing of their cars and tractors.  

Early in the teaching phase students were asked to design, construct and explain a 
fast car using LEGO materials. All students chose to use pulleys to convey the power 
from the motor to the rear wheels. Only one group (of 14 groups) used the pulley 
mechanism appropriately (that is a large pulley attached to the motor and a smaller 
one attached to the wheels). No students provided explanations that indicated an 
understanding of the nature of the pulley ratios they constructed. At the end of the 
intervention the students constructed tractors designed to pull loads, seven groups 
used pulleys and seven groups used cog gearing. Of the 14 groups only one did not 
attempt to explain their ratios, but while only one of the groups who used pullies tried 
to quantify it, all of the groups who used gears did so. Three groups used 
inappropriate gearing or pulley ratios and had incorrect explanations and 10 groups 
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used appropriate ratios and had at least partially correct explanations. Samples of 
student explanations are as follows: 

S3 The gearing is 5:1 which means that the small one goes around 5 times and the one 
on the wheel, the forty one goes around once. 

S4 The most important factor about our tractor is the pulleys because they make the car 
go slowly so it gets more force and can pull the other cars better.  

DISCUSSION AND CONCLUSIONS 
Karlpus, Pulos and Stage (1983) found that when middle school students were asked 
to compare ratios such as 4:6 and 10:15, or only about 18% of students used 
proportional strategies. The pre-test data presented in assertion one is consistent with 
Karlpus et al., (1983) findings, that is a low proportion of students apply proportional 
reasoning when ratio relationships become less obvious in the data, a finding also 
supported by Ben-Chaim, et al., (1998). The post-test data indicated that between 
50% and 75% of students were using proportional thinking. The data associated with 
the “Is Barbie a monster?” investigation indicates that these Year 6 students tended to 
use qualitative rather than quantitative explanations of proportionality. That is they 
had to be encouraged to “symbolise” proportionality, a finding that confirms that 
qualitative schemas develop before quantitative schemas. Establishing the 
relationships between representations has long been recognised (e.g., Payne & 
Rathmall, 1975). The data under assertion three, associated with the LEGO 
construction indicated that the medium of sense making was important in the process 
of enumeration. For example, no students who used pulleys in their construction 
quantified their ratios. This is not surprising since to do so necessitated the use of the 
intermediate relationship of diameter and circumference. In contrast, all of those who 
used gears, which afforded a relatively straight forward opportunity to count the gear 
teeth, quantified their explanations.  

The linkage of fraction thinking, decimals and proportional thinking has not been 
well explored in the research literature, although Nabors (2002) linked fractional 
reasoning tasks rate, ratio and proportionality and found that this approach helped 
one case study student to develop proportional schemas. The relatively rare post-trial 
confusion as to when to use part/whole and part:part relationships and the relative 
absence of additive strategies suggest that the linkage of multiplicative structures of 
the base ten number system with part/whole notions of fractions and part:part notions 
of proportion was helpful. There may well have been important for two reasons. 
Firstly, the focus on fractions, especially equivalent fractions may well have helped 
to emphasise the multiplicative relationships underpinning both fractions and 
proportion. Secondly, it is likely it helped students distinguish those contextual 
situations that necessitated the use of use additive or subtractive thinking compared to 
the use of use multiplicative thinking associated with proportion. The emphasis upon 
“within quantity relationships” and the “between quantity relationships” as described 
by Lamon (1995) may well have contributed to the high proportion of students who 



Norton 

 

4-24 PME29 — 2005 

presented correct or partially correct solutions to problems that typically perplex 
students several years older. In summary, this study has indicated, that affording 
students the opportunity to make links between the fractions, the decimal number 
system and proportion through the use of common models and authentic contextual 
problem situations, has assisted them to develop proportional reasoning. Clearly, 
further research unpacking how these approaches assist students to develop the 
multiplicative thinking associated with proportional reasoning is needed.  
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THE TRANSITION OF A SECONDARY MATHEMATICS 
TEACHER: FROM A REFORM LISTENER TO A BELIEVER  
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Research on professional development has focused on elementary school teachers. 
This study is part of a larger study that investigates professional development 
strategies that support the growth of secondary teachers. Findings indicate that 
secondary teachers may need experiences that challenge them to re-examine their 
knowledge and identity before considering implications of reform mathematics.  

Mathematics educators (Farmer, Gerretson, & Lassak, 2003; Harel & Lim, 2004; 
Kazemi & Franke, 2004; Lin, 2004; Patterson & Norwood, 2004) investigated several 
professional development strategies to deepen teachers’ content and pedagogical 
knowledge. Farmer, Gerretson, and Lassak found that teachers developed their 
content knowledge when they solved non-routine problems and reflected on how they 
could be used in their classrooms. By reflecting on the learning environment, these 
teachers noticed critical aspects in the learning environment that promoted their own 
learning and were motivated to change facets of their own practice. Kazemi and 
Franke found that when teachers asked their students to solve the same task and then 
discussed their students’ work during a professional development session, the 
teachers attended to the details of students’ thinking and began to create learning 
trajectories to develop more sophisticated reasoning. Lin found that helping teachers 
create situations for students to pose-problems provided student responses for 
assessment and instructional planning. These studies indicate that helping teachers 
become more aware of how their knowledge and actions influence students’ learning 
appears to be critical for teachers’ professional growth.  

Mason (2002) describes the art of noticing as “being awake to situations, being 
mindful rather than mindless” and can be cultivated through deliberate acts (p. 38). 
Researchers (Heinz, Kinzel, Simon, & Tzur, 2000; Kazemi & Franke, 2004) suggest 
that teachers’ professional growth is linked to their ability to listen carefully to 
students’ articulation of mathematical ideas, to ask probing questions, and to consider 
students’ responses in light of mathematical concepts. The following five strategies 
supported elementary teachers to notice details of students’ responses: (a) using rich 
tasks (Stein, Smith, Henningsen, & Silver, 2000), (b) using a research-based 
framework that maps the development of number sense (Carpenter, Fennema, 
Peterson, & Carey, 1988), (c) asking questions (Haydar, 2003), (d) examining 
students’ responses (Lin, 2004; Harel & Lim, 2004), and (e) prompting teachers’ 
pedagogical curiosity (Olson, in press).  
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This study extends previous research by investigating the complexities of deepening 
teachers’ content knowledge simultaneously with their pedagogical knowledge. It is 
part of a larger research project which investigates how different professional 
development approaches influence teachers’ beliefs and actions in the classroom. 
Specifically, this study sought to describe how a course in which secondary teachers 
created conceptual rubrics to interpret students’ responses and plan instruction 
influenced their beliefs and practices.  

THEORETICAL FRAMEWORK  
The theoretical framework guiding this study is that of situated learning in which 
knowledge is co-produced as individuals discuss, adapt, or create models (Boaler, 
2000). The situated perspective assumes that learners function in a social context and 
that learning can not be isolated within a class. Learning is located within classrooms, 
schools, and communities and the practices in these setting influence how an 
individual incorporates new ideas into their beliefs and practices.  

Research using a perspective of situated learning focuses on how individual develop 
and use knowledge through their interactions within a social context (Boaler, 2000). 
To investigate how individuals create new understandings in a social environment, 
Lave (1993) suggested that researchers collect and interpret data that reflects an 
individual’s learning through his or her actions. This data can then be interpreted to 
indicate changes in an individual’s competence and knowledge, identity, and 
practices.  

METHODS 
Six secondary and seven elementary teachers to investigate rational numbers using 
the textbook Teaching Fractions and Ratios for Understanding (Lamon, 1999) 
during a Master’s Degree course taught by Olson. To create collaborative groups, the 
thirteen teachers answered three opened-ended questions (a) How do students show 
you that they understand math? (b) Are students born smart in math or do they 
become smart? (c) What can teachers do to help struggling students become 
successful? These responses were interpreted as an indication of each teacher’s 
beliefs about teaching and learning. Olson assigned the teachers to one of four 
groups, comprised of both secondary and elementary teachers who held different 
views of learning. During each class period, the teachers shared their solution 
strategies for assigned problems, investigated problems from the textbook, and 
discussed research that supported constructivist learning theories. Teachers identified 
underlying mathematical concepts for the grade-level rational number benchmarks. 
Then, the teachers described student behaviors that indicated a developing, basic, or 
proficient level of understanding for each underlying concept. These levels of 
understanding were condensed into a developmental rubric that was used to create a 
series of lessons that might advance students’ reasoning about rational numbers.  
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A high school teacher (second author) agreed to participate as a case-study to 
investigate the changes of her beliefs and practices as she collaboratively worked 
with two elementary and one secondary teacher during the class. Olson made field 
notes detailing the group’s interactions and collected written reflections and solution 
strategies. Kirtley created a proportional reasoning rubric and designed a series of 
lessons to enhance students’ ability to use proportional reasoning to solve problems.  

After completing the course, Kirtley redesigned these lessons using a lesson plan 
format suggested by Smith (State Mathematics Conference, 2004) that focused her 
attention on eight aspects: (a) Goals, (b) Previous knowledge, (c) Solution strategies, 
(d) Engagement, (e) Expectations, (f) Introduction, (g) Questions, and (h) Conceptual 
understanding. Kirtley recorded her reflections, observations about her students, and 
conceptions about teaching and learning in a journal. She analyzed these data for her 
Master’s Degree Project (Kirtley, 2004) and described the process of her professional 
growth.  

Olson’s field notes, Kirtley’s written work, and Kirtley’s Master’s Degree Project 
were analysed for changes in Kirtley’s attention. These changes were interpreted as 
evidence that Kirtley was noticing new details as she interacted within a social 
environment. Matrices were utilized to reduce and synthesize data to describe facets 
of professional development which influenced Kirtley’s competence, identity, and 
practice.  

RESULTS AND DISCUSSION  
Before beginning a Master’s Degree, Kirtley taught in an urban high school with a 
history of low achievement, poverty, and high truancy. She described herself as a 
“savvy high school teacher” who was a strong mathematician and passed the teacher 
licensure content exam with a high score (Kirtley, 2004, p. 5). As such, she 
considered herself to be an expert and continually used mathematics books as 
references while preparing lessons (interview, January 5, 2005). Kirtley wanted 
students to understand “why” but frequently became frustrated with their low 
performance. Kirtley explained, “I didn’t believe that students could do it [high level 
math] because they didn’t do it after I showed them how. I didn’t do all the activities 
in the reform curriculum because I considered many of them to be fluff.” (Kirtley, 
2004, p. 13). These comments reveal a core belief that mathematics is best taught 
through procedures and that students’ demonstrated understanding when they arrived 
at a correct answer. 

Kirtley’s competence, identify, and practices reflect Stigler and Hiebert’s (1999) 
description of traditional high school teachers. She described hearing the reform 
message, students need to understand mathematical concepts before procedures can 
make sense, repeatedly though out the Master’s program but they were only words 
that did not fully resonate with her own experiences (Kirtley, 2004).  



Olson & Kirtley 

 

4-28 PME29 — 2005 

Mathematical competence and identity  
Kirtley’s small group collaboratively solved non-routine problems using manipultives 
and pictures before linking their strategies to a symbolic representation. By the 
second session, Kirtly was angry. She wrote, “I wondered why anyone would spend 
time and effort to go into fractions this way [solve problems using multiple 
representations] in a way that was quite unfamiliar to me” (Kirtley, 2004, p. 11). 
Kirtley revealed a core belief about learning when she asked the class to consider the 
role of procedures, “Isn’t it important for students to just know their facts and quickly 
multiple 2/3 by 2 1/4 without using pictures?” (class discussion, June 15, 2004) Olson 
responded, “The question is not the importance of procedural knowledge but how and 
when it occurs. When students understand a concept first, the procedure makes sense 
and you don’t need to continually repeat instruction to gain mastery. Let’s take a look 
at trying to understand the procedure for dividing fractions.”  

The class reviewed two representations for 8 ÷ 2. Twelve teachers interpreted 
division using a measurement model, eight items were placed in groups of two 
forming four groups. One student used the partitive model, eight items were placed in 
two groups with four in each group. Olson asked the collaborative groups to represent 
1 ½ ÷ 1/3 using the measurement and partitive models of division. Kirtley’s group 
represented 1 ½ with a circle and a semi-circle. An elementary teacher (El Teacher 1) 
began the discussion. 

El Teacher 1: The circle is the unit, so one and a half circles represents 1 ½. To divide 
by 1/3, we need to find how many groups we can make of 1/3. (The group 
divided the circle into thirds and the half circle into a third and a left over 
piece.) We have 4 groups of 1/3 and a sixth. 

Kirtley: But when I divided 1 ½ by 1/3, I got 4 ½.  

El Teacher 2: Uhm, let’s look at the sixth. It is a sixth of the whole circle but only half 
of a group of 1/3. So, we have 4 groups of 1/3 and half of a group of 1/3, that 
would be 4 ½ . 

Kirtley: I know how to do this with numbers, but I don’t get these pictures. I’m 
starting to buy into the idea that making pictures help you understand the 
math, but why do kids need to be able to draw pictures? 

El Teacher 2: If you draw a picture then you can see what’s going on. 

Olson: Try to represent the problem by interpreting the problem as, you have 1 ½ 
and it is in a third of a group. How many would be in one whole group?  

Kirtley: I don’t know if I can think of it that way. This is really hard.  

Olson: In the problem, what is one-third of a group? 

El Teacher 1: One and a half? 

Olson: What do you think (to the other teachers)? 

Sec Teacher: Yes, I have to write down your questions, but if 1 ½ is a third of a group, 
then we have to have 3 groups of 1 ½, the whole group.  
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Olson: Can you draw a picture to show it? 

El Teacher 1: Yes (draws one and a half circle, labels it 1/3 and repeats it 2 more times.) 
When I count up the pieces, there are 4 ½ circles. It is right! 

Kirtley: And what you drew is what I’d do with the procedure. You invert the 1/3 

and multiple. That’s what you did with the picture. You made 3 groups of 
1 ½. I can’t do this by myself. The elementary teachers understand how to 
make representations with pictures and I need their help.  

Olson: So your group is learning from each other. The elementary teachers need 
help from you [the secondary teachers] to connect the pictures to the 
algorithms.  

In this excerpt, the four teachers worked collaboratively to create two different 
representations for dividing fractions. One elementary teacher drew a picture using 
the measurement interpretation but struggled to interpret a symbolic representation 
for the remaining fractional piece. Kirley used symbols to solve the problem but 
could not relate the mathematical procedure to the picture. When the group created a 
representation using a partitive interpretation, Kirtley quickly noticed a connection 
between this representation and the standard algorithm. She recognized that 
elementary teachers have a deep understanding of representing mathematical ideas 
that she lacked and there was more to learn. With this realization, she devised 
additional problems to solve using pictorial representations. Kirtley later reflected, “I 
didn’t get representing fractions and was upset. Then, it turned me on. I loved seeing 
multiple representations and how everything connected. I was amazed how deeply 
you could go into a seemingly simple subject. All students struggle with fractions and 
I felt empowered to teach. This class was the first time that I experienced math as a 
student and from that perspective saw the importance of deep understanding.” 
(Kirtley, 2004, p. 12). 

Kirtley’s mathematical competence was challenged when asked to create a pictorial 
representation and a new facet of mathematical thinking emerged. In the 
collaborative problem-solving setting, Kirtley engaged in a mathematical activity in a 
novel way and her identity shifted as she recognized her reliance on the elementary 
teachers for creating pictorial representations. Kirtley experienced mathematics in a 
new way and identified that this experience was critical for her growth.  

Teaching practice  
After completing the course on rational numbers, Kirtley continued to reflect about 
the intersection of her beliefs, practice, and students’ learning. She described herself 
as “a changed teacher; I needed to help my students have the same profound and 
exciting feelings about math that I experienced that summer” (Kirtley, 2004, p. 11). 
Changing her beliefs about teaching and learning occurred after she struggled to 
solve problems without using a mathematical procedure which challenged her 
competence and identity. With this struggle, Kirtley described a fundamental change, 
“I really believe that my students can learn and that everything I’ve heard over the 
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past two years [while working on her Master’s Degree] fit together and made sense” 
(reflective notes, September 2004). 

Kirtley described two events during her final semester in the Master’s Degree 
Program that cemented her belief in conceptual understanding: attending a State 
Mathematics Conference and a school district seminar for mathematics teacher 
leaders. At the conference Kirtley listened to Margaret Smith’s presentation on 
“Thinking Through a Lesson Protocol” (TTLP) and Jeremy Kilpatrick’s presentation 
on the five mathematical proficiencies (September 24, 2004) and these presentations 
reinforced her new conceptions about teaching and learning. 

Kirtley used TTLP to plan 20-activities and noticed that students were more engaged 
when they created representations to solve problems than when she “skipped the 
activities” and showed them symbolic procedures (Kirtley, 2004, p. 13). Students 
used the manipulatives until they “became a liability when the figures became more 
complex” and created symbolic representation themselves to keep track of data 
(reflective notes, November 2004, p. 23). For example, Kirtley’s students 
investigated the relationship between the area of triangle and its base and height by 
constructing all possible triangles with an area of two on a geoboard. Student groups 
made posters to display all possible triangles but struggled to provide a rationale to 
prove that their list was complete. Kirtley asked a series of reflective questions like, 
“Could you make a triangle that was three units long on the base? One unit long? 
Four units long? Explain.” (reflection, November 2004, p. 34). Eventually, her 
students explained that a triangle had an area of two only if a rectangle could be 
constructed around it with an area of four. Kirtley noticed a relationship between the 
cognitive demand of a question, students’ mathematical thinking, and wait time. She 
reflected, “I felt very happy with the students for thinking … I gave a difficult 
question, and waited for students to answer.” 

Kirtley was invited to attend the school district’s seminar for Mathematics Teacher 
Leaders. She felt excited about the seminar and the opportunity to learn more. Kirtley 
wrote, “Some teachers wanted to be leaders in their school but were bitter about 
being asked to think conceptually. I had great empathy for them, because just one 
year ago, I was one of them… As I sat in the seminar, a wonderful feeling came over 
me. I knew I had changed in a way that was exciting and empowering.” Kirtley, 
2004, p. 14).  

Kirtley deepened her conceptual understanding of mathematics, developed a new 
identity of herself as a learner of mathematics with a unique voice, and changed her 
teaching practices to build students’ conceptual understanding before discussing 
more efficient strategies. These changes occurred after struggling in a class which 
provided an opportunity to develop her own mathematical understanding in a 
collaborative group of teachers and reconsider her beliefs in light of these 
experiences. Kirtley’s professional growth continued as she interacted with students 
in her classroom and with teachers and experts in seminars and conferences.  
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CONCLUSIONS  
Research (Carpenter et al., 1988; Haydar, 2003; Lin, 2004; Stein et al., 2000) 
indicates that professional development that deepens elementary teachers’ content 
and pedagogical knowledge by examining tasks, questions, and developmental 
frameworks can support teachers’ growth. Olson initially thought that secondary 
teachers might demonstrate growth using these same professional development 
strategies. But, in this study, the professional growth of a highly competent high 
school teacher was prompted by cognitive dissonance in a social setting.  

The collaborative problem-solving environment disrupted Kirtley’s identity as a 
competent, self-confident teacher to confront herself as a student struggling to use 
mathematical ideas in a new way. She discovered that she needed the help of 
elementary teachers who were more adept at modeling to be successful. As her 
competence at solving problems with pictorial representations grew, she recognized 
how the symbols represented her actions and understood the reform message in a new 
way. The process of change began when Kirtley’s competence and identity were 
challenged. Kirtley wanted her students to feel the same excitement in the fall and 
sought follow-up support to cement her new beliefs about teaching and learning into 
practice. 

This study suggests that professional development that supports growth for high 
school teachers may be different from elementary teachers. The interaction between 
high school teachers and elementary teachers with their different expertise was 
critical to help a traditional high school teacher re-examine her own content 
knowledge and identity. Further research is needed to describe professional 
development that supports the growth of high school teachers and to investigate 
whether collaboration between elementary and secondary teachers is a viable 
professional development model.  
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SUBSTANTIVE COMMUNICATION OF SPACE MATHEMATICS 
IN UPPER PRIMARY SCHOOL 

Kay Owens 

Charles Sturt University 

A collaborative action research project with preservice teachers built on Wood’s 
(2003) paper on strategy reporting, inquiry and argumentation and the NSW 
Department of Education and Training documents called substantive communication. 
There is little research on argumentation about space mathematics in primary 
schools so this is the focus of the reported study. A qualitative analysis of the data 
shows that these teachers took account of students’ current knowledge and tried to 
extend it, acted upon their reflections of their teaching, and provided effective 
challenges and questions. Within space mathematics, we see incidences of strategy 
reporting and argumentation reminiscent of Wood’s (2003) paper. 

INTRODUCTION 
Classroom Interaction 
In 1980, Bauersfeld wrote “the constitutive power of human interaction (is that) 
interaction constructs the subjects’ various realities. Both teacher and students act 
according to their actual subjective realities” (p. 30). He alerted us to the fact that the 
teacher and student may be at cross purposes and over the discussion views of 
purpose and concepts can change. In these circumstances, disagreements are likely to 
arise. The context of the conversation, for example, what students notice or have 
experienced previously and interpersonal relations cannot be forgotten in interpreting 
a classroom. Perret-Clermont (1980) showed that conflict arose, verbal behaviour 
changed, and the level of reasoning increased when less able students contributed to 
conversations. This line of reasoning on classroom interaction has developed 25 years 
later into how change can be brought about in mathematical thinking through 
argumentation in classrooms (Yackel, 2002). 

Substantive Communication 
Wood (1999) and her team carefully analysed a number of sequential lessons for a 
Year 2 classroom and showed the pattern of interaction that occurred during 
challenges involved turn-taking and explaining until there was agreement. Wood 
(2003) compared this interaction to conventional classrooms where thinking involves 
mere recall. There is no “substantive communication” in the typical “initiate-respond-
evaluate” teacher-centred pattern in which the teacher asks a question, a student 
responds, and the teacher makes an evaluative comment (NSW DET, 2003).  

Substantive communication is sustained with logical extension or synthesis where the 
flow of communication carries a line of reasoning and the dialogue builds on 
statements or questions of another participant. The communication “is focused on the 
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substance of the lesson” (NSW DET, 2003, p. 23). In this framework, the degree of 
quality is mainly in the proportion of the lesson involving substantive 
communication.  

By contrast, Wood’s model gives two contexts that are qualitatively different. First, 
mathematical thinking was revealed in students’ “strategy reporting” as recognising, 
comprehending, applying, and building with analysing. Explainers told different 
strategies and clarified solutions while teachers accepted or elaborated these and 
other students listened to decide if their own strategies were different. Second, 
inquiry and argument showed students building with “synthetic-analyzing” and 
“evaluative-analyzing” and by agreeing and constructing through synthesising and 
evaluating. Explainers were giving reasons and justified or defended solutions while 
teachers asked questions and made challenges, provided reasons or asked for 
justification. Listening students asked questions for understanding or clarification or 
disagreed and gave reasons for their challenges. During strategy reporting teachers 
might prompt with a variety of statements like “I’m confused. Would you tell us what 
you thought? How did you decide this? … Are there patterns? Is there a different way 
you can do this?” Inquiry and argument showed the teacher prompting by questions 
such as “How are the two things the same? Does this make sense? … Does it always 
work? Why does this happen?” (Wood, 2003, Vol. 4, p. 440). Questions might be 
structuring, opening-up, or checking questions (Ainley,1988). Questioning, no matter 
what type, can be carefully linked with the mathematical thinking and level of 
responsibility in a classroom (Wood, 2003).  

Like Wood (2003), Hufferd-Ackles, Fuson and Sherin (2004) presented a framework 
of improved classroom interaction which outlines shifts from the teacher to students 
in questioning, explaining mathematical thinking, source of mathematical ideas, and 
responsibility for learning. At the higher level, teachers expect students to initiate and 
question. They may ask “why” questions and persist until satisfied with the answer. 
Teachers will follow students’ descriptions of their thinking carefully, encouraging 
more complete explanations and deeper thinking. Students can defend and justify 
their answers and are more thorough in explaining. Teachers allow for interruptions 
from students when explaining in order for students to explain or to own new 
strategies. While still deciding what is important, the teacher uses students’ ideas and 
methods as the basis of the lesson. Students will spontaneously compare and contrast 
and build on ideas. Teachers expect students to be responsible for co-evaluation of 
everyone’s work and thinking. They support students helping one another sort out 
misconceptions and they help when needed. Students may initiate clarifying other 
students’ work and ideas. 

Questioning and Teaching Strategies 
A broader set of effective teaching strategies than those pivoting around questioning 
has been identified by the Researching Numeracy Project Team (2004) in Victoria, 
Australia. The twelve practices are excavating, modelling, collaborating, guiding, 
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convince me, noticing, focussing, probing, orienting, reflecting/reviewing, extending, 
and apprenticing.  

RESEARCH OBJECTIVE 
The objective was to describe how preservice teachers were using substantive 
communication in space mathematics. There has been little action research on 
argumentation in space mathematics. For this reason, this qualitative study provides 
data and analysis in teaching and learning space mathematics. 

METHODOLOGY 
Procedure 
Twenty primary school or early childhood pre-service teachers in their third year 
participated in tutorials for six hours on space mathematics education and substantive 
communication. During this time, they watched videotapes prepared for the Count 
Me Into Space (CMIS) project in NSW and discussed how students learn space 
mathematics. They evaluated two videotaped lessons, one on measurement and one 
space mathematics according to the Quality Teaching framework’s section on 
intellectual quality concentrating on deep knowledge, deep understanding and 
substantive communication. Their readings included the quality teaching 
documentation (NSW DET, 2003), Wood’s (2003) paper, and excerpts from the 
paper by Hufferd-Ackles, Fuson and Sherin (2004).  

Teachers (cooperating class teachers and preservice teachers) were given a large 
number of example lessons based on the CMIS project. The lessons covered both 
two- and three-dimensional space. The strength of these lessons was that they 
emphasised investigating and visualising as well as describing and classifying. After 
negotiating with the class teacher, the preservice teachers taught six to ten lessons 
including their pre- and post-assessment lessons.  

Three classes will be discussed in this paper. Class K (Years 5/6) was taught by a 
primary teacher and an early childhood teacher, Class M (Year 6) by an early 
childhood teacher and Class P (Year 6) by a primary teacher. All were mature-aged 
and had received high academic grades but were not particularly confident with 
mathematics for this Stage, especially the two early childhood teachers. 

Data Collection and Analysis 
Each preservice teacher kept a journal with anecdotal records and student work 
samples. They evaluated each lesson using the readings especially the QT in NSW 
document and prepared a final report. Class K’s teachers videotaped and transcribed 
their lessons. Class M’s teacher audiotaped and transcribed her lessons. I observed a 
lesson in each classroom and viewed the videotapes of Class K. Much of the audible 
dialogue was from whole class discussions. Other data came from teachers during 
focus group discussions (preservice and class teachers separately).  
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This qualitative data was analysed first by marking any recording of interest. Each 
was annotated with a comment. Many of these comments linked directly back to one 
of the categories mentioned in the literature review above. From the taped material, I 
specifically noted how the teachers attempted to extend students’ conversations. 
From these annotations, some perspectives were summarised in order to better 
understand how beginning teachers can achieve substantive communication in their 
classrooms. 

RESULTS AND DISCUSSION 
General Comments 
Teachers tended to focus on language and concepts rather than other aspects of 
mathematical thinking even though they did ask students to report on their thinking 
or challenges. Teachers noted students’ understanding was “uneven” (NSW DET, 
2003) meaning it varied between class members or over episodes in the lesson.  

Teachers’ Analysis of Student Knowledge 
Throughout the lessons, preservice teachers realised that students were struggling 
with three specific concepts – irregular polygons, diagonals and adjacent sides. They 
were aware of these difficulties in class conversations and from quick quizzes that 
gave them work samples to look at after the lesson. In Class K, a quiz at the start of 
the second lesson had most students drawing a triangle when asked to draw a shape 
with three diagonals indicating that students confused the word diagonal with sloping 
sides or it was too hard a question. Class P were given a quick quiz of general 
knowledge of 2D and 3D shapes at the end of the first lesson. The teacher 
commented  

The students were asked to note if they learned anything today. Surprisingly a large 
amount [sic] claimed that they knew it all! But their sheets had items which indicated 
they did not…they said they had forgotten…Only two said something (about properties) 
… and these were only the number of sides and corners. 

Later assessments showed angle size was next to be considered in properties but it 
seems that the absence of diagonals on diagrams continued to discourage students to 
mention properties about diagonals in open-ended questions. During lessons, students 
could use the clues on diagonals when playing the game, what shape am I? In Class 
P, students made up interesting questions for their peers and some involved angles 
and diagonals. 

 Several students in Class P said they had never heard of a polygon with an infinite 
number of sides, or that a triangle or quadrilateral was a polygon. This was a 
dissonance that brought about changes in their concepts. Many thought an irregular 
shape was one that was not common or did not have a name. In Class P, “several 
students said an irregular shape was not a “real shape” but after a heated argument 
the class decided irregular shapes with many sides are polygons” (preservice 
teacher’s report). Each class had on the walls the names of shapes and an example for 
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each but they were the stereotypical examples. For example the hexagon and 
pentagon were regular, the trapezium was isosceles and all had a horizontal side. 
These diagrams might have helped students with the names but they did not help 
students to develop a full understanding of different shapes and to know what are 
essential properties of shapes.  

Students did not seem to struggle with enlarging shapes. They knew that the lengths 
were enlarged but not the angles. However, the majority did not attempt to measure 
the angles. Deciding on the order of what to measure and draw was not an issue if 
estimates of angles only were used and just lengths of lines were measured. Hence 
students were not engaged in reporting different strategies. Lack of time and the need 
for class control meant the teachers did not persist with deepening understanding. In 
Class K, most students only doubled the sides even though they were asked to make 
the shape three times bigger. When reminded to double and measure angles, some 
students needed assistance with reading the protractor while others had to skip count 
to work out 6 x 3 or to use repeated addition for 3.5 x 3. Perhaps the multifacets of 
the problem encouraged some students to take the short cut of estimating angles. The 
teachers reflected: 

Students were investigating and questioning … engaged with measuring, drawing and 
discussing how to transfer the information onto another piece of paper. Students were 
also looking at their peers’ work and comparing.  

Post-lesson assessment indicated that students had moved in their use of strategies 
from doing and drawing to static pictorial imagery and some to imagery that 
contained patterns or required dynamic changes. Class P teacher noted that students 
could not describe actions of rotation, reflection or slide and felt she may have 
neglected this area in the lessons. 

Challenges 
All teachers set students some challenges. In Class M, the teacher gave each group 
two equal lengths of wool tied together in the centre with cotton. They were to make 
rectangles. (The wool formed diagonals of the rectangles). In the transcripts, T stands 
for teacher and other initials for students. 

T:  What happens when we change the angle in the middle where the cotton is tied? If 
it’s a bigger angle what happens to our rectangle. 

M:  It gets bigger. 
T:  The sides get bigger, smaller. Just quickly have a look at your wool and try to 

make the angle bigger and see whether as the angle gets bigger the rectangle gets 
bigger or smaller or wider or narrower.  

E:  Smaller 
T:  Why do you think its smaller, E. 
E:  Because the angle makes the ends bigger 
T:  Will everyone listen to E., when somebody is speaking, everybody else needs to 

be quiet. 
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E:  When the angles are really really skinny the sides are really, really long and when 
they move out the sides get shorter and shorter. The angle gets bigger and bigger. 

T:  Now if we have a piece of wool and either a pencil or piece of chalk, how could 
we make a circle? 

K:  Hold one end and draw around (other ideas by students not captured on tape). 
Clearly the students were considering different angles and sides of the rectangle but 
there seemed to be no confusion as they were using the concrete materials (wool) to 
model their comments. The teacher moved on as the students were unsettled. This 
was one of the key problems for these beginning teachers in maintaining substantive 
communication. 

Other challenges presented to the classes were: 

• how to check whether a piece of paper was square 
• making pentomino shapes without repeats,  
• deciding why one pentomino shape had a different perimeter than others 
• designing and making boxes of different shapes after making a square box 
• making cylinders and cones when given a paper-towel roll and a funnel 
• deciding on lines of symmetry for the pentomino shapes 

In Class M the Z-like pentomino lead to some discussion regarding whether it had 
one or no lines of symmetry. They grappled with rotational symmetry. The discussion 
was continued the next week. Students initially did not agree on how many lines of 
symmetry each shape had but they were able to convince each other by using the 
concrete cut-outs which the teacher prepared realising this would be an important aid 
for the discussion. For the same activity, Class P’s teacher commented: 

The “magic moment” in this lesson is when a not so bright student argues about the line 
of symmetry in one of the pentominoes and set about to prove his point or me wrong. He 
discovered that this shape was symmetrical by rotating the two halves. This student was 
satisfied because he proved it by himself. Great stuff! (Figure 1 shows) the scrap of paper 
that the student worked with when he then cut it in half (on the line he thought was a line 
of symmetry) and placed the two pieces on top of each other and presto they matched.  

 

Figure 1: Trying to prove a line of symmetry by cutting and overlapping. 
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This is a typical example of concrete proof reminiscent of that found by Wood (2003) 
in strategy reporting in a younger class on number concepts. However, we see that it 
establishes a new concept. Students in general were reliant on concrete proofs for 
justifying and explaining although diagrams were used and later some were able to 
argue verbally and more abstractly. Teachers deliberately provided large examples 
for whole class discussion to facilitate this kind of proof. 
Different Ways of Questioning 
The teacher in Class P asked questions in numerous game formats. She noted how 
these games were both enjoyable but challenging. They made students’ question their 
conceptual knowledge. The games included (a) finding a fellow student for a match 
of picture and properties, (b) “Celebrity Shapes” in which students ask questions in 
order to guess the shape drawn or written on the board above their heads, (c) 
questions provided as chance cards on different self-designed game boards. The best 
question was one in which the group had to decide if the answer was correct or not. 
Class K had clues to decide on a shape as a group. These questions were challenging 
as they focussed on properties other than the number of sides and corners. 

Class P’s teacher commented that during marking of revision quiz questions there 
was considerable discussion between neighbouring students and students did not all 
mark their papers correctly. Were there still areas of disagreement that students 
needed to discuss rather than quickly marking a quiz? The class teacher noted that 
questioning by the preservice teacher “is drawing the discovery/information from 
them rather than giving the answer … the response from students has been great. … 
The students were beginning to use lesson specific language to describe objects, 
position etc. It’s working!” 

Much of the discussion in each class was resulting from direct teacher questioning 
with some occurring between students during the activities, e.g. from which position 
the drawing of a 3D model was made or when pentominoes were in different 
orientations. The videotapes of the whole classroom discussion in the last two lessons 
of Class K illustrated students’ remaining on task throughout the lesson. They may 
not have talked much but they were thinking and several students were confident to 
disagree with the teacher or other students’ suggestions or to ask their own questions. 
The students attempted explanations and justifications. The discussion soon moved to 
students’ questions and interests rather than the teacher’s initial question. 

Teacher Reflection 
As a result of reflection, teachers either recognised the effect of having too many 
students in a small room for group work or re-organised tables to allow closer 
communication for small groups. They also recognised missed opportunities for 
group work or sustaining communication and then deliberately allowed themselves 
more time for discussion and asking more questions to try to encourage discussion.  

Classroom teachers pointed out specific lessons in which the students were thinking 
more mathematically. For example, the lessons on “nets of cubes and making boxes 
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and taking different perspectives for shapes and models made them start to think 
about nets and shapes and discuss why more than before.” “Before, students just gave 
shape names but now they are discussing them with the correct terminology.” There 
was “far more on tangrams and using more concepts of space than before. Before 
they made shapes but now they are thinking deeper about concepts of space.” “(The 
lessons were) fun, productive, discovery.” “(The preservice teachers) had clear ideas 
of what outcomes they wanted without restricting it.” “They modelled how they 
wanted them (the students) to ask questions. They talked about lesson expectation 
and students knew they will be expected to explain and if they were not confident 
then they got better.” “The teachers allowed for incidentals and allowed that 
deviation to take place. They encouraged and set an atmosphere for taking risk.” 

CONCLUSION 
This paper highlights the importance of the challenge in inquiry/argumentation as 
Wood (1999) had shown but this paper illustrates the nature of some of the 
challenges in space mathematics in upper primary school rather than with number in 
lower primary school. The questioning utilised by the teachers varied. There were (a) 
quick quizzes with a few challenge questions which the teachers wanted mainly for 
accessing students’ knowledge, (b) planned questions that were strengthened by their 
reading, reflection, and practice, (c) spontaneous questions as they listened to the 
students, and (d) questions in game formats. While some of the quizzes and games 
were followed by whole class discussions, others were left for individuals perhaps 
talking with their neighbours to resolve conflicts and develop concepts. 
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TRANSFORMING KOREAN ELEMENTARY MATHEMATICS 
CLASSROOMS TO STUDENT-CENTERED INSTRUCTION 

JeongSuk Pang 

Korea National University of Education 

Educational leaders have sought to change the prevailing teacher-centered pedagogy 
to a student-centered approach. Despite the widespread awareness of the reform 
agenda, there is an increasing concern of whether a real instructional change 
happens in a way to promote students’ mathematical development. This paper deals 
with successes and difficulties a teacher goes through as she moves on to student-
centered instruction. The analysis draws on classroom observation and interviews to 
illustrate how the teacher and students establish social and sociomathematical norms 
that emphasize mathematical sense-making and justification of ideas. As such, this 
paper paves a way by which teachers and reformers open toward possibly subtle but 
crucial issues with regard to implementing reform agenda. 

BACKGROUND  
The current mathematics education reform requires substantial changes towards 
student-centered instruction wherein students’ contributions and participations, rather 
than a teacher’s explanations and ideas, constitute the focus of classroom practice 
(NCTM, 2000). The teacher’s role in a reform mathematics classroom is to 
implement new social norms that foster all students’ mathematical learning. For 
instance, the teacher manages classroom discourse in ways that probe various 
mathematical ideas and deepen students’ conceptual understanding.  

In contrast to the widespread awareness of the reform agenda and teachers’ positive 
self-evaluation to their teaching practice, there has been a growing concern that many 
teachers do not quite grasp the vision of the reform (Research Advisory Committee, 
1997; Ross, McDougall, & Hogaboam-Gray, 2003). Teachers too easily adopt new 
teaching strategies such as the use of manipulative materials or cooperative learning. 
However, this does not guarantee that students are engaging in worthwhile 
mathematical activities. Teachers then need to re-conceive their new teaching 
processes with respect to students’ learning processes. What kinds of mathematical 
and social exchanges occur and in what ways such changes promote students’ 
mathematical development? 

In recent international comparisons Korean students have consistently demonstrated 
superior mathematics achievement not only in mathematical skills but also in 
problem solving (Beaton et al, 1996; Mullis et al, 2000; OECD, 2004). Despite the 
high performance, a teacher-centered instruction in Korea has been critiqued as a 
main factor resulting in learning without deep understanding, negative mathematical 
disposition, lack of creative mathematical thinking, etc. Broad-scale efforts have been 
launched to influence the ways mathematics is taught. 



Pang 

 

4-42 PME29 — 2005 

Korean reform centers around revision of the national mathematics curriculum and 
concomitant textbooks and teachers’ guidebooks (Ministry of Education, 1997). Main 
characteristics of the recent reform documents include relating mathematical 
concepts or principles to real-life contexts, encouraging students to participate in 
concrete mathematical activities, proposing key questions of stimulating 
mathematical reasoning, emphasizing problem solving processes, and assessing 
students’ performance in a play or game format (Pang, 2004). These characteristics 
for enriching learning environment are intended to support student-centered teaching 
methods.  

Whereas typical teaching practices in other countries have been extensively studied 
through microanalysis of video-recordings of mathematics instructions, those of 
Korean mathematics classrooms have been little studied in the international contexts. 
An exceptional study conducted by Grow-Maienza, Hahn, and Joo (1999) reports:  

Teacher behaviors are dominated by question/answer patterns and demonstration of 
operations in many modes and patterns which lead students through the procedures and 
conceptual development of the problem, at the same time facilitating student thinking. 
Student behavior is characterized by choral responses and choral evaluation of individual 
responses which keep students on task. (p. 6) 

Although focusing on typical classrooms makes a valuable contribution to 
understanding the dynamics of teaching in Korea, it may not always contribute 
directly to attempts to implement teaching reform. By looking closely at a reform-
oriented classroom, this study attempts to understand better what constitutes the 
process of implementing reform ideals into actual classroom contexts. The study 
provides a detailed description to explore how the teacher and students establish a 
reform-oriented mathematics microculture. Given the challenges of substantial 
implementation of student-centered instruction, in particular, this study probes 
successes and obstacles a reform-oriented teacher goes through. 

THEORETICAL FRAMEWORK 
A general guideline to the understanding of mathematics teaching practices is an 
“emergent” theoretical framework Cobb and his colleagues developed that fits well 
with the reform agenda (Cobb & Bauersfeld, 1995). In this perspective, mathematical 
meanings are neither decided by the teacher in advance, nor discovered by students. 
Rather, they emerge in a continuous process of negotiation through social interaction. 

Along with the emergent perspective, two constructs of social norms and 
sociomathematical norms are mainly used to characterize each mathematics 
classroom (Yackel & Cobb, 1996). General social norms are the characteristics that 
constitute the classroom participation structure. They include expectations, 
obligations, and roles adapted by classroom participants as well as gross patterns of 
classroom activity.  
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Sociomathematical norms are the more fine-grained aspects of these general social 
norms that relate specifically to mathematical discourse and activity. The 
differentiation of sociomathematical norms from general social norms is of great 
significant because interest is given to the ways of explicating and acting in 
mathematical practices that are embedded in classroom social structure. The 
examples of sociomathematical norms have included the norms of what count as an 
acceptable, a justifiable, an easy, a clear, a different, an efficient, an elegant, and a 
sophisticated explanation (Yackel & Cobb, 1996).  

METHOD 
The data used in this paper are from a one-year project of understanding the culture 
of elementary mathematics classrooms in transition. The project is an exploratory, 
qualitative, comparative case study (Yin, 2002) using constant comparative analysis 
(Glaser & Strauss, 1967) for which the primary data sources are classroom video 
recordings and transcripts. As a kind of purposeful sampling, the classroom teaching 
practices of 15 elementary school teachers eager to align their teaching practices to 
reform were preliminary observed and analyzed. An open-ended interview with each 
teacher was conducted to investigate his or her beliefs on mathematics and its 
teaching. This extensive search was needed, given the recency of the reform 
recommendations, and the infrequently of teachers’ explicitly advocating reform 
allegiances.  

Five classes from different schools were selected. Two mathematics lessons per 
month in each of these classes were videotaped and transcribed. Individual interviews 
with the teachers were taken three times to trace their construction of teaching 
approaches. These interviews were audiotaped and transcribed.  

Additional data included videotaped inquiry group meetings in which the participant 
teachers met once per month and discussed mathematics, curriculum, and pedagogy. 
Through the group meetings, the teachers had lots of opportunities to analyze their 
own teaching practices as well as others, which might help them develop a keen 
sense of what student-centered teaching practices look like at each classroom level. 
The interview and inquiry group data were to understand the successes and 
difficulties that might occur in the process of changing the culture of primary 
mathematics classrooms, as well as the recursive relationship among the teachers’ 
learning, beliefs, and classroom teaching. 

Classroom data were analyzed individually and then comparatively in terms of 
general social norms and sociomathematical norms. Interview data were included in 
the analyses whenever they provided useful background information in relation to 
classroom teaching practices. Because case study should be based on the 
understanding of the case itself before addressing an issue or developing a theory 
(Stake, 1998), teaching practices are very carefully scrutinized in a bottom-up 
fashion. The central feature of these analyses is to compare and to contrast 
preliminary inferences with new incidents in subsequent data in order to determine if 
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the initial conjectures are sustained throughout the data set. The successes and 
difficulties that occur in the process of making substantial movement toward reform 
teaching in classrooms were highlighted in order to explore the issues and obstacles 
that might point to generic problems of reform. 

RESULTS 
For the purpose of this paper, one reform-oriented classroom is analyzed in order to 
examine the extent to which the teacher implements mathematics education reform 
and to explore challenges of transforming traditional teaching practice toward 
student-centered instruction. The teacher, Ms. Y, was selected for close examination 
of her teaching practice because she demonstrated gradual but dramatic changes 
during the project period.  

Initial Classroom Participation Characteristics  
To be clear, the preliminary observation of Ms. Y’s instruction illustrated that her 
general teaching approaches would be consistent with the current reform ideas, 
evidenced by general social norms as follows. The teacher and the students 
established permissive and open atmosphere so that students’ engagement and even 
their mistakes were welcomed. The teacher introduced mathematical contents in 
relation to real-life situations, and emphasized the process of problem solving. She 
also supported students’ contributions by providing praise and encouragement. 
Students presented their ideas to the whole class and usually listened carefully to 
their friends’ explanations.  

However, Ms. Y was very concerned about going through all the activities and 
problems in the textbook. At first, she faithfully followed the sequence of activities in 
the textbook, not necessarily recognizing the interrelations among them. Ms. Y 
attempted to induce students’ participation by asking questions such as “What shall 
we do to solve this problem?”, “Who will explain?”, and “Do you all agree?” 
However, in most cases, students’ answers were limited to short or rather fixed 
responses. In this way, students were engaged in classroom activities but had little 
opportunity to develop their own thinking.  

Change: Eliciting Students’ Ideas  
A noticeable change in Ms. Y’s teaching practice occurred after she had an 
opportunity to see other teachers’ instruction in the inquiry group meeting. In 
particular, Ms. Y was influenced by another teacher who was teaching the same 
grade. Ms. Y could see more directly how a teacher’s different approach even with 
the same mathematical contents and materials would result in different learning 
environment on the part of students’ mathematical development. In an interview, Ms. 
Y expressed her excitement about the variety and the depth of students’ mathematical 
ideas, and was eager to change her teaching methods:  

I was very impressed by the fact that students could approach a given problem in many 
ways, something interesting and creative, depending on how a teacher consistently 
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pursued to do so. As comparing my teaching practice with others, I realized how much 
my teaching approach and personality traits influence students’ learning and engagement 
as well as classroom atmosphere. … I also would like to establish a classroom culture in 
which my students think and discuss actively for themselves.  

Instead of relying heavily on the textbook, Ms. Y started to develop a worksheet 
intended for students to explore important mathematical ideas for themselves. 
Students were expected to solve a given problem in various methods and to explain 
their ideas irrespective of the correctness of the answers. Ms. Y also formulated the 
structure of her lesson as follows: Brief review of the previous lesson or related 
mathematical topics, her introduction of mathematical contents, students’ activities 
with a worksheet, and whole-class discussion building on students’ ideas. In this way, 
Ms. Y allowed students more time to develop their own sense-making and to explain 
their thinking to the class.  

The following episode shows how Ms. Y orchestrated classroom discourse in a way 
to elicit students’ various ideas. Students in pairs were involved in an activity of 
choosing 3 number cards, making the biggest and the smallest number, and then 
figuring out the difference between the two numbers. In the whole class discussion, 
Ms. Y encouraged students to analyze the results of subtraction.  

Teacher: What do you see? Look at your worksheet and discover something 
interesting. 

Sohee: Whenever you take three numbers there are two regroupings. 

Teacher: Right! There are always two regroupings. Is there anything else? Why 
don’t you look at the numbers? 

Sohee: As I made the biggest and the smallest number, the number in the middle 
was always the same. 

Teacher: Yes, it is the same. That’s right. Anything else?  

Sohee: When I see hundreds place and ones place, for example, if I had 641 and 
146, the 6 and the 1 are the same except their places. 

Teacher: Yes, only the places are switched and the middle number is the same. 
What happens to the middle number after you subtract? 

Giwon: It always turns out 9 no matter how I subtract. 

Teacher: That’s right! The middle number is always 9. Is it really true? Do you 
have 9 all the time? (Students check their worksheet and agree.) Why do 
you have 9 in the middle? Because of what? 

Students: Regrouping. 

According to the teacher’s lesson plan, Ms. Y expected students to discover the fact 
that the tens place in difference between the biggest and the smallest number is 
always 9. Students were able to discover the fact and, more importantly, to figure out 
why. Thanks to the teacher’s consistent attempt to soliciting students’ ideas, they had 
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an opportunity to analyze mathematical ideas, merely beyond practicing a standard 
algorithm of subtraction with regrouping.  

Change: Focusing on Mathematically Significant Ideas  
Another important change in Ms. Y’s teaching practice is related to 
sociomathematical norms. As noted above, Ms. Y indeed asked for different solution 
methods to a given problem or activity. She then frequently facilitated students to 
compare and contrast similarities and differences among the various methods. 
Meanwhile she differentiated mathematical differences from physical or visual 
differences.  

The following episode is an example illustrating how the participants established a 
norm of mathematical difference. Students were studying the relationship between a 
part and the whole in the unit of fraction. A rectangle consisting of 3 cells in each of 
two rows was drawn on a worksheet and students were supposed to color 4 out of the 
6 cells. Ms. Y asked students to present their methods in front. Jihoon first showed 
his method in which he colored 4 cells making a figure of 2x2 square.  

Teacher: Is there someone who colored differently?  

Sohee: (volunteers and shows her method in which she colored the 3 cells in the 
first row and then 1 more cell in the second.)  

Teacher: What do you see? Jihoon and Sohee colored differently. Who is wrong? 
(Students express their disagreement in a loud voice.) Who can explain?  

Juhyun: The 4 [cells] is the same both in the square figure and in the Giyeok [A 
Korean alphabet similar to Sohee’s figure]. 

Seungjun: Their shapes are different but we can say that they are the same, because it 
[the given rectangle] is divided by the same 4 cells. 

Teacher: That’s right! Because the number of colored cells is the same, we can say 
that there are the same. 

Seonghyun: Although the colored figures are different, the numbers are the same.  

Teacher: Yes, that’s right. (She shows her drawing in which the first and the third 
column were colored.) Look at mine! For fun I colored one cell, skipped 
the next cell, and then colored next cell again. What do you think of this?  

Students: (agree that the three figures – Jihoon’s, Sohee’s, and the teacher’s – are 
the same.) 

In the episode, the teacher asked students to compare Jihoon’s method with Sohee’s. 
On the one hand, their methods were different (i.e., which cells were colored?). On 
the other hand, their methods were the same (i.e., how many cells were colored?). 
Building on this idea, students learned that the fraction 4/6 is the same regardless of 
the different shapes. In this way, students were able to contrast difference of 
mathematical ideas or principles applied to solve a problem with difference of 
physical materials or representation used.  
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Difficulties in the Change  
Despite the promising transition toward successful student-centered teaching 
practices, Ms. Y experienced some difficulties when students reacted anxiously to the 
uncertainty associated with the given activity or they did not come up with a specific 
idea that she thought was important. In those cases, Ms. Y provided a crucial hint that 
might change the nature of the given task or introduced her own solution strategies, 
instead of letting students invent them.  
Ms. Y was also frequently struggled with how to balance the encouragement of 
students’ conceptual development and the teaching of efficient procedures such as a 
standard algorithm. After listening to students’ various solution methods, she often 
ended her lessons by summarizing or formulating the most efficient one and implied 
the students to use it in solving problems for practice. To be clear, students need to 
compare and contrast different solution methods, for example, in terms of 
mathematical efficiency. However, this often happened by the teacher’s summary at 
the end of the lesson. In this way, students might think that there was “one” efficient 
method in solving a problem and their main activity was to find out the method the 
teacher ultimately waited for.  
In addition, Ms. Y was not sure of how to react to students’ novel ideas except praise. 
Although she listened carefully to students’ mathematical ideas, Ms. Y had a 
difficulty in posing questions that further challenge and extend students’ thinking 
after eliciting it. She usually turned out to follow the sequence of the activities 
prepared in advance rather than students’ emergent ideas.  

DISCUSSSION 
Implementing student-centered teaching practices is fundamentally about significant 
change, and the teacher remains the key to change. The extent to which substantial 
change occurs depends a great deal on how the teacher comes to make sense of 
reform and respond to it. As moving on to student-centered instruction, Ms. Y 
elicited students’ participation and ideas in many ways and then attempted to 
orchestrate the path of discourse towards conceptual understanding, leading students 
to be continually exposed to mathematically significant distinctions. In line with 
many commonalities in the challenges of reforming mathematics classroom culture, 
this study addresses the need for a clear distinction between attending to the social 
practices of the classroom and attending to students’ mathematical development 
within those social practices. 
On the one hand, Ms. Y was successful in focusing on mathematically significant 
ideas, in particular, with regard to a norm of mathematical difference. On the other 
hand, she was limited to be sensitive to students’ engagement in order to develop 
increasingly sophisticated ways of mathematical knowing, communicating, and 
valuing. The difficulties that Ms. Y had in the process of transforming her teaching 
practice channel our attention toward the degree by which students’ ideas become the 
center of mathematical discussion and activity.  
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Another issue to be discussed is a role of a collaborative community where groups of 
teachers are committed to raise questions on their current instruction, search for 
alternatives, try on new approaches, and weigh their methods against others’ 
pedagogical alternatives for the common purpose of improving their teaching 
practices. In fact, many recent studies of teachers’ attempts toward reformed 
mathematics teaching suggest the importance of an inquiry community that provides 
shared goals and collaboration (Fennema & Nelson, 1997). The message is that 
participants need to establish new norms for discourse concerning their instructional 
changes, obstacles and dilemmas of change, as well as the more general nature of 
mathematics teaching and learning. 
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This research report summarises the results of an exploratory teaching program in a 
primary and secondary school in rural New South Wales, Australia, focused on 
improving basic mathematics skills. Pupils, aged 11 to 13 years, identified as 
consistently low-achieving in Mathematics were targeted. The program ran for 
approximately twenty-five weeks with pairs of pupils involved in five thirty-minute 
sessions per fortnight. Results of the program indicate that these pupils were able to 
decrease significantly their average response times needed to recall number facts. 
The results also showed that by the end of the program these pupils exhibited 
important gains on standardised test scores as well as improvements on State-wide 
testing measures that were not the focus of instruction. Significantly, pupils 
maintained performance gains 12 months after the intervention was completed.  

INTRODUCTION 
Pupils who have problems with learning face a myriad of difficulties in accessing the 
curriculum. Those who exhibit consistent weaknesses in basic skills such as the recall 
of number facts are particularly vulnerable. Consequently, there is a critical need for 
educational researchers to investigate interventions designed to support pupils who 
experience such difficulties with basic academic skills.  

The intervention program described in this report is referred to by the generic title 
QuickSmart because it aimed to teach pupils how to become quick (and accurate) in 
response speed and smart in strategy use. This teaching program sought to improve 
automaticity, operationalised as pupils’ fluency and facility with basic academic facts 
in Mathematics. In terms of research, the study explored the effect of improved 
automaticity on more demanding mathematics tasks. The fundamental research 
question addressed was: Does a carefully targeted teaching program aimed at 
improving automaticity in basic skills free up working memory processing, thereby 
enabling pupils to undertake more advanced age-relevant tasks that were not part of 
the intervention program?  

THEORETICAL UNDERPINNINGS OF QUICKSMART 
The QuickSmart program brings together research conducted at the Laboratory for 
the Assessment and Training of Academic Skills (LATAS) at the University of 
Massachusetts (e.g., Royer & Tronsky, 1998) and related work from the National 
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Centre for Science, ICT, and Mathematics Education for Rural and Regional 
Australia (SiMERR) at the University of New England in Armidale, Australia. Part of 
the theoretical background of the project relates to the work of researchers from 
LATAS who developed procedures for obtaining reliable assessments of pupil 
performance using a computer-based academic assessment system (CAAS). 
Importantly, the assessment tasks used are designed and sequenced in order to help 
identify particular obstacles that may impede pupil learning. The techniques 
developed by LATAS have been used successfully as a means of diagnosing the 
academic problems of pupils who have specific reading and/or mathematics learning 
difficulties. The QuickSmart program has situated CAAS within a teaching approach 
that incorporates a focus on systematic instruction with the consistent monitoring of 
pupil performance. This instructional focus is particularly valuable for those pupils 
who meet the criteria of being ‘treatment resistant’ to usual instructional and remedial 
efforts/methods. 

Based on analysis of the diagnostic information obtained from CAAS assessments, 
discussions with teachers, and other available test results, QuickSmart instructional 
interventions are tailored to strengthen each pupil’s problematic skills. The 
interventions are also based on a substantial body of research related to the 
importance of particular basic academic skills in the development of understanding of 
the four operations on simple and extended tasks (e.g., Ashcraft, Donely, Halas, & 
Vakali, 1992; Zbrodoff & Logan, 1996). 

Theoretical and pragmatic considerations that point to the importance of developing 
automatic low-level skills in basic Mathematics underpin the QuickSmart 
intervention. First, it is generally accepted that the cognitive capacity of humans is 
limited and that working memory has specific constraints on the amount of 
information that can be processed (Zbrodoff & Logan, 1996). As such, there is good 
reason to expect that improving the processing speed of basic skills will free up 
working memory capacity that then becomes available to address more difficult 
mathematical tasks. Research has already indicated that the ability to recall 
information quickly uses minimal cognitive capacity (e.g., McNamara & Scott, 
2001). Another reason why the automatic performance of low-level academic skills is 
of prime importance is that it allows for small decreases in response time to accrue 
across subtasks, again freeing up working memory (Royer, Tronsky, & Chan, 1999). 
There is evidence that in basic Mathematics, a pupil’s lack of automaticity can result 
in a reduced ability to solve problems and understand mathematical concepts 
(Gersten & Chard, 1999).  

In summary, QuickSmart is a theory-based intervention that supports basic skill 
development for chronic low-achievers in Mathematics. Specifically, this research 
implemented instructional program aimed to increase pupils’ understanding and 
speed of recall of basic number facts by freeing up working memory capacity within 
the context of a personalised learning environment where pupils are withdrawn in 
pairs from their normal class. 
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METHODOLOGY 
The QuickSmart intervention delivered instruction five times per fortnight for 
approximately twenty-five weeks to pupils with consistent and long-term difficulties 
in basic Mathematics. Important to the development and implementation of the 
QuickSmart program was close collaboration with the parents, teachers, support 
teachers, and principals of the participating schools.  

Design The study was designed as a quasi-experiment to measure the effect of 
increased accuracy and automaticity in basic Mathematics on more difficult 
mathematics questions for middle-school pupils (11-to-14 year olds) who exhibit 
long-term poor performance in Mathematics. Measures of improved mathematical 
ability were operationalised by pupil’s performances on more difficult mathematics 
questions as provided by Australian designed standardized tests. These data were 
gathered before and after the intervention for the target pupils, as well as for 
comparison groups of same-age peers. In addition, qualitative data from sources such 
as interviews and field notes were collected throughout the research. 

Participants A total of 12 pupils, six boys and six girls, enrolled in Years 5 or 7 from 
two schools in a regional district of New South Wales, were selected to participate in 
the QuickSmart Mathematics program. Within this group, three primary school 
pupils, and one high school pupil, were identified as Indigenous Australians. 

Year 5 participants (11 year olds) All pupils in a mixed-ability class were 
individually assessed on basic academic skills. Based on this assessment information, 
and in consultation with the class teacher, six low-achieving pupils were selected. 
The remainder of the pupils in the class became the comparison/control group. 

Year 7 participants (13 year olds) In this case the pupils in the secondary school 
were selected by the Head Mathematics Teacher using the criteria (i) the pupils 
experienced learning difficulties in basic Mathematics, (ii) performed within the 
lowest two bands on the State-wide Year 7 screening tests; (iii) had not shown 
improvement as a result of other school-based intervention or remedial programs, and 
(iv) attended school regularly. As a means of having a control/comparison group, 
four Year 7 pupils who were either average or high achieving were also identified. 
These comparison pupils were assessed using the same materials as the intervention 
group at the beginning and the end of the QuickSmart program. 

Procedures The project plan consisted of three phases – an initial assessment, the 
QuickSmart intervention program, and a final assessment phase. The QuickSmart 
program ran for twenty-six weeks for Year 5 pupils and twenty-four weeks with the 
Year 7 pupils. All pupils participating in the QuickSmart intervention were 
withdrawn from their classes in pairs for five half-hour lessons spread across each 
fortnight with the same instructor. Where possible, the pairings of pupils matched 
individuals with similar instructional needs in basic Mathematics. The QuickSmart 
intervention focused on a variety of practice and recall strategies to develop 
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understanding and fluency with basic numeric skills. Each lesson involved at least 
four components, namely: 

• revision of the previous session,  
• a number of guided practice activities featuring overt self talk and the 

modelling of strategy use,  
• discussion, clarification and practice of memory and retrieval strategies,  
• games and worksheet activities that focused on timed independent practice 

activities.  
Observations and information gained from questioning pupils about their strategy use 
formed the basis of instructional decision-making and individualization. Information 
was also derived from lesson activities.  

Additionally, CAAS assessments were completed at the end of most lessons. These 
provided on-going data related to pupils’ levels of accuracy and automaticity in basic 
skills. Pupils evaluated their own learning through recording information obtained 
during each instructional session and using this information to identify progress and 
to help set realistic future goals for their achievement. Of importance was that the 
CAAS assessments represented a random selection of 20 items within different 
categories drawn from an extensive database of questions.  

In order to develop transfer of learning, the QuickSmart intervention emphasized 
knowledge that could be used in classroom and other real-life settings. As well, there 
were attempts to link QuickSmart content to current classroom curriculum whenever 
possible.  

Instruction in the QuickSmart program was organised into units of work of three-or-
four-weeks duration with a focus on a specific set of mathematics facts. These focus 
facts were sets of related number facts ranging in difficulty from combinations of 
numbers that equal 10, to 12 times tables. It is important to note that focus facts for 
each unit also contained related facts such as 3 + 7 = 10, 30 + 70 = 100; 2 x 12 = 24, 
and ½ x 12 = 24. This approach helped to facilitate pupils’ observations and 
understandings about the reciprocity of relationships between numbers.  

Typically, the lessons began with a review of focus facts starting with those already 
known, and then moving on to those facts that the pupils still needed to understand 
and remember. Teacher-led discussion and questioning about the relationships 
between number facts, and ways to recall them merged into simple mathematics fact 
practice activities often revolving about highly focused games. These games were 
developed to complement each set of focus facts and allowed pupils to review and 
consolidate their learning in a motivating way. Timed performance activities were 
also used to assist pupils in developing automatic recall. In the last phase of the 
lesson, pupils practised on carefully selected worksheets that were closely related to 
the lesson content, before concluding with a brief CAAS assessment.  

A feature of the lessons throughout the program was both structured and incidental 
strategy instruction. The aim of this strategy approach was to move pupils from 
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relying on slow and error prone strategies, especially count-by-one strategies, to 
using more sophisticated and efficient strategies, including automatic recall. 

Dependent Measures Data on dependent measures were collected before, during and 
after the QuickSmart intervention. Results came from four sources: CAAS, 
standardized tests, qualitative data, and comparison data. The results presented in this 
brief report focus on CAAS assessment data, and standardised test results, as well as 
opportunistic data available from the State-wide Year 5 Basic Skills Tests. Detailed 
analysis and discussion of the qualitative data is currently under preparation. 

Assessments using the CAAS provided data on accuracy and automaticity of basic 
Mathematics. Five sub-tests of CAAS were used in this phase of the research. These 
were number naming of two digit numerals; addition (single plus single digit, and 
single plus double digit); subtraction (single and double digit numerals less than 20); 
triple addition (three numerals less than 20, appearing as 4 + 8 + 3); multiplication 
facts (to times 12); and related division facts.  

Standardised Tests were used to help assess pupils’ abilities to engage in more 
difficult mathematics activities. These tests were administered before and after the 
intervention. The Progressive Achievement Tests (ACER) were selected to measure 
this important variable. Specifically, parallel forms of the Progressive Achievement 
Tests in Mathematics (PATMaths) (ACER, 1997) were administered to Year 5 (Test 
1A) and Year 7 (Test 2A) pupils before and after the QuickSmart intervention. These 
tests measure mathematics performance across the range of National Profile strands – 
number, space, measurement, and chance and data. 

RESULTS 
The data from pupils’ information retrieval times on CAAS tasks, their standardised 
test scores, and opportunistic data from State-wide Year 5 Basic Skills Tests were all 
supported by rich observational and field notes. Although not discussed here, these 
qualitative insights were important in developing profiles of pupils as learners and 
descriptions of the cognitive obstacles that prevented their success with basic 
Mathematics. 

Data from the Computer-Based Academic Assessment System The CAAS system 
recorded data relating to retrieval times and accuracy levels on all tasks for all pupils 
on all occasions. The analyses presented in this section are based on the graphical 
representation of pupils’ information retrieval times similar to Figure 1. 
The graph in Figure 1 shows that the average information retrieval times of pupils 
decreased over time. For example, the Year 5 pupils were able to answer accurately 
addition sums in an average time of 1.7 seconds by the end of the QuickSmart 
program. At the beginning of the intervention, these same pupils took up to an 
average of 5.2 seconds to calculate each addition task. 



Pegg, Graham & Bellert 

 

4-54 PME29 — 2005 

 

0 

1 

3 

5 

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 

CAA S  S e s s io ns 

2 

6 

4 
T

im
e 

(s
ec

s)
 

 
Figure 1: Year 5 Addition Averages 

The improvement in retrieval times for Year 7 Mathematics pupils who completed 
the CAAS multiplication tasks was also dramatic. At the beginning of the program 
pupils took an average time of approximately 2.6 seconds to respond to each 
multiplication example. By the end of QuickSmart, the average time was more than 
halved to 1.15 seconds.  

A further filter through which to view the results of the intervention program is 
provided by comparing groups of pupils’ response times before and after the 
intervention. Pupil’s t-tests (two-tailed with unequal variance) were applied to detect 
statistical differences between intervention and comparison groups, and paired t-tests 
(two-tailed) were used to detect differences within groups (before versus after). These 
analyses indicate that the QuickSmart intervention was effective in assisting pupils to 
achieve results comparable to those of their same-age peers. In two out of three 
mathematics sub-tests of the CAAS there were significant differences between the 
participants and comparison pupils before the intervention. After the intervention no 
significant differences were found between the groups’ response times. This finding 
supports the claim that QuickSmart can bring pupils ‘up to speed’ in comparison to 
their peers on basic mathematics tasks. 

Standardised Test Scores Although it is accepted that improvement on standardised 
measures is hard to achieve through intervention research, all of the Year 5 pupils 
and five-of-the-six Year 7 pupils increased their post-test percentile rank scores. 
Individual improvements of up to 63 percentile points were noted.  

T-test results indicate that the Year 5 and 7 QuickSmart pupils’ post-test scores were 
uniformly higher, at the .05 level of significance, than their pre-test scores (t = 2.49, p 
< .05). These results can be interpreted as support for the hypothesis that increased 



Pegg, Graham & Bellert 

 

PME29 — 2005 4-55 

accuracy and automaticity in basic academic skills results in improvements in 
undertaking more difficult mathematics tasks.  

Opportunistic data were also available from the State-wide Year 5 Basic Skills Test. 
Results indicate that for the first time since this State-wide program of testing began, 
no pupils in this particular primary school were placed in the lowest band for 
Mathematics. In fact, only one Year 5 pupil was in the second lowest achievement 
band (Band 2) while two pupils achieved in the second highest band (Band 5).  

Of the six pupils participating in the QuickSmart program, three had also been pupils 
at the same school during Year 3. Consequently, these pupils’ State-wide Year 3 
Basic Skills Test results were available to the researchers. This information is 
summarised in Table 1. All these pupils showed improvement in Mathematics greater 
than Literacy and the state average of 6.5 growth points. The QuickSmart 
Mathematics group scored an average of 9.4 growth points on the Basic Skills Test 
for Mathematics, compared to an average of 6.5 points for their Literacy scores. 

QuickSmart Mathematics PUPILS 

 Year 3 Year 5 Band  

Year 5 

Growth  

Score 

QuickSmart Mathematics Pupil 1     

BST Literacy Results 47.4 54.2 4 6.8 

BST Mathematics Results 40.2 49.9 3 9.7 

QuickSmart Mathematics Pupil 2     

BST Literacy Results 51.8 55.5 4 3.7 

BST Mathematics Results 43.6 51.6 3 8.0 

QuickSmart Mathematics Pupil 3     

BST Literacy Results 48.8 57.7 5 8.9 

BST Mathematics Results 53.4 63.9 5 10.5 

Table 1: Basic Skills Results (Growth Average for the State is 6.5 pts) 

CONCLUSION 
The QuickSmart intervention made a marked difference to the mathematics 
performance of those pupils who participated in the program. The most marked 
differences occurred for the Year 5 pupils although the Year 7 pupils also showed 
statistical significant improvements.  

A follow-up study with the same pupils found they did not regress over a period of 
one year after the intervention program was completed. Hence, these pupils were able 
to maintain the gains they made. Importantly, this maintenance of performance was 
sustained across all the mathematics tasks tested by the CAAS system.  
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Because the QuickSmart intervention has a strategy orientation to improving pupils’ 
basic academic skill performance, it moves away from addressing academic problems 
through ‘busy’ unsequenced worksheet practice. Instead, it offers an alternative based 
on supporting pupils to learn to “trust their heads” by encouraging pupils to discard 
effortful strategies hence freeing up the demands basic Mathematics has on their 
working memory. As such, the QuickSmart program represents a fourth-phase 
intervention model for offering a new hope for supporting persistent low achievers in 
Mathematics. This fourth phase is appropriate after initial teacher instruction (Phase 
1), teacher remediation in class (Phase 2) and typical in-class remediation by a 
support teacher (Phase 3) have proven unsuccessful. 

In the QuickSmart program there are four main themes: 

• there is an emphasis on self-regulation, metacognition and self-esteem, with 
the goal of increasing independence in learning; 

• there is extended practice in the application of understanding and strategy 
use; 

• pupil progress is regularly monitored and feedback given; and 
• positive reinforcement is provided and initially this needs to be extrinsic, but 

intrinsic motivation is the long-term goal. 
Future research will explore how these key themes relate in helping pupils confront 
their learning obstacles and whether any one of these points is most significant in 
leading to improved learning outcomes. Also needed from research is information on 
whether there are optimal years of schooling in which to offer QuickSmart to pupils 
with mathematics learning difficulties, and to explore, more deeply, relationships 
between automaticity of basic mathematics skills and working memory capacity. 
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DEGREES OF FREEDOM IN MODELING: 
TAKING CERTAINTY OUT OF PROPORTION 

Irit Peled and Ronit Bassan-Cincinatus 

University of Haifa 

 

In its empirical part this paper establishes a general weak understanding of the 
process of applying a mathematical model. This is also evident in the way teachers 
regard the application of alternative sharing in their own problem solving and in 
relating to children's answers. The theoretical part analyses problems that are 
considered as applications of proportional reasoning. It suggests that the rationale 
for applying a proportion model varies and includes, for example, cases with a 
scientific rationale and others with a social one. In some problems there are no 
degrees of freedom in applying proportion, but in other cases this model should not 
be taken as "engraved in stone". This analysis is supported by examples of alternative 
sharing in Talmudic laws or bankruptcy interpreted by game theoretic models. 

THEORETICAL BACKGROUND 
Modeling 
This research expands the existing knowledge of the nature of mathematical 
modeling by offering an analysis of application rationale. The term modeling refers 
here to applying a mathematical model in a problem solving situation. As a less 
"automatic" act, modeling can be defined as the process of organizing and describing 
a situation or a phenomenon by using a mathematical model (or models) or 
"mathematizing" the situation by perceiving it through mathematical lenses (Greer, 
1993).  

Following the re-thinking of math education goals the interest in modeling processes 
increased, recognizing the importance of modeling expertise as a goal, and noticing 
that a good modeling activity, in turn, adds meaning to the applied mathematical 
model, increasing its power and enriching children's mathematical concepts. This 
meant that the nature of school problems and classroom practice had to change. 

Some researchers showed that classroom norms were responsible for the fact that 
children do not use realistic considerations in problem solving (Reusser & Stebler, 
1997; Greer, 1997; Verschaffel, De Corte & Borghart, 1997). Children and pre-
service teachers in several different countries were given problems that called for use 
of everyday knowledge, such as the fact that even a very fast runner cannot keep up 
his hundred meter speed when running a whole kilometer. In conventional classroom 
conditions, and even when children were given some hints on the special nature of 
these problems, children did not use realistic considerations. However, when the 
didactical contract (Brousseau, 1997) was changed, children changed their problem 
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solving habits (Verschaffel & De Corte, 1997; Verschaffel, Greer, & De Corte, 
2002). 

Modeling standard problems 
Our earlier research (Peled & Hershkovitz, 2004) suggests that a more inquisitive 
modeling attitude should be used not only in specially designed problems of the type 
composed by Verschaffel et al. (2002), but become a common practice even in 
standard problems. Peled and Hershkovitz (ibid) asked teachers and students to solve 
a conventional proportional reasoning problem. Most of the teachers applied 
proportional reasoning. A few of them made some drawings and gave a different 
answer. Class discussion revealed that teachers who solved the problem (correctly) 
using proportional reasoning engaged in an almost automatic application of 
proportion without deliberation on the reason why this model fit the given situation. 
The discussion and comparison of alternative teachers’ and children’s solutions made 
teachers analyze the situation and enrich their understanding of ratio and proportion. 

This research triggered our further investigation of modeling in standard school 
problems. We noted that teachers and textbook writers create sets of problem types 
they consider should be solved by using a certain mathematical model leaving no 
option for alternative solutions and leading students to view the connection between 
mathematical models and situations as an undisputed truth.  

Doubting certainty in model application 
Our concern in this study goes beyond the gap that exists between school 
mathematics and everyday mathematics. We focus on the assumptions behind 
applying a certain mathematical structure and analyse their nature. The following 
example will demonstrate what we mean by that. 

The Lottery Problem:  
Two friends, Anne and John, bought a $5 lottery ticket together. Anne paid $3 and John 
paid $2. Their ticket won $40. How should they share the money?  

A problem of this type appears in textbooks in the ratio and proportion chapter as an 
example of a situation in which an amount should be shared using a given ratio. In 
this case, the $40 sum is expected be split into two amounts using a 3:2 ratio. 

Ron, a seventh grader, suggested 3 different solutions to the Lottery Problem 
(converted here from the original IS to $): 

Solution 1:  40:2=20 Each child gets $20. 

Solution 2:  One child (the one who paid $2) gets $19 and the other (the one who paid 
$3) will get $21 (although the difference is $2 and not $1). 

    2   3 

Solution 3:  One will get $16 and the other 24 because 40:5=8   

 3x8=24, 24 to the child who paid $3 
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  2x8=16, 16 to the child who paid $2 

Ron:  In my opinion, the first solution is the most fair, but the third is most right 
because of the ratio.    

Ron, aware of classroom norms, knows that the teacher expects him to give the third 
solution, even if it doesn't feel so right to him. But is proportional sharing really the 
"right" (and unique) model? Why?  

It should be noted that similar answers were given by pre-service teachers in a more 
complex money-sharing situation described by Koirala (1999) in a problem involving 
the purchase of shoes in a "3 for 2" sale. Rather than figuring the cost for each of the 
two friends who are making one purchase by taking care of giving each of them the 
same percent off, some pre-service teachers suggest different kinds of splits. For 
example, some (the author identifies them as students with good mathematical 
understanding) think that dividing the saving evenly is fair. Koirala (ibid) seems to 
think that there is one correct answer, using the same-percent-off split. In fact, as the 
title of his article implies, he is worried that academic mathematics might be lost by 
legitimizing alternative solutions. We do not agree with his point of view. 

What is the basis for using proportional sharing? Is it inherent in the situation? Can 
we use another mathematical model? In the theoretical analysis we will contrast this 
situation with other situations in showing that the fitting of proportion in this problem 
is done on a relatively weak basis. Our purpose is to develop and then encourage a 
meta-analysis of the modeling process that deals with the modeling assumptions, 
their nature, and the degree of certainty with which we apply a mathematical model. 

FINDINGS 
Although we split the findings report into a theoretical part and an empirical part, the 
two parts were conducted simultaneously. The empirical findings start with data that 
establishes alternative answers in a money sharing situation, and presents attitudes 
towards these different ways of mathematizing the situation. It continues with a short 
description of class discussion that was conducted after an initial theoretical analysis 
was done. Our analysis of this discussion and additional workshop discussions 
resulted in a refinement of the theoretical analysis. 

Empirical findings 
We detail here a part of the data collected including children's answers and teachers' 
reactions, and summarize one of the discussions we conducted. 

A group of 24 seventh graders and a group of 43 elementary school teachers were 
given the original version of the Lottery Problem. They were asked to solve the 
problem and then react to the following children's answers: 

Aviv's answer:  40:2=20 Each one should get 20 IS. 
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Danit's answer:  Anne should get 21½ IS and John should get 19½ IS, because Anne 
invested 3 IS and John invested 2 IS, the difference is 1 IS therefore the 
difference in their winning shares should also be 1 IS. 

Yaron's answer: Anne should get 24 IS and John should get 16 IS, because 40:5=8 and 
3x8=24 and 2x8=16.  

The reaction distribution for each of the two groups is depicted in Table 1. 

 Aviv (equal)  Danit (diff.)  Yaron (prop) 

* + - +/- + - +/- + - 

Teachers 

n=43 

 

7 

 

23 

 

13 

 

1 

 

36 

 

6 

 

43 

 

0 

Students 

n=24 

 

12 

 

12 

 

 

 

14 

 

10 

 

 

 

16 

 

8 

* + regard answer as correct  – as incorrect  +/- correct and incorrect 

Table 1: Teacher and student reactions to ways of money sharing. 

As can be seen in Table 1, some of the teachers said that Aviv's answer or Danit's 
answer were both correct and incorrect. In their explanation they argued that the 
given solution might be correct socially or morally but incorrect from a mathematical 
point of view. Some typical answers: "It is their right to share the money anyway 
they choose, but in principle they should share their winnings using the 3:2 ratio" or 
"From a moral point of view equal sharing is great, but from a mathematical 
perspective the sharing ratio should be equal to the investment ratio". There were also 
some comments such as: "On a second thought, nowhere in the problem does it say 
that they will receive [money] according to their investment ratio, so it is possible to 
accept the equal share option".  

These (and additional) findings motivated our efforts to develop an analytical tool for 
modeling. Following an initial theoretical analysis, we conducted several student and 
teacher workshops where we brought up the issue of modeling rationale.  

In one of our first discussions with mathematics education graduate students the 
Lottery Problem was presented in 3 different versions (the effect of different story 
conditions is discussed in the theoretical analysis): 

1. The original version with a $40 win.    2. A million dollars (actually IS) win.  

3. As in version #2 with the additional information that Anne says: I only have $3, 
implying that she could not have bought a ticket if it were not for John's $2 
contribution. 

Each student was given one of the three versions and then asked to react to a variety 
of children's solutions. Then the Mixture Problem (shown in the theoretical analysis) 
was presented and the students were asked to compare the problems. Although 
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students exhibited different reactions as a result of getting the 3 problem versions, 
and although they expressed positive attitude towards children's non-proportional 
distributions, the instructor (the first author) felt that the students did not fully 
understand the differences between the Lottery Problem and the Mixture Problem. As 
a result, she introduced a third situation that does not involve any chemical reaction.  

The new situation involved a car assembly line, where each single car needs N parts 
type A and K parts type B. In this situation a constant ratio, N:K, exists between the 
number of parts independently of any given quantity of cars. As a result of this 
discussion, the Assembly Problem (detailed in the following section) was composed. 

Theoretical analysis 
One way to highlight and identify the nature of a process is by comparing it in 
different cases. We did that by composing a problem, the Mixture Problem, that is 
different in context from the Lottery Problem and yet supposedly (we will refer to the 
use of this word later) has the same structure. At a later point in the study, following 
class discussions, we composed a third problem, the Assembly Problem. 

The Mixture Problem:  
Ron started painting his garden fence in green that he got by mixing 3 cans of yellow 
paint with 2 cans of blue paint. When he ran out of paint, he calculated that he needed 40 
more cans to finish the fence. He also decided that he would like to mix yellow and blue 
and get the same shade of green that he had had before. How many of the 40 cans should 
be yellow and how many should be blue?  

The Assembly Problem: 
In a certain car assembly line each car has to be equipped with large cushions for the 2 
front seats and smaller ones for the 3 back seats. A load of parts arrived for a certain 
amount of cars. It included a total of 40 cushions which were indeed used in assembling 
the cars. How many of them were large cushions?  

Although we took care of composing the problems to be analogical in structure (the 
need to revise the definition of analogical structure will be raised in our work), we 
claim that they are very different. In the Lottery Problem proportional sharing is a 
result of the assumption that it is fair to have the same profit for each dollar invested. 
However, in the Mixture Problem proportion is used because this is how colors 
behave chemically when they are mixed. The Assembly Problem does not require a 
moral or a scientific excuse and as will be further analysed, the use of a mathematical 
model in this case is not only straightforward but also very stable.  

Resistance to change in problem conditions 
The differences between the three problems become apparent by looking at the 
solution’s "resistance" to variations in story details. If, for example, John and Anne 
win a million dollars, will we still expect them to use a 3:2 sharing ratio? And what if 
Anne only had $3 and would not have been able to buy the $5 ticket without John's 
contribution?  
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Several questions are elicited by these problem variations: Who decides how money 
should be shared? Is there some normative social agreement that it would be fair to 
distribute the money proportionally? What if John wants more than his proportional 
share and goes to court, what does the law say about such cases? 

The resistance to change criterion applies to the mixture problem in a different way: 
Sometimes in mixing very large amounts the chemical behavior does not follow the 
same pattern as in smaller amounts. Greer (1997) refers this phenomenon in cooking, 
where doubling the amount to be cooked does not necessarily mean that all receipt 
elements preserve the original ratio. The mathematical model for mixing different 
amounts depends on the chemical and physical mechanisms that are involved in the 
process. Some questions may prove pertinent here as well: How was a certain 
mixture formulae created in the first place? Was it an outcome of experimental 
observations resulting in a phenomenological connection? Or was it perhaps the 
result of a theoretical analysis of some chemical relations? 

While the mathematical model for the Lottery Problem and the Mixture Problem 
might depend on problem conditions, this is not the case for the Assembly Problem. 
The ratio between the total number of large cushions and small ones that are used in 
the process is constant and independent of the amount of assembled cars. (As a 
matter of fact even this situation is not completely "clean"… To avoid a quality 
control issue that would involve unfit parts, the number of which does depend on 
sample size, the problem refers to the used parts only). 

Thus, at this point, we have three different cases (mixture, sharing and assembly) at 
different locations on the “strength of application” axis (a temporary description): 
Assembly situations are located on the “very certain” side, moral-social situations on 
the “less certain” side and scientific situations somewhere in between, not too far 
from assembly situations. 

To use or not to use proportion: Learning from other disciplines 
Focusing on the specific mathematical model of proportion, our theoretical analysis 
takes some of its ideas from other disciplines in several ways: We interviewed 
specialists such as lawyers and scientist in industrial plants in an effort to understand 
the actual fitting of a mathematical model.  

It is interesting to note that when we asked a lawyer to solve the Lottery Problem, her 
first reaction was surprisingly similar to Ron’s answers and she suggested a 
proportional distribution of the money. On further prompting she admitted that this is 
not the way it would work in real practice. She explained that her first answer was 
based on identifying the problem as a school problem that should be answered as 
taught in school. 

We also looked into ways people solve similar situations in everyday cases, and into 
solution procedures suggested by disciplines that deal with such problems. One of the 
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cases involves Talmudic laws. As is shown in the following example, it offers a 
different solution. 

Mishnah 3 in chapter 10 of the volume Ketubot (a Ketuba is a document signed by 
the groom listing what he will pay his bride in case of death or devorce) deals with a 
case where a man dies leaving 3 widows. In their Ketubot he had promised to give 
the first woman 100 gold coins, give the second 200 coins, and the third 300 coins. 
Unfortunately, what he left is smaller than the sum of the promised amounts. Rather 
than splitting it using a 100:200:300=1:2:3 ratio, the Mishna rules that money 
distribution (in our terms: the mathematical model that is applied) depends on the 
given amounts. For example, if the whole inheritance is 100 coins, it is equally 
distributed. If it is 200 coins, then the second and third wives get 75 coins and the 
first gets 50 coins. 

For years these laws seemed inconsistent and their rationale was not known, until 
Aumann and Maschler (1985) developed an explanation based on game theory and 
the distribution of gains suggested by Shapley Value (satisfying the properties of 
efficiency, fairness and consistency) (Castrillo & Wettstein, 2004). This rationale can 
be applied in different cases (as in bankruptcy) where existing assets are smaller than 
the total claims. 

DISCUSSION 
This study followed our earlier realization (Peled & Hershkovitz, 2004) that the 
application of proportion in a standard problem is done automatically, with hardly 
any motivation to explore the situation or the reason a specific mathematical model 
should be applied.  

The empirical findings show that in problems that look like conventional proportion 
problems most teachers apply a proportion model even in cases that would have 
called for alternative solutions in reality. Some of the teachers reluctantly accept 
children's alternative solutions saying that they might be morally fair but 
mathematically wrong. 

Following these results we concluded that teachers need an analytical tool that would 
make them aware of the differences between situations with regard to the reasons for 
applying a model. A tool that would identify the modeling rational, establish the 
degree of certainty for applying a mathematical model, and help indicate where 
alternative solutions can be legitimate even in the eyes of math educators such as 
Koirala (1999) who do not want to loose academic mathematics. 

Our theoretical analysis describes the direction we take in constructing this tool. We 
show examples of problems that look analogical in structure but use different 
contexts. These problems stand for different types of application rationale and can be 
located at different places on a scale that represents the amount of certainty in using 
the relevant mathematical model. The Assembly Problem represents a straight case of 
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proportion while the Mixture Problem is a case for a scientific investigation and the 
Lottery Problem is a case for social norms and existing social laws.   

We also found that game theory and Talmudic laws support our claim that the status 
of proportional distribution of assets (as depicted in the Lottery Problem) is different 
from the status of corresponding modeling in a scientific problem (as in the Mixture 
Problem). Several Talmudic laws suggest a non-proportional solution in cases that 
would probably have been solved in textbooks by applying proportional reasoning.  

In our continued research we intend to refine the theoretical analysis, apply and 
validate it in our work with teachers in an effort to improve their understanding (and 
subsequently their students' understanding) of the modeling process. 
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“I KNOW THAT YOU DON’T HAVE TO WORK HARD”: 
MATHEMATICS LEARNING IN THE FIRST YEAR OF PRIMARY 

SCHOOL 
Bob Perry Sue Dockett 
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Harry completed his first year of primary school (Kindergarten) during 2004 in New 
South Wales, Australia. He enjoyed school; made great friends; played lots of sport; 
continued to read quite successfully; was well-liked by his teachers; participated in 
many activities; and, on reportedly rare occasions, did some mathematics.  

In this paper, comparisons are made between the mathematics Harry was capable of 
doing before he started school and what his parents were told he actually did during 
his first year of school. The paper was stimulated by Harry’s response to his parents 
when asked, near the end of his first year, what he had learned in mathematics at 
school: “I know that you don’t have to work hard”. 

INTRODUCTION 
Children in New South Wales (NSW), Australia start school in Kindergarten in late 
January each year. The children must start school by the time they are 6 years old but 
they may start in the year that they turn 5, provided their fifth birthday is before July 
31 of that year. Hence, it is possible for a new Kindergarten class to contain children 
aged between 4 years 6 months and 6 years.  

In NSW primary (Kindergarten to Year 6) schools, there are six syllabuses related to 
separate key learning areas, one of which is mathematics. The Mathematics K-6 
Syllabus (Board of Studies NSW, 2002), is based on current research and practice 
both in Australia and overseas and is organised to match the stages of learning 
through which students are expected to move. The four stages: Early Stage 1, Stage 
1, Stage 2, Stage 3 represent the learning of a typical student across the Kindergarten 
to Year 6 continuum. While stages of learning and stages of schooling only rarely 
match for individual children, this organisation does provide teachers with some 
guidance as to what might be expected of students who are completing a particular 
stage of schooling. However, the Mathematics K-6 Syllabus is clear that 

students learn at different rates and in different ways, so … there will be students who 
achieve the outcomes for their Stage [of learning] before the end of their stage of 
schooling. These students will need learning experiences that develop understanding of 
concepts in the next Stage. In this way, students can move through the continuum at a 
faster rate. (Board of Studies NSW, 2002, p. 5) 

There is clear recognition that children start school with mathematical knowledge and 
skills that should be considered when developing Kindergarten experiences. 
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Early Stage 1 outcomes may not be the most appropriate starting point for all students. 
For some students, it will be appropriate to focus on these outcomes whereas others will 
benefit from a focus on more basic mathematical concepts. Still others may demonstrate 
understanding beyond Early Stage 1 … teachers need to base their planning on the 
evaluation of current understanding related to all of the strands. (Board of Studies NSW, 
2002, p. 14) 

Many researchers (Aubrey, 1997; Doig, McCrae, & Rowe, 2003; Ginsburg, Inoue, & 
Seo, 1999; Perry & Dockett, 2002) have investigated the mathematical power that 
young children can bring with them when they start formal schooling. The 
conclusions reached by these authors suggest that teachers in the first year of school 
need to take into consideration their students’ past mathematical experiences and 
achievements when planning their mathematics programs.  

When children start school, there is a lot more going on for them than just their 
mathematics learning (Dockett & Perry, 2004; Dunlop & Fabian, 2003). For 
example, compared to the less formal approaches typically found in prior-to-school 
settings such as pre-schools, day care centres and homes, there is a greater emphasis 
on whole class approaches to learning, less choice for children as to the activities in 
which they might involve themselves, less control over these activities and their 
outcomes and less support from adults. In short, demands go up and support goes 
down. In mathematics learning and teaching, these changes are typically manifested 
in terms of a more formal, less play-based, less individual-based and more teacher-
centred approach to the development of mathematical ideas (Perry & Dockett, 2004; 
Tymms, Merrill, & Henderson, 1997). 

BACKGROUND TO THE STUDY 
This paper reports on a comparison between what one student, Harry, showed he was 
able to do in mathematics, particularly in number, immediately before he started 
school in Kindergarten and what he did in number during this first year of school.  

The school 
Harry started school in 2004. Brightview Heights Public School is located in an upper 
middle-class suburb of Sydney. The school is a relatively small (almost 150 students) 
K-6 school with a very stable staff profile. There is very strong parental and 
community support for the school. Brightview Heights Public School is well 
endowed with buildings and other resources. In short, Brightview Heights is a school 
with great potential for its students’ learning. 

The Kindergarten class 
In 2004, Brightview Heights enrolled 18 children (9 boys and 9 girls) into one 
Kindergarten class. The children’s ages ranged from 4 years 7 months to 6 years and 
1 month. All but one of the children were of English-speaking background and all 
had attended pre-school or day care in 2003. All the children lived with at least one 
of their natural parents and most lived with both parents. 
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The teacher 
The Kindergarten teacher, Mrs Jones, had taught for more than 20 years in NSW 
primary schools, the last 10 at Brightview Heights. This was her third consecutive 
Kindergarten class, although she had taught all of the first years of school—
Kindergarten to Year 2—throughout her career.  

The curriculum 
The mathematics curriculum for the 2004 Kindergarten class was determined by the 
mandatory Mathematics K-6 Syllabus but was also influenced by a systemic 
numeracy program Count Me In Too that has been adopted by most NSW 
government primary schools, and a textbook New Maths Plus K (O’Brien & Purcell, 
2003). The text  

provides a sound foundation for the teaching and learning of mathematics through the use 
of comprehensive, student-friendly activities based on the Mathematics K-6 Syllabus. 
(O’Brien & Purcell, 2003, p. v) 

Count Me In Too (NSW Department of Education and Training, 2001; Wright, 
Martland, Stafford, & Stanger, 2002) provides a systematic approach to the 
assessment and development of students’ knowledge in early number.  

Harry 
When Harry commenced Kindergarten, he was 5 years and 6 months old. He knew 
none of the other children in his Kindergarten class although he had met some of 
them during the orientation sessions at the end of 2003. Harry was a quiet child, often 
shy when meeting new people and sometimes reluctant to seek assistance. At the 
commencement of school, he was reading at a Year 2 level. He enjoyed music, 
painting and writing, and he and his mother had constructed a number of books to 
celebrate special events in his life. He did not like “colouring in” or public 
performances. He was keen to start school, although, along with many other children 
starting school, he was concerned about what was going to happen and who his 
friends might be (Dockett & Perry, 2004). 

DATA 
The data on which this paper relies consist of the following: 

• the Schedule of Early Numeracy Assessment (SENA) from Count Me In 
Too, administered to Harry four days before he commenced Kindergarten; 

• written records of Harry’s school number experiences as presented to his 
parents through his learning portfolio and completed textbook pages; 

• written reports and brief discussions between Mrs Jones and Harry’s parents; 
and 

• written records of discussions between Harry and his parents about school. 
These data provide a snapshot of what Harry was able to do, particularly in number, 
before he started school and then what he did do during his first year of school.  
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RESULTS 
Schedule of Early Numeracy Assessment (SENA) 
The SENA consists of an individual interview in which the student is asked a total of 
55 questions across the topics of numeral identification, forward and backward 
number word sequences, subitising, and early arithmetical strategies (counting 
objects, addition, subtraction and beginning multiplication and division). The SENA 
is intended for Early Stage 1 and Stage 1 students. Harry’s SENA profile, determined 
just before he started school, is presented in Table 1. 

Number Topic Level (of highest level) and description 

Numeral identification Level 3 (of 3): Recognises numerals to 100 

Forward number word 
sequences 

Level 4 (of 5): Can count to 30 from any number less than 30 
and state the number after a given number (In fact he could 
count to 100 from any number less than 100 except that he 
consistently counted “69, 50”) 

Backward number word 
sequences 

Level 4 (of 5): Can count backward from any number up to 
30 and state the number before a given number (Again, was 
on the verge of moving to the next level: counting backwards 
from numbers up to 100) 

Subitising Level 2 (of 3): Can instantly recognise dice and domino 
patterns for numbers up to 6 

Early arithmetic strategies Level 3 (of 4): Uses larger numbers and counts on and back 
to find the answer 

Table 1: Harry’s SENA number profile before starting school 

Learning portfolio and completed textbook pages 
Samples of Harry’s work were sent home to his parents at the end of each of the four 
terms in 2004. Mrs Jones explained the source of these samples in the following way: 

Each sample is selected from the work undertaken in class as part of our 
teaching/learning program and shows the work done by your child. It does not show 
work specially undertaken in class for the portfolio. 

In Term 1, the worksamples for number consisted of two photocopied worksheets. 
The first asked the students to “Colour the group that has the most in each row and 
circle the group that has the least”. From two to five objects were depicted. The 
second worksheet depicted two rows of from two to six objects and asked the 
students to “Circle the number that shows how many more are on the top row than on 
the bottom row”. The Term 2 worksample consisted of two questions: a) count the 
rows of from four to six counters and write the corresponding numeral; b) two sets of 
pictures are presented—four and three in the first part and five and three in the 
second—and students were asked to compete sentences of the form “� and � makes 
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�”. For Term 3, the number worksamples consisted of worksheets on subtraction of 
single-digit numbers, supported by drawings of objects that could be counted plus 
another where students were asked to colour or circle the objects divided in half. In 
Term 4, the only number worksample included in the portfolio was a page on which 
Harry had written the numerals 1 to 31 in the correct positions on a blank December 
calendar. Highlighted was December 21, the last day of the school year. 

The textbook used in Kindergarten covers the learning outcomes required by the 
Early Stage 1 of the Mathematics K-6 Syllabus. These outcomes are: 

Whole number: Counts to 30, and orders, reads and represents numbers in the 
range 0 to 20 

Addition/subtraction Combines, separates and compares collections of objects, 
describes using everyday language and records using informal 
methods 

Multiplication/division Groups, shares and counts collections of objects, describes using 
everyday language and records using informal methods 

Fractions/decimals Describes halves, encountered in everyday contexts, as two 
equal parts of an object (from Board of Studies NSW, 2002, pp. 
156-162) 

Two things are clear from the textbook pages. Firstly, almost all of the pages in the 
textbook are completed and have been meticulously marked with red ticks and “well 
done” stamps. Secondly, all of Harry’s work has been marked correct. That is, Harry 
has completed an entire year’s work in his textbook without making an error or, even, 
it appears after close scrutiny, an erasure.  

Teacher comments 
While Mrs Jones certainly made herself available at the request of parents, she tended 
not to take the initiative in discussions with Harry’s parents. When these discussions 
did take place, they were, for the most part to tell the parents about how well Harry 
was going in his school work, especially his reading. At the first formal parents’ 
evening, held about three weeks into Term 1, the only mention of mathematics was 
when Harry’s father enquired about when the individual SENA assessments might be 
undertaken for Kindergarten. Mrs Jones’ reply was that she was not sure because “It 
has been too hot to think about or do any mathematics”. (It should be noted that 
Sydney had experienced some very hot days in February, 2004.) At the parent/teacher 
interviews held in Term 2, mathematics was not mentioned either to or by Harry’s 
parents, except that Mrs Jones suggested that Harry was “doing very well”. 

There were two formal written reports from the school to Kindergarten parents during 
2004. The first, at the end of Term 1 was a brief note outlining how Harry was 
settling into Kindergarten. The following excerpts are illustrative: 

Harry reads fluently with excellent comprehension and is making very pleasing progress. 
He also shows a great understanding of concepts in Mathematics. … 
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Harry has become increasingly more comfortable and happy in the school environment 
throughout the term. I feel that he has adjusted to Kindergarten very well. 

The second written report was received at the very end of the year. It consists of a 
brief comment from the teacher: 

Harry has made excellent progress academically and in his own level of confidence at 
school. Harry is always happy to share his ideas and knowledge with his peers and has 
been a pleasure to have in the class. 

and then ticks under “Demonstrating competence” (the most successful category) for 
all of the 28 learning outcomes listed, including the three listed under “Mathematics – 
Number”: 

Recognises/compares the size of groups through estimating, matching and counting 

Manipulates objects into equal groups (multiplication) 

Manipulates groups of objects by combining (addition) or separating (subtraction). 

Comments from Harry 
Like many children, Harry was never been openly forthcoming in his discussions 
about his first year of school. He would talk about his friends, playing games during 
recess and lunchtime, who gained rewards or was “naughty” in class, or what 
happened in library, dance and drama. Hardly ever, did he mention mathematics.  

Harry did continue to do mathematics at home, both in terms of everyday life 
experiences and with specific activities devised for him by his parents. For example, 
he became quite adept at some computer games, many of which were either openly 
mathematical or had a mathematical bent. Generally, he did not talk about the 
mathematics he did at school, although on one occasion he did say that in 
mathematics at school “I know that you don’t have to work hard”.  

In a book that Harry prepared at the end of 2004, reflecting on what he learned in his 
first year of school, the only mention of mathematics is: 

Now I know 

220 + 220 = 440 

310 + 220 = 530 

DISCUSSION  
Harry is clearly not a typical Kindergarten mathematics student. He has had many 
experiences before starting school that have given him a flying start in terms of 
reaching the Early Stage 1 mathematics outcomes typically expected of children in 
Kindergarten. In fact, it would seem that Harry had reached almost all of these 
outcomes before he started school. However, little seems to have been done to 
harness the tremendous potential that he brought to the Kindergarten classroom, not 
only for his own benefit but also for the benefit of all of the children in the class. 
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Harry was obviously capable of being extended a long way beyond Early Stage 1 
outcomes in mathematics but, at least from the evidence of what happened in school 
mathematics lessons, this was not done at school. There is no doubt that Harry 
learned many things during his first year of school. In his reflection on this year of 
his life, he lists the following: 

the importance of friends; school rules; what to do at school; writing; how to play soccer; 
how to spell; how to play handball; and how to learn by “listening and paying attention”. 

No doubt, all of these are important but none of them builds on Harry’s evident 
strengths in mathematics.  

Harry undertook a SENA early in his Kindergarten year and would have completed it 
in a competent manner, with results similar to those achieved in the SENA completed 
before he started school. Such results should have suggested to the teacher that Harry 
needed special attention in mathematics but it appears that Harry was required to 
work through the same activities as the rest of the class. To his credit, he has been 
able to maintain his pride in his learning, at least to the extent of maintaining a 
perfect record in his much-used textbook. However, given that he has been able to get 
everything correct, then one must question how much challenge he has experienced 
and what learning has occurred. Where is the opportunity for Harry to develop to his 
full potential in mathematics when he apparently spent his time doing things that he 
already knew? Children faced with such lack of opportunity react in different ways. 
So far, Harry has continued to maintain the outward semblance of being interested in 
the work and, at least, being willing to complete it. However, it seems that the 
strongest lesson he has learned in his Kindergarten mathematics experience is that 
you do not have to work hard at it.  

CONCLUSION 
When children start school, they bring much mathematical power with them. This 
power has grown over the prior-to-school years and is ready to be nurtured, 
celebrated and extended through a purposeful and meaningful program of learning in 
Kindergarten. In Harry’s case, his capabilities were recognised but not extended. 
Continued programs that “teach” him what he already knows may eventually turn 
him away from mathematics and possibly from learning per se. 

The solution to this issue is to implement the rhetoric of the syllabus documents, 
systemic number program and textbook. In the Kindergarten class at Brightview 
Heights, the restrictions of these programs and written materials, along with an 
approach that did not actively extend children in mathematics, have conspired to 
constrain the mathematical learning of a child who has shown great potential.  

Harry’s experiences in mathematics in Kindergarten have produced dilemmas for all 
of the stakeholders. For the teacher, choices need to be made to allow the provision 
of appropriate individual as well as whole class experiences so that all children can 
be challenged and extended in their mathematics. Teachers need to be able to move 
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beyond the constraints of the syllabus, textbooks and systemic programs so that the 
full potential of these resources can be realised. For parents, there is a choice to be 
made between being “pushy” parents at school or being content—if they are able—to 
extend their children at home, perhaps increasing the disparity between school and 
home. For the Kindergarten child, the choice is the very difficult one of being like the 
rest of the class or being different. Should the child be compliant and accept what is 
handed out or be prepared to generate opportunities for challenge within the 
classroom? For a child in the first year of school, this is a dilemma that is 
undoubtedly best avoided but, as we have seen with Harry, it is one that occurs.  
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The study reported in this paper builds on a broader work aiming to identify factors 
that affect the development of prospective primary teachers' efficacy beliefs (TEB) 
with respect to teaching mathematics. Eight student teachers were interviewed in the 
beginning, in the middle and in the end of a fieldwork course; they were encouraged 
to reflect on their experiences throughout the course. The analysis of the data 
revealed that mentors could influence student teachers’ beliefs through their own 
teaching style, the feedback they provide to students, and the latent messages they 
implicitly convey to students. Yet, mentors’ influence on prospective teachers’ TEB 
should be regarded as a function of variable factors including the student-mentor 
personality matching. Implications for developing practicum courses and for further 
research are drawn.  

INTRODUCTION 
Understanding prospective teachers’ mathematical beliefs and the circumstances 
under which these beliefs might develop is considered crucial to educating teachers. 
Kagan (1992) observed that pre-service teachers tend to leave the university 
programs holding primarily the same beliefs with which they join it. She thereby 
recommended that teaching programs afford novice teachers extended opportunities 
to examine and integrate new information into their existing belief systems. 
Fieldwork courses have the potential to provide student teachers (hereafter referred as 
students) with such experiences.  

Fieldwork is the most relevant part of teacher education: it aims to help students 
integrate theory and practice, and learn to view their future role as learning 
facilitators (Pajares, 1993). On the one hand, fieldwork provides students with hands 
on experiences, leading them to “practice theory”, while, on the other hand, it 
encourages students to “theorize practice”, especially through critical observation and 
analysis of lessons taught by experienced teachers (Zanting, Verloop, & Vermunt, 
2003). Commenting on the catalytic role of fieldwork in changing students’ beliefs, 
Tilemma (2000) pointed out that, though some students hold quite stable beliefs that 
are well articulated and embedded in their personal belief systems, these beliefs 
might severely be challenged and become overruled by the conditions set by teaching 
practice. In fact, fieldwork may evoke negative feelings and attitudes, especially 
when it turns to be a “sink or swim experience”, viz. when students are left alone to 
fight against the obstacles emerging of school realities (Fullan, 1991; Tschannen-
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Moran, Woolfolk Hoy & Hoy, 1998). Hence, it goes without saying that examining 
the development of students’ beliefs during fieldwork, particularly in demanding 
domains such as mathematics, could inform our understanding of student teachers’ 
professional development.  

During the last decades much emphasis was placed on a subset of teachers’ beliefs, 
namely to teachers’ efficacy beliefs (TEB). It has been well documented that this 
construct influences predominantly teachers’ professional behavior and pupils’ 
conceptions and performance (Bandura, 1997). In particular, teachers with high TEB 
were found to exhibit stronger commitment and lower drop out tendency, have higher 
expectations for their pupils, set high goals and strive to realize them, show 
enthusiasm, have the view that even non motivated pupils can learn, accept pupils’ 
ideas and be less critical to wrong answers (Gordon, Lim, McKinnon & Nkala, 
1998). Though beliefs  in general are considered relatively stable, it is supported that 
fieldwork comprises a critical period, which provides fertile soil for the development 
of TEB (Pajares, 1993; Tschannen-Moran et al., 1998). It is, therefore, worth 
examining the effect of factors embedded in training programs on the development of 
student teachers’ TEB.  

The present study elaborates on the potential role of mentors in the development of 
students’ TEB. Research has so far indicated that mentoring constitutes a central 
element in teacher training (Jones, 2001; Templeton, 2003). Zanting et al. (2003) 
regarded mentors as potential conveyors of their practical knowledge to student 
teachers, whereas Athanases and Achinstein (2003) found that mentors could help 
novices focus on pupils’ learning, rather than worrying about their own competencies 
or about issues related to managing the class. Additionally, in Hobson’s (2002) study 
students perceived school-based mentoring as one of the key elements of their initial 
teacher education experiences. Indeed, students regarded mentors as more effective 
individuals than other persons involved in their teacher preparation program, in 
facilitating the development of their class management abilities and their skills in 
maintaining discipline and for helping them apply different teaching methods, as 
well.  

However, there is growing consensus that the quality of mentoring varies. Examining 
mentoring in England and Germany, Jones (2001) reported that mentors’ role 
captures a wide spectrum, from mentors being considered as teaching models and 
critical friends who assist newcomers with planning, teaching and evaluating students 
to simply being there to provide assistance to student teachers only when requested. 
Some of the students who participated in Hobson’s (2002) study also reported several 
communication problems with at least one of their mentors. Finally, drawing on the 
results of their study, Edwards and Protheroe (2003) concluded that, though mentors 
are in a position to guide student teachers’ participation in the practices of teaching 
and in flexible pedagogic responses to local classroom events, they rarely do so.  
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Pointing to the necessity for further research in this domain, Feiman-Namser (2001) 
asserted that, “we still know very little about what thoughtful mentor teachers do, 
how they think about their work, and what novices learn from their interactions with 
them” (p. 17). To the best of our knowledge, no previous study has elaborated so far 
on the role of mentors in the development of student teachers’ TEB. Therefore, the 
present study geared towards unraveling mentors’ role in the development of 
perspective student teachers’ efficacy beliefs in teaching mathematics. Specifically, 
the purpose of the study was twofold. First, to cast some light on the ways through 
which mentors can influence the development of student teachers’ TEB, and second, 
to investigate factors that affect the magnitude of their impact on students’ efficacy.  

METHODS 
The study took place at the University of Cyprus during the spring semester of 2002. 
The subjects were 89 four-year prospective teachers, 6 males and 83 females (mean 
age=22.14 years, SD=1.90) registered in the final teaching practice course. The 
course was structured in two parts of six weeks each with a week break in the middle 
for group reflection on practice. In each part, students were assigned interchangeably 
to a class in either a low primary cycle (1st to 3rd grade) or a high primary cycle (4th to 
6th grade), where they attended the daily program, participate in all in-class or in-
school events and taught nearly 120 lessons, 30 of which are mathematics lessons. 
Classroom teachers operated as students’ mentors: they were supposed to assign 
students what to teach, and discuss with students possible ways to present the 
content; they were also expected to be critical friends, providing students with 
feedback. Students also had the opportunity to observe their mentors while teaching 
mathematics and exchange ideas with them on issues related to teaching and 
managing the class.  

The eight interviewees that participated in the present study were selected on the 
basis of gender, performance in mathematics and level of TEB in mathematics. 
Specifically, two students (S5 and S7) were males; two students (S1 and S5) scored 
below the average in the mathematics courses they had attended at the university, 
four (S3, S4, S6 and S8) about the average, and two (S2 and S7) scored above the 
average. The students’ teaching efficacy beliefs were measured three times using an 
existing scale translated in Greek and reworded to reflect efficacy in teaching 
mathematics (more information is provided in Philippou et al., 2003). The 
interviewees represented the four different patterns of the development of students’ 
TEB that emerged from the analysis. Namely, S1 represented those students who 
entered the program with somewhat higher than the overall mean TEB; these beliefs 
were improved mainly during the first part of program. S2 and S3 started with slightly 
lower TEB than the average beliefs and got the most out of the program compared to 
other students. S4 to S7 were representative of students who entered the program with 
the highest TEB and continued to be above the level of the average students’ 
efficacy. Finally, S8 had extremely low TEB throughout the program.  
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Students were interviewed three times, one at the commencement of the course, one 
in the middle and one in the end. The interviews were quasi-structured and were 
conducted with the aid of a specially prepared interview plan; each interview lasted 
about 45’. Subjects were asked open-ended questions aiming to clarify their 
experiences as mathematics students and mathematics teachers, and their interaction 
with pupils, other preservice teachers, their mentors and the university mathematics 
tutors during fieldwork. The constant comparative method (Denzin & Lincoln, 1998) 
was used to analyze the data that emerged from the interviews. Specifically, 
transcripts were read intending to identify frequently used concepts and integrating 
themes. In this study we elaborate on the themes that were pertinent to the role of 
mentors in the development of students’ efficacy beliefs.    

FINDINGS 
The analysis of transcripts indicated that mentors influenced the development of the 
student’ TEB in diverse ways. However, nearly all transcripts suggested three 
overarching paths of this effect. In particular, mentors were found to affect students’ 
teaching-image by their teaching style, the feedback they provided to students and 
the latent messages that their behavior conveyed to students, as analyzed below.  

Teaching style. The mentors were more influential if they appealed to students as 
models in organizing and executing teaching tasks. The pattern of this influence, 
however, was not consistent across all students. A good mentor could be a positive 
model for a student, as appears in the reflections of S5:   

Her [the mentors’] teaching was a challenge to me. She was using various teaching 
approaches and manipulatives, and I was trying to imitate her… I believe that the mentor 
affects the way the student works and thinks. A good mentor motivates the student to try 
harder… My mentor, no doubt, exerted a positive effect both on my beliefs and my 
performance: she made me work harder and believe that I can do well.    

Nevertheless, good mentor teaching could also scare some students. S4’s commented, 
“I would never be able to teach as well as my mentor did. I tried to keep up with her as if 
there was a competition. I certainly could not override her; she had 12 years of experience”. 
Likewise, referring to the efficiency of her mentor’s teaching approach, S8 pointed 
out that “She was leading the process as a master. I used to compare my lessons to hers and 
I was often disillusioned”. For the same student, a less competent teacher seemed to be 
more influential for the development of her efficacy beliefs, as seen from her 
comments on the problems that her second mentor had in managing the class: “I was 
relieved to realize that I was not the only one who had problems in managing the class; even 
more experienced teachers had the same problems. That reinforced my confidence”.  

The difference between mentors’ teaching style and students’ beliefs about teaching 
and learning mathematics constituted another factor influencing students’ beliefs. For 
instance, S1, S5, and S7 described their mentors teaching as traditional. In most cases, 
that produced a rather “avoidance model”, as evident in the following excerpts:  
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S5:  My mentor used to keep pupils at a distance; his teaching was cool, and showed no 
interest in learning. I felt sorry for the children and tried to offer them something 
new and innovative. Being an old teacher, my mentor belonged to a different school 
of teaching and learning. And that incited me to perform even better in teaching 
mathematics.  

Along the same lines, S1 noted:   
S1:  My mentor was a counterexample for me. She was obsessed with covering the 

content; I highly disagreed with her teaching approach. I objected to rushing to 
present the content, since pupils seemed to fail to develop understanding. I was, 
thereby, incited to try to come closer to pupils and teach mathematics in more 
pedagogically consonant ways. 

Feedback and latent messages: Students’ efficacy was also sustained and further 
developed by the feedback they received from their mentors. Being confronted by the 
complexities of the teaching practice for such a long period, all eight students seemed 
to seek for this kind of support, since it reinforced their beliefs that they were doing 
well. For example, S2 noted, “On finishing my lessons, she [the mentor] was very 
supportive. She was telling me that I was doing very well and that pupils were learning”, 
whereas S8 was indebted to her mentor, for “she persuaded me that our mistakes should 
be considered as opportunities for learning rather than indications of inefficiencies. That 
really helped me a lot”.   

Beyond the verbal channel of communication and persuasion, mentors were 
additionally affecting students’ self-conceptions by the latent messages that their 
behavior conveyed to students. S7 confessed that:  

Every time I was deviating from the conventional way she was teaching, I felt that she 
was ready to tell me “you are creating troubles for my pupils”. Her behavior was often 
degrading; she would interfere in my teaching saying, “let’s explain this better”. 

In accord, commenting on one of her mentors’ behavior, S3 pointed out:  
His whole attitude instilled doubts about my teaching competence. On seeing him 
observing my lesson, I often had the impression that he was ready to tell me “My God. 
Your teaching approach is ineffective!” I felt that I was the worst teacher in the world.  

Interaction with a second mentor provided students with two teaching models, 
sometimes extremely dissimilar. The interviews revealed that students compared the 
two mentors in terms of their teaching practices and style and the feedback they 
provided to them. The mentors’ impact also depended on the degree of congruence 
between the students’ and mentors’ personality, age and sex. For instance, mentors’ 
openness to students’ ideas, their teaching style and their avoidance in imposing their 
own ideas to their neophyte colleagues offered predominantly in the former being 
considered as accountable advocates, as echoed in S2’s reflections:   

My mentor used to assist me in planning the lessons. She was not trying to impose her 
ideas on me; on the contrary, she was first expecting to listen to my own ideas. Then she 
was making suggestions. With no exception, I was following her suggestions… I trusted 
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her. She was teaching mathematics in a superb way; thereby I considered her 
recommendations as contributing to improving my teaching approach.  

The discrepancy between mentors’ and students’ age was another issue raised by 
most participants in the interviews. As S4 put it:  

My first mentor was the one who had the most determinant effect on the way I 
envisioned myself as a prospective teacher. She was two years older than me… She made 
me believe that I could be improved. The second mentor was good; but she was much 
older than me. She was very helpful; yet I could not communicate with her as openly and 
efficiently as I was doing with my first mentor. 

Finally, S3’s comments surfaced the role that the difference in mentors’ and students’ 
gender may have in the development of students’ efficacy beliefs. In her own words, 

“My second mentor was a male teacher and I did not feel very comfortable with him. I 
felt that I could not interact with him the way I was communicating with my female 
mentor”.   

DISCUSSION 
Though the findings of the present study do not allow for overgeneralizations, they 
point to some possible ways through which mentors can affect the development of 
students’ TEB during fieldwork. In accord with previous studies (e.g., Bandura, 
1997; Wolf, 2003), the present study reveals that mentors can inform students’ beliefs 
and teaching practices by their own teaching and by providing feedback to students. 
Moving a bit further, the study suggests that mentors can also impact students’ TEB 
by the latent messages that their behavior conveys to students. We elaborate on each 
aspect in turn.   

The findings of the present study seem to provide support to Bandura’s (1997) claim 
that vicarious experiences constitute a significant factor informing individuals’ 
efficacy. Specifically, several participants commented on how influential observing 
their mentors teaching was, both for their practices and their own efficacy beliefs. 
Yet, various factors appear to have determined the magnitude of this effect. Mentors’ 
competence was one of these factors, since students seemed to gain more from more 
proficient mentors. However, the findings of the study provide support to the 
curvilinear effect of mentors’ quality of teaching, given that when their teaching was 
perceived as more than reachable could degrade students’ efficacy. Bandura (1997) 
would explain this finding asserting that an excessive discrepancy between mentors’ 
and students’ competencies sets the bar too high for students and leads them to 
conclude that there is no meaning in trying to keep up with their mentors. The 
discrepancy between mentors’ teaching style and students’ beliefs about teaching and 
learning was also found to determine the influence that mentors had on neophyte 
teachers. In fact, students seemed to be less influenced by mentors whose teaching 
practices were discordant with what they believed about teaching mathematics. 
Though in most of these cases students were trying to employ teaching approaches 
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that were consonant with current reform ideas in teaching mathematics, mentors 
could act as stumbling blocks in this endeavor.   

The feedback that mentors provided to students was also found to inform students’ 
efficacy beliefs, verifying Templeton’s (2003) claim that feedback is more influential 
if it is provided after students’ teaching. Yet, findings also suggest that were a mentor 
accepted as more knowledgeable and expert, his or her suggestions and feedback 
would be taken more seriously into account. Verbal interaction was not, though, the 
sole channel of providing feedback to students, since students could also receive 
feedback about their performance by the latent messages that the mentors’ behavior 
conveyed to them. Though this factor has not been reported in previous studies, the 
interviewees’ comments are indicative of the predominant effect that this path of 
“interaction” may have on the way students envision themselves as potential teachers.  

In general, the findings of the present study provide support to the argument that 
there is no single way of informing individuals’ efficacy beliefs (Bandura, 1997; 
Tschannen-Moran et al., 1998). What seems to support the development of a 
student’s TEB can have a neutral or even negative effect on the development of 
another student’s efficacy. It, thereby, seems more legitimate to claim that the 
development of students’ TEB comprises a complex construct. Hence, when 
examining the mentor-student interaction as a potential contributor to the 
development of student’s efficacy, we should better elaborate on the confluence of 
several factors, including the mentor-student personality congruence, in terms of age, 
gender, teaching style, and pedagogical beliefs.      

With all this said, it goes without saying that teaching training programs need to 
place more emphasis on the potential impact that mentors have on the professional 
development of neophyte teachers. Given that some mentors were found to have 
reserved or even eliminated students’ opportunities to experiment with current 
teaching ideas and appeared to degrade students’ TEB, their role should not be 
underestimated. On the contrary, mentors’ professionalism, their pedagogical ideas, 
and their competence in establishing channels of communication with preservice 
teachers should be seriously taken into account when considering the factors 
contributing to the success of fieldwork. It could even be supported that interacting 
for so many hours with students during their first teaching steps, mentors are more in 
place to scaffold the development of students’ TEB than any other personnel engaged 
in teaching training programs.   

Though the present study seems to have shed some light on mentors’ potential role in 
the development of student teachers’ TEB, several questions remain unaddressed. For 
instance longitudinal studies could reveal how lasting mentors’ influence on students’ 
efficacy beliefs is. Of equal importance is to examine what mentors are thinking of 
students. Future research could also investigate whether the latent messages that 
mentors convey to students are a function of students’ deficiencies and self-doubts. In 
sum, the present study seems to have raised more questions than those it answered, 



Philippou & Charalambous 

 

4-80 PME29 — 2005 

verifying Wolf’s (2003) assertion that we need to gain more insight into the roles that 
mentors play to support student teachers’ professional development. 
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LINEAR FUNCTIONS AND A TRIPLE INFLUENCE OF 
TEACHING ON THE DEVELOPMENT OF STUDENTS’ 

ALGEBRAIC EXPECTATION 
Robyn Pierce 

University of Ballarat 

 

The study of linear functions is important as it provides students with their first 
experience of identifying and interpreting the relationship between two dependent 
variables. This paper, which builds on previous research, reports a study undertaken 
with 64, year 9 students from two Australian schools. Linear functions were 
introduced to these students through a graphics calculator supported, functional 
approach to modelling contextual problems. The teaching was generally successful. 
Scrutiny of pre- and post-tests highlights the triple influence of the teaching on their 
progress in each element of Algebraic Expectation relevant to this stage. 

 

Linear functions provide many students with their first experience of working with 
two related variables and so this is a significant point of transition in their 
mathematical development. The typical approach to this topic in Australian text 
books is to provide an abstract graphical introduction to a general rule, perhaps in the 
form y= ax+b, with attention given to the effect of each parameter on the graph of the 
function. In an earlier paper (Bardini, Pierce & Stacey, 2004) the researchers describe 
the mathematical development of a class of students at this point whose initial 
teaching followed a functional-modelling approach using context problems common 
to the students’ everyday world, supported by the use of graphics calculators. Those 
students’ ability to write and apply this level of algebra was closely monitored and 
examination of the data revealed that 

three features of the program exerted a ‘triple influence’ on students’ use and 
understanding of algebraic symbols. Students’ concern to express features of the context 
was evident in some responses, as was the influence of particular contexts selected. Use 
of graphics calculators affected some students’ choice of letters. The functional approach 
was evident in the meanings ascribed to letters and rules” (Bardini et al, in press). 

This paper reports a further implementation of this teaching program, this time with 
three year 9 classes (15 year olds) at two different schools. The pre- and post-test 
results for these students are scrutinised for evidence of this ‘triple influence’ and its 
impact on students developing Algebraic Expectation (Pierce & Stacey, 2001, 2002). 

THE ‘TRIPLE INFLUENCE’: THE TEACHING 
Instead of following their usual textbook the teacher and students were guided in 
their approach by the linear functions chapter from Asp, Dowsey, Stacey and Tynan’s 
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(1998) Graphic Algebra, a book that arose from research conducted during the 
Technology-Enriched Algebra Project of the University of Melbourne. The class 
teachers (all partner teachers in the RITEMATHS project, HREF1), were aware of 
the results of the first study. They were encouraged to have students work through the 
material at their own pace but punctuate this by teacher intervention and whole class 
discussion. These would be used to teach calculator skills and emphasise important 
features of the algebra, for example: the meaning of letters as variables, writing 
algebraic rules, function notation, and transformation of linear function graphs. 

The first influence: Real world context problems 
The teaching was almost all set in the context of real world problems which were 
familiar to the students: an approach supported by Freudenthal (1991) who argues 
that mathematics starts within commonsense and that students’ mathematical ideas 
develop by starting with such experientially real situations. Students in the earlier 
study commented that working with context problems helped them to ‘relate things 
and to produce answers which made sense’. We may expect to see the imprint of this 
‘sense’ in the students’ choice and ordering of symbols in their written algebra. 

The unit, which the teachers were asked to follow, begins with a story about a girl 
selling homemade lemonade. The profit she makes is set up as a function of how 
much lemonade she sells, first in a table and then on a graph. Students graph the 
function and read various information related to the problem setting, from the graph. 
Later, the story introduces other drink sellers with different prices and ingredient 
costs. These corresponding functions are graphed and the graphs and functions are 
compared. Points of intersection, slopes, intercepts and intervals are interpreted in 
context. The program then introduces other real world problems. For example, a 
comparison of mobile phone charges drew out the significance of slope and intercepts 
in terms of both the original problem and related algebraic equations, while an 
investigation of the relationship between height and arm span, led students to model 
the relationship by drawing a line of best fit by eye through data, writing the rule and 
then exploring the consequences of varying the parameters. 

The second influence: a functional approach 
In addition to the modelling approach as described above using real contexts, the 
perspective taken in this teaching has elements of a functional approach to algebra. 
While there was no formal teaching of definition of function as a single valued 
mapping over a domain, function notation is used and the notion of a relationship 
between a dependent and an independent variable is emphasised, for example, as 
described in the lemonade problem. Algebraic letters stand primarily for variables. 
This approach is expected to influence students’ meaning of letters, identification of 
structure and interpretation of features of functions and graphs. 
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The third influence: the use of graphics calculators 
The teaching emphasised a graphic approach to linear functions. Students solved 
some equations both graphically and symbolically but graphical solution methods 
predominated. There is strong evidence (see for example Dreyfus, 1991) that students 
build strong conceptual schema by moving between representations and we expect 
that understanding gained in the graphical representation will enhance students’ 
ability to identify the structure of two dependent variables and identify and interpret 
the key features of linear functions, that is the role of the constant and coefficient.  

Students’ work in the graphical mode was supported by each having a TI-83+ 
graphics calculator for all lessons. The graphic facility of these calculators allows 
flexibility of scaling and, in particular, allows students to move easily between 
different views of a graph by zooming in and out. Even beginning students find little 
difficulty in entering data, viewing scatterplots and testing the validity of conjectures 
for a line of best fit by changing the values of parameters.  

The use of this technology forms the third influence of the teaching and while we 
expected the focus on graphs to be a positive influence there was some concern as to 
whether the use of graphics calculator technology with its own peculiar symbols 
might impact on students’ by-hand algebra. The influence of these three facets of the 
teaching on students’ Algebraic Expectation will be explored as we consider 
students’ written responses on both the pre- and post-tests. 

LINEAR FUNCTIONS AND ALGEBRAIC EXPECTATION   
Algebraic Expectation was first defined for undergraduate students studying a 
functions and calculus course with a Computer Algebra System (CAS) available 
(Pierce & Stacey, 2001). The context of learning environments where sophisticated 
technology is increasingly on hand, especially in the form of function graphers or 
CAS, has challenged mathematics educators to reconsider our focus in teaching 
algebra. Fey (1990) and Arcavi (1994) put forward notions of ‘symbol sense’ to 
parallel ‘number sense’ (see for example McIntosh, 1993). Pierce & Stacey (2001), 
after considering the full process of mathematical modelling, suggest that the key 
impact of such technology is in the process of finding a mathematical solution to a 
mathematically formulated problem. We summarised the ‘symbol sense’ thinking 
needed to exploit and monitor work with mathematical analysis tools within the 
symbolic representation as ‘Algebraic Expectation’. The section below considers the 
key ‘common instances’ of Algebraic Expectation which we expect to be observable 
when students learn to write and use linear functions: 

• recognition of conventions and basic processes 
• identification of structure 
• identification of key features.  

Creating, interpreting and working with an algebraic (symbolic) rule for a linear 
function is not trivial for a novice and the foundations of Algebraic Expectation 
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established in this context will be widely applicable. Consider a general rule for a 
linear function, say y = mx + c or f(x) = ax + b. A student demonstrates Algebraic 
Expectation by identifying the structure of two related variables, both of degree 1, 
and hence recognising the rule for a linear function. To create or interpret such a rule 
the student must understand that x may vary in the values which it represents and that 
the value of y or f(x) will depend on the value of x. The student needs also to come to 
see that the choice of letter to represent a variable is arbitrary but that common 
mathematical convention suggests the use of either a letter related to the context or a 
letter from the latter part of the alphabet. In developing Algebraic Expectation related 
to variables, it is also important that the student learns that the variable x, in our 
general rule, may stand for a variety of numerical values or in fact another object or 
expression which can replace x. In the rule that describes a relationship, units of 
measurement need not be included and multiplication is, conventionally, implicit. 

For any linear function students should be able to identify the constant term and 
interpret this as the value of y when x is zero or an ‘initial value’. Similarly it is 
important to identify the coefficient of the variable and interpret this in terms of ‘rate 
of change’: the change in y when x changes by 1. The teaching stressed this 
interpretation from both graphical and real world viewpoints. 

This section has briefly noted instances which would show students’ competence in 
Algebraic Expectation. This paper concentrates on understanding in the symbolic 
representation: other important understandings not considered here relate to other 
representations. In the next section we scrutinise pre- and post-tests of the students 
who participated in this study for evidence of the ‘triple influence’ of the teaching on 
this aspect of students’ mathematical progress.  

THE EVIDENCE 
The findings discussed in this paper are based on students’ scripts from pre- or post- 
tests completed by sixty-four students from three year 9 classes (approx 15 year olds) 
at two co-educational secondary schools. One of these three teachers had previously 
taught the class described in Bardini et al. (in press). The classes each followed the 
teaching program outlined above over a period of about 4 weeks.  

This paper will consider students’ responses to three multiple-part items which had 
equivalent forms on both tests. For the first problem, on the pre-test, students were 
provided with a graphical representation of the costs of hiring either Jack or Jill’s 
truck and asked to read information and describe the rule verbally and symbolically. 
The post-test question paralleled this with a graph showing the alternative costs of 
hiring a plumber, either Bob or Chris. The second question on the pre-test provided a 
scenario about the cost of a vacuum cleaners with additional dust bags and the post-
test described alternative costs for fun park entrance with varying numbers of rides. 
The third parallel question pair required finding a rule to match a table of values, 
complementing the previous questions requiring rules from graphs or descriptions of 
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real situations. Examples in the paper are all given from the first item pair, but the 
percentage changes report on data from all three item pairs.  

First it was clear that the teaching was generally successful. We see significant 
improvement from the pre-test when 50% of students either made no attempt to write 
algebraic rules or were incorrect to the post-test when only 2% of the students made 
no attempt to write rules and 18% did not write at least one correct rule. In addition, 
when writing a rule from graphical information on the pre-test 23% of students were 
successful and on the post-test 63%, from verbal information pre-test 14% to post-
test 55% and from a table the success rate increased from 17% to 69%. Examples and 
changes in students’ responses will provide evidence of the ‘triple influence’ of the 
teaching content on their improvement as demonstrated by Algebraic Expectation. 

The triple influence on ‘recognition of conventions and basic processes’ 
The influence of context on recognition of conventions and basic processes is seen in 
students’ verbal responses and writing of algebraic rules. The responses of students 
38, 34, and 36, below, highlight the range of level of attachment to the context, 
shown when students were asked to explain, in words, how to work out the cost of 
hiring Bob if you knew the number of hours he would be working. 

Student 38 $25 set fee plus $50 an hour (this is a correct interpretation of the graph) 
Student 34 Bob starts at a fixed rate of $25 and for every hour after that there is an 

extra $50. 
Student 36 Ring Bob 

Writing an algebraic rule to work out the cost of hiring a truck or plumber allows us 
insight into students’ recognition of conventions, especially meaning of symbols. 
Some students like students 25 and 34, below, showed a progression from an inability 
to write in symbolic algebra to writing essentially correct rules.  

Student 25 no response   Student 25 c = $25 + $50x 
Student 34 no response   Student 34 Bob=25 + (x × $50) = C 

In other responses we see the influence of context fading as the student becomes 
more confident in their use of algebra: 

Student 109 cost=$100+$50x  Student 109 c=25+50x 

Then finally we observed some students who changed from writing their rule by 
following arithmetic logic, that is initial cost plus rate times hours gives the cost, to 
the more detached conventional order commonly adopted in algebra.  

Student 102 100+50D=C   Student 102 C = 50t+25 

Through the experience of the context problems and the functional approach, students 
clearly came to recognize that a letter may stand for a quantity which varies. Many 
students, such as student 142, added notes which make this understanding explicit. 

Student 142 C=25+50n, n = number of hours 
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This is a vital step forward in their understanding of algebra from their earlier work 
on equations where they have met letters as standing for fixed unknowns. The imprint 
of context teaching is clearly seen in the increased incidence of students choosing 
letters related to the context (e.g. C, h (hours), t (time) etc) in their rules. As students 
became ‘socialized’ to the conventions of algebra we see an increase in the use of 
implicit multiplication (52% to 81% of responses) although the use of $ symbols 
within the rule remained at 12% of total responses. 

Little other impact of the functional aspect of the approach or the use of graphics 
calculators was evident in students’ choice of symbols. Despite the use of notation 
such as P(x) in the teaching materials, only two students used this when writing rules. 
Similarly, graphics calculator syntax was not adopted by the students, again only one 
student wrote ‘�’ where multiplication could have been implicit. They then replaced 
this ‘�’ with the conventional ‘×’. Using contextualized problems appears to have 
positively influenced students’ use and understanding of the meaning of symbols.  

The triple influence on ‘identification of structure’ 
A fundamental aspect of identification of structure is to see that the situations 
presented in all three question pairs represent functional relationships between two 
variable quantities. The examples of students 38 and 106 demonstrate progress. 

Student 38 50 × x + 100  Student 38 C=50 × x + 25 , x = hours 
Student 106 50x +100   Student 106 c=50h+25 c = cost, h = hours 

On the pre- and post-tests, two of the questions requiring students to write algebraic 
rules were based on context scenarios and the third on a table of values without 
context. On the pre-test 20% of students who responded wrote only expressions in 
one variable to generalise context scenarios (e.g. students 38 and 106) but 
interestingly most of these students wrote rules using two variables to express the 
relationship between variables in a table of values. In addition, on the pre-test 49% of 
students correctly wrote rules using two variables regardless of context or table and 
this proportion increased to 97% on the post-test. On the post-test, the only students 
writing expressions in one variable, instead of relational rules, were from among 
those who did not respond to these items on the pre-test.  

The use of the graphics calculator supported students’ explorations of various 
relationships, for example, the mobile phone charges and especially in the 
development of a model to link arm-span and height. The repeated use of the function 
entry format of y1= , y2 = etc reinforces the structure of two dependent variables. 
Some students, like student 108 below, who adopted the use of y rather than a context 
dependent variable, or student 21 who wrote that b(x)= y may have been influenced 
by this but no student included subscripts in their rules. There was no evidence that 
the availability of the graphics calculator encouraged students to solve non-
graphically presented questions graphically.  

Student 108 y= 50x+25 
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The triple influence on ‘identification of key features’ 
Across all three questions most students, who responded, correctly identified and 
interpreted the parameters. Teaching from context problems has influenced this. Only 
in pre-test responses to question 1 do we see some errors like those of Student 138 
and Student 143. Fourteen percent of students failed to add the constant term for the 
initial cost while student 138 was the only student to omit the coefficient for the cost 
per hour. No students who responded to these items on the post-test made such errors. 

Student 138  x+50   (correct answer 50x + 25) 
Student 143  x = n × 50 (correct answer 50x + 25) 

That students’ interpretation of these key features was strongly influenced by context 
was shown in their verbal descriptions (for example student 34 above) which 
translated into rules. The teaching approach reinforced the broader ‘rate of change’ 
interpretation of the coefficient rather than just ‘gradient of a line’ as emphasized by 
the typical abstract graphical introduction to linear functions. In other words, the 
coefficient was interpreted not primarily as slope, but as the change in the dependent 
variable corresponding to a change of 1 in the independent variable. Students 
apparently understood this well and used it to construct correct algebraic rules. 

We expect that the inexact modelling will also have contributed to students’ strength 
in identifying and interpreting these key features, although there is no direct evidence 
in their solutions to these items. The exploration, using the graphics calculator, for a 
model to link arm-span and height required students to deal with a situation where the 
initial value was outside of the graph window which displayed the data. Students 
trialled various constant and coefficient values in order to find their ‘line of best fit’. 
This experience was intended to draw attention to the importance and meaning of 
these two parameters. 

CONCLUSIONS 
‘Linear functions’ is certainly a basic algebra topic but it is of fundamental, not 
trivial, importance. It marks the point at which many students decide that 
mathematics is meaningless and difficult. This study complements and extends the 
work of Bardini, Pierce & Stacey (in press). In both studies, the majority of students 
made successful progress in writing conventional algebraic expressions and 
developing Algebraic Expectation. The previous analysis of teaching identified three 
important features which impacted on students: working initially with modelling 
contextual problems, following a functional approach and using a graphics calculator.  

In this study we have scrutinised students’ responses to pre- and post-test items in 
order to seek evidence of the ‘triple influence’ of these three features of the teaching 
on their developing Algebraic Expectation as demonstrated in their writing and 
interpretation of algebraic rules. When marking students’ test responses a teacher will 
appropriately mark a variety of answers as incorrect or as correct and allocate a grade 
by which the student will judge their progress. In this paper it has been shown that 
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the variety of answers is also revealing because within both ‘correct’ and ‘incorrect’ 
responses can be seen a range in the students’ understandings and their progress 
towards working competently with de-contextualised symbols in a conventional way.  

While the functional approach is demonstrably appropriate for applying algebraic 
techniques to real world problems and the strategic use of graphics calculators 
supports this approach, evidence of their direct influence on students’ test responses 
was limited. In contrast, the influence of modelling contextual problems was clear, 
especially in the work of those students who did not write correct rules on the pre-
test. The link to context assisted students in understanding the meaning of symbols 
and identifying both the structure and key features of linear functions. There was also 
evidence that students, who could already link symbols to the context, progressed to 
writing more conventional de-contextual algebraic rules.  
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ENGAGING THE LEARNER’S VOICE? CATECHETICS AND 
ORAL INVOLVEMENT IN REFORM STRATEGY LESSONS  
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This case study is set within the context of a national reform strategy that strongly 
espouses oral involvement of learners through ‘catechetic’ interactions, i.e. the use of 
question-and-answer as a means of teaching, and its inverse, the students' use of 
question-and-answer with their teacher and their peers in order to enhance their 
learning, and other oral contributions. Fourteen lessons spanning learners aged 4-15 
years were observed and analysed with respect to the extent and quality of such 
interactions. Attention was paid to observing the catechetics of each lesson,. The 
incidence and nature of students’ oral contributions and interactions could be 
described as ‘the learner’s voice’ within lessons. Data on these lessons, coupled with 
data gathered from surrounding structured conversations with teachers and pupils, 
indicates that the espousal by teachers of some key tenets of the reform strategy is not 
as yet being significantly enacted in their practice. Also, implicit altered expectations 
of their role within lessons have not been communicated effectively to most students. 
The authoritarian model adopted by the reform strategy is suggested as a key factor. 

INTRODUCTION 
The schools hosting this case study were all in or around a small town with a 
relatively stable population base, so that the majority of students moved between 
these schools within the three phases of their compulsory education: ‘first’ 4-8yrs, 
‘middle’ 9-13yrs, ‘high’ 14-16yrs. They had already worked together as a consortium 
for at least two years in attempting to understand and implement the national reform 
strategy. All of the teachers met within the schools, including all those whose lessons 
were observed, overtly espoused the reform strategy, including specifically, within 
informal interviews, supporting the central importance of classroom discussion, 
question and answer interactions, and students’ oral contributions. The fourteen 
lessons to be seen were negotiated as part of a commissioned audit and review of the 
health of the mathematics provision within the consortium, and as such spanned all 
ages of students within 4-15 years. All teachers observed were clear about this and 
indicated that their chosen lesson was intended to reveal their enactment of the 
national reform strategy. In a previous presentation (Pinel, 2002) the catechetic 
interactions of these lessons were provisionally analysed: this analysis is reviewed 
and extended here to include all oral contributions and opportunities to contribute that 
were observed and recorded. Each lesson was preceded by a short semi-structured 
interview with the teacher, and followed by a longer semi-structured discussion with 
a small sample of students. A two-sided A4 observation sheet was used consistently 
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for recording all lesson observations. Further field-notes were made to accompany 
the interviews and discussions. 

KEY MESSAGES OF THE ENGLISH REFORM STRATEGY 
The reform strategy in primary schools is based upon a severely truncated ‘five-year’ 
project called the National Numeracy Project. This was originally intended to run 
from June 1996 - June 2001, and then report in 2002, but in practice was required to 
report in November 1997, so that a Numeracy Task Force (DFEE 1998a,b) could 
develop the principles upon which to implement a National Numeracy Strategy 
(DFEE 1999) from September 1999. This also fed into the revised National 
Curriculum (QCA/DFEE 1999) that came into force in September 2000, and the 
National Strategy for Key Stage 3 [NSKS3] (DFES 2001), covering the years 11-14, 
initiated in 2001.  

Among the key messages emphasised throughout these reforms, and specifically 
reiterated within NSKS3 were:  

• Enquiry skills: these ‘enable pupils to ask questions, define questions for 
enquiry…’ Pupils are to present concise, reasoned arguments, explaining and 
justifying inferences, deductions and conclusions (DFES 2001, 21-22) 

• Creative thinking skills: these ‘enable pupils… to hypothesise…’ Pupils are to 
conjecture, hypothesise, ask questions – ‘What if…?’ or ‘Why?’ (DFES 2001, 21) 

• Teaching approach: to ensure ‘a high proportion of direct, interactive teaching’ 
(DFES 2001, 26) where: ‘high quality direct teaching is oral, interactive and 
lively… pupils are expected to play an active part by answering questions, 
contributing points to discussions, and explaining and demonstrating their 
methods and solutions to others in the class’ (DFES 2001, 26).  

This approach leads to: ‘regular opportunities [for pupils] to develop oral… skills’ 
(DFES 2001, 26). It is based on ‘questioning and discussing’, ‘exploring and 
investigation’ and ‘reflecting and evaluating’: questioning in ways that… ensure that 
all pupils take part; using open and closed questions, skilfully framed, adjusted and 
targeted…; asking for explanations; giving time for pupils to think before inviting an 
answer; listening carefully to pupils’ responses and responding constructively…; 
challenging their assumptions and making them think…; asking pupils to suggest a 
line of enquiry…; discussing pupils’ justifications of the methods or resources they 
have chosen’ (DFES 2001, 27) 

RESEARCH QUESTIONS 
Present policy, as expressed in these ways, would appear to treat the classroom as a 
‘black box’ (Black & Wiliam 2001), where certain government-sponsored inputs are 
fed in, making demands upon teachers and pupils by setting raised expectations, 
while strongly recommending an authoritative-sounding set of strategic guidelines for 
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how the teacher and the pupils should interact within the classroom in order to meet 
these expectations. The key research questions therefore are:  

• To what extent were these teachers espousing the above messages? 

• To what extent, and in what qualitative ways, were these teachers enacting the 
above messages through their practice in these lessons? 

• To what extent were those students who engaged in subsequent discussions, aware 
of the nature of their intended contributions to lessons implicit within the above 
messages? 

In addition, as Black & Wiliam surmise, there is the question as to whether these 
inputs are “counter-productive – making it harder for teachers to raise standards” 
(ibid.) It is questionable whether the strategic guidelines are as evidence-based as 
they may seem. Several studies (e.g., Brown, M. 1998; Thompson, I. 2000) have 
challenged claims made by the Numeracy Task Force that they “aimed throughout 
our work to look at the evidence” and “attempted to learn not only from this country 
but from achievements (and mistakes) in other countries” (DFEE 1998b, 7).  

PREVIOUS RESEARCH  
There are as yet few studies of how the intended oral-interactive nature of lessons in 
this reform strategy is playing out in classrooms. Exceptions include Denvir et al. 
(2001) and Coles (2001). In contrast, there are several studies on questioning and 
responding: Nicol (1999) and Wiliam (1999, 2000) both offer significant thought-
provoking contributions, while Sullivan (2001) crystallises the reform strategy’s 
official line. The broader impact of the reform strategy is becoming well documented 
(Millett et al, 2004) and other studies question its approaches (Brown, M, 2000). Also 
of direct relevance are studies about belief systems of teachers (Gates, 2001), 
comparisons of what is espoused and what is planned (Lim, 1997), and how the 
quality of teaching can be affected by a reform strategy (Shafer, 2001). 

METHODOLOGY 
Establishing the lesson observations 
An e-mail link was established with each school during a delegate meeting. Lessons 
were scheduled to be observed using e-mail negotiations with school contacts: school 
headteachers, in first and middle schools; the head of mathematics department, in the 
high school. Lesson observation visits occurred within one half-term, all being 
observed by the same experienced observer-researcher. Observed teachers agreed to 
take part in this audit - school contacts reported that the option not to take part was 
exercised by a handful of teachers approached. All teachers had notice of the lesson 
to be observed, the schedule being established at least a week ahead. Reminders were 
sent by e-mail a few days before visits. Lessons lasted 45–50 minutes and were 
observed throughout, significant incidents being noted on a proforma of observable 
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processes, modes and styles, including specific spaces within which to record any 
verbal interactions (Gardner, 1993, 1999; Nicol, 1999; Wiliam, 1999).  

Prior to each lesson, a 5-10 minute semi-structured interview was conducted with 
each teacher. This focused upon [a] putting them at their ease, while reaffirming the 
agreed purpose of the observation, [b] establishing what views they espoused (Lim 
1997) about the national reform strategy, and how far they saw themselves as having 
progressed in relation to implementing the strategy, [c] more specifically, what level 
of importance they currently attributed to the oral-language rich, verbally interactive, 
mutual questioning aspects of the strategy (Busatto 2004). Notes on this aspect were 
collected by noting down key points immediately afterwards on a proforma, while the 
teacher was making final preparations for the lesson.  

After each lesson, three students were drawn from the class and involved in a 20-30 
minute semi-structured interview. This allowed for more in-depth exploration of their 
relationship to relevant mathematics ideas, and opportunity to gain insight into the 
penetration of reform strategy ideas about students’ roles in lessons as becoming 
more active and interactive, as outlined above. Their perspectives and expectations in 
this area were easier to access against a background conversation that focused upon 
their current mathematical focus (Wiliam, 2000). 

Each lesson observation was summarised into two pages shortly after the visit, and a 
copy e-mailed to school contacts. This allowed them, in discussion with observed 
teachers, to correct any aspects regarded as factually inaccurate, and to challenge any 
interpretations. In the event, no changes to the record were suggested.  

Certain improvements to the methodology were suggested by the experience and later 
reflection. Had it been possible to carry out follow up interviews with the teachers, 
the methodology may have been strengthened. Had the lessons been audio- or video-
taped, some more detail may have been added to the data, though perhaps at a cost – 
it was notable that almost all of these teachers seemed at their ease with the 
researcher’s presence and many were almost able to forget about it when the lesson 
was underway. Other than these issues, the approach chosen led to considerable 
richness of data, while retaining an apparently high level of authenticity. 

Catechetic  interactions  
These are various processes of teaching and learning through question-and-answer.  
Many forms were observed in at least one lesson. To discuss these, categories of  
catechetic interaction were established – these are seen as qualitatively different. The 
categorisation provided is related to other analyses (Bloom, 1956; Sullivan, 2001.) 
Bloom distinguished between ‘higher order’ and ‘lower order’ questions: here a third 
category of ‘middle order’ question s is included (Table 1).  

In summary, the first key research question: ‘To what extent were these teachers 
espousing the above messages?’ was addressed through the pre-lesson interviews. 
The second question: ‘To what extent, and in what qualitative ways, were these 
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teachers enacting the above messages through their practice in these lessons?’ was 
addressed through the lesson observations. Finally, the third question: ‘To what 
extent were those students who engaged in subsequent discussions, aware of the 
nature of their intended contributions to lessons implicit within the above messages?’ 
was addressed through the post-lesson student interviews. 

Higher Order Questions: 
1 elicit responses centred upon reasoning and justifications - these may include 

implied questions such as statements to be discussed (e.g. see Dillon, 1985) 

2 incite those questioned to consider underlying structures in the mathematics 

3 ask group / individuals to reflect upon the mathematics they have been studying 

Middle Order Questions: 
4 request that strategies be devised 

5 require that a range of possible answers be sought 

6 require that known facts be used to find derived facts 

Lower Order Questions: 
7 direct the group’s attention to specific key features of the topic 

8 require that one of a range of possible answers be found 

9 require that known methods be recalled and used 

10 simply require a specific answer be found 

11 require the recalling of a fact 

Table 1: Categories of Question. 

RESULTS 
The teacher-interviews established their awareness of the importance within lessons 
of oral interactions, of drawing out students’ ideas and methods, and of allowing 
space for their questions. All the teachers espoused this approach, most with some 
enthusiasm; in a few this was less evident, or even a touch of cynicism was detected.  
Oral elements of lessons 
All lessons involved some teacher exposition, but in general there appeared to be 
insufficient opportunity for students to expose their ideas about their mathematics 
orally. In only three lessons were there short episodes of student exposition. Overall, 
there was a ‘democratic imbalance’re question-answer events, as teachers dominated 
most of these, orchestrating the ‘discussion’. This appeared profoundly different to 
the few cases where the teacher provoked, promoted and ‘chaired’ discussion, 
enabling students to tease out issues between themselves. In the majority of lessons, 
student-student discussions about the mathematical focus were not obviously 
encouraged, and in a few cases these were actively discouraged.  
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Catechetic interactions  
Some teacher questions were pre-formalised in written worksheets produced by the 
teacher, or in published materials. These are only considered if they led to some 
verbal interactions within lessons. Amongst such material, almost no instances of 
higher- or middle-order questions were noted, almost all written questions being 
classified as types 9, 10 and 11. Within reform strategy lessons, there is emphasis on 
an interactive 'mental/oral starter' involving much catechetic teaching, but even in 
this aspect some case-study lessons had no such interaction. In only 2 lessons was the 
inverse-catechetic form observed: i.e. students leading question-and-answer episodes.  
Examples from three lessons involving higher levels of verbal interaction 
In a year 9 lesson, students were drawn into a lively introductory discussion, the 
teacher prompting and probing with questions that were effectively differentiated and 
embodied high expectations. Tackling probability ideas practically, using empty 
number lines and problematic spinners, students were able to expose their pre-
conceptions about this topic within a genuine class discussion involving contributions 
from almost all students. Confidence was maintained through both the authentic 
respect afforded to each student’s views and the careful scaffolding of their evolving 
ideas. Within the rest of the lesson, student-student discussions about these ideas 
were frequent and productive.  
In a year 3 & 4 lesson, the teacher at first engaged students through lively and 
imaginative exposition in considering place value and rounding to the nearest 10. 
This lesson involved students in responding to focused, probing and challenging 
questions, and to general questions where ‘if you have the answer, whisper it to the 
person next to you’. She used a ‘think of a number’ approach to inject a strong 
reasoning and conjecturing emphasis. Despite this, the large majority of the 
verbalising within the lesson remained with the teacher.  
In a year 1 lesson, focused upon odd and even numbers to 20, the introductory whole 
class phase lasted 25 minutes. The teacher used a quiet clear voice to raise questions, 
including some of a higher order alongside a range of middle and lower order 
questions. Attention and involvement levels remained high throughout this quite 
intense catechetic activity. By encouraging student questions as well, she scaffolded 
inverse-catechetic episodes too. After a period of small group work, the class 
returned to engage in a plenary, with students contributing strongly to further 
catechetic episodes. Finally the issue of ‘what happens if… we go on beyond 20?’ 
was raised by the teacher, leading to several students imagining and conjecturing.   

DISCUSSION 
Student Enculturation 
In just four of the lessons, the approach seemed conducive to students as king 
questions, beyond simply seeking information or clarification. Students may need 
enculturation to believe that it is their responsibility and right to ask questions within 
mathematics lessons (Gates, 2001). In those few classrooms, the established 'culture 
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’appeared to welcome students’ questions. In most lessons, it seemed that such 
questions may have been received as an intrusion into the teacher’s space, or as a 
deflection from the focus and purposes the teacher had decided upon for the lesson.  

Reform Strategy: forcing espousal of an authoritarian rhetoric? 
It is clear that all of the case-study teachers – with varying levels of enthusiasm – 
espoused the key messages of the reform strategy. However the ‘authoritarian’ nature 
of the reform strategy (Brown M, 2000) appears to have led to a number of these 
teachers espousing its rhetoric, whether or not they plan to enact, or actually enact 
lessons that exemplify it. In one acute case at one end of the spectrum, the ‘oral 
starter’ consisted of students - in silence - tackling 39 written calculations from the 
board, and the ‘plenary’ involved students again in an almost identical activity. 

Within the reform strategy, much emphasis has been given to oral and verbal 
interactions, so it might be assumed that this aspect of lessons would play a 
significant part in observed teaching. This study suggests that a rather more complex 
set of practices is in use. Prior practices seem more enduring than out-of-classroom 
discussions and espousals suggest. All these teachers seemed prepared to use reform 
strategy approaches in prior conversation and in any lesson-planning documents 
provided, and stated that their lessons would be following such approaches. However, 
there were catechetic-rich episodes in only three teachers' lessons, and at the other 
extreme three lessons contained almost no catechetic activity.  

Instances within this study where the enactment of classroom strategies authentically 
engaged the student’s voice, or where students themselves recognised the nature of 
their intended role, or where significant opportunities existed for catechetic and other 
rich verbal interactions were relatively rare. Therefore this study tends to support the 
views of those who have previously expressed concerns about the gap between 
rhetoric and practice. 
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Student misconceptions of projectile motion are well documented, but their effect on 
the teaching and learning of the mathematics of motion under gravity has not been 
investigated. An experimental unit was designed that was intended to confront and 
eliminate misconceptions in senior secondary school students. The approach was 
found to be effective, but limited by the teacher's own misconceptions. 

In New South Wales, Australia, projectile motion is taught in Year 11 physics and 
Year 12 advanced mathematics courses. In the public mathematics examination at the 
end of Year 12, performance on projectile motion problems is poor. Students appear 
to learn standard techniques by rote and to resort to intuition when questions become 
more difficultoften revealing basic misconceptions about projectile motion. 

This paper describes an investigation of the role of student misconceptions in the 
teaching and learning of projectile motion in Year 12 advanced mathematics.  

STUDENT MISCONCEPTIONS ABOUT PROJECTILE MOTION 
Students develop personal “theories of motion” by generalising the ideas they acquire 
from observation of objects in everyday situations (Keeports, 2000; McCloskey, 
1983b). The research literature shows that many student misconceptions result from a 
pre-Newtonian impetus theory of motion. Put briefly, this theory attributes motion to 
an impetus that is given to an object initially and is then gradually used up over time. 
Consequences for student beliefs include the following: 

A fired object initially moves in the direction of firing. Only after some impetus has to be 
used up can gravity act and the object fall towards the ground (McCloskey, 1983a). 

An object that is dropped from a moving carrier does not receive any impetus, and therefore 
tends to drop straight down (Millar & Kragh, 1994). However, air resistance and the speed 
of the carrier might affect the actual direction of motion. 

If an object is moving, then there must be a force in the direction of motion (Tao & 
Gunstone, 1999). 

Falling objects possess more gravity than stationary objects, which may possess none at all 
(Thagard, 1992; Vosniadou, 1994).  

For further misconceptions and detailed references, see Prescott (2004). 
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DEALING WITH MISCONCEPTIONS 
Only a few studies have attempted to change student misconceptions about projectile 
motion, and we found only two embedded in classroom situations (Gunstone, Gray, 
& Searle, 1992; Thijs, 1992). A common method has been that of cognitive conflict 
(Behr & Harel, 1990), described by Liew & Treagust (1995) as a predict-observe-
explain teaching sequence. In Piagetian terms, the conflict between what was 
predicted and what is observed may lead to disequilibrium and the construction of a 
new cognitive structure (Tao & Gunstone, 1999). 

A review of the research literature on cognitive conflict suggested that it would be 
most successful when: 

• students are made acutely aware of their misconceptions 
• discussion is a major element of the teaching/learning process 
• common misconceptions are discussed explicitly in the classroom 
• students reflect on projectile motion in a variety of familiar contexts  
• teachers are aware of their own misconceptions as well as those of their 

students.  
Again, details may be found in Prescott (2004). 

THE TEACHING PROJECT  
A research project was designed to test whether a unit on projectile motion based on 
the above principles would lead to a reduction in Year 12 students’ misconceptions. 
The effect of student misconceptions on teaching and learning was also investigated.  

Participants 
Two classes in each of two independent girls’ schools in the Sydney metropolitan 
area participated. The relevant classes in School A were graded: Class A1 was the top 
class. The classes at School B were not graded: Class B1 and Class B2 were parallel. 
In all, 47 students participated. 

One teacher in each school (the teachers of Classes A1 & B1, known hereafter as 
Teachers A1 & B1) agreed to teach an experimental projectile motion unit. One other 
teacher in each school agreed to teach the topic as they had taught it for a number of 
years (Teachers A2 & B2). All four teachers were female, and all had been teaching 
for between 10 and 20 years. They all had excellent reputations as mathematics 
teachers within their schools and in the mathematics community. 

Assessing misconceptions 
A structured 15-20 minutes interview was developed to assess student and teacher 
misconceptions about projectile motion. The final version (Prescott, 2004) consisted 
of 16 printed questions (some sourced from the research literature, some original) 
describing a variety of projectile motion situations and posing a number of questions. 
Students wrote or drew their answers. The interviewer encouraged students to explain 
their answers while being careful to avoid any evaluative comment.  
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The students were interviewed prior to the unit on projectile motion and again three 
weeks afterwards. The teachers were interviewed after teaching the unit.  

In the present paper, we shall concentrate on two scales derived from this interview: 
one assessing understanding of the motion of fired objects (8 items) and one 
assessing understanding of the motion of dropped objects (5 items).  

The experimental unit 
The first author designed experimental materials intended to confront students’ 
misconceptions. The emphasis was on the understanding of conceptsqualitative 
understanding was sought before the usual quantitative approach was introduced. The 
materials consisted of the following: 

• Detailed information on common misconceptions about projectile motion 
• A website that would help the teachers understand the topic (Henderson, 

2001) 
• Notes on the use of cognitive conflict in predicting the path of dropped and 

fired objects 
• Some suggested activities:  

• Using a videotape of a ball rolling off a bench, students graph the x 
and y coordinates against time.  

• Students predict the path and time of flight of two coins, one dropped 
and other fired at the same time (van den Berg & van den Berg, 
1990). 

• Students imagine observing a projectile from a long distance, either 
in the plane of the motion or above it. 

• Students walk across the room and predict where to drop an object so 
that it lands on a target on the floor. 

• Websites where students could explore the effects of varying the velocity 
and angle of projection as well as air resistance (Fowler, 1998; Stanbrough, 
1998) 

The teachers were not given lesson plans, but were asked to design their own lesson 
plans based on the above materials. Teachers were expected to provoke discussion of 
projectile motion in a number of contexts in the first lessons, and to refer back to 
these discussions when deriving equations of motion analytically in the later lessons. 

Before the unit was taught, the first author held discussions with Teachers A1 and B1 
individually to ensure that each teacher was comfortable with the lesson content and, 
more importantly, understood the ideas herself. During these discussions, both 
teachers admitted to having misconceptions about the trajectory of an object dropped 
from a moving carrier and about the time of flight of two objects simultaneously fired 
horizontally and dropped. These misconceptions were resolved by discussion.  

No assistance was given to Teachers A2 and B2. 
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RESULTS 
Firstly, we summarise what happened during the lessons (all of which were either 
video- or audiotaped). We then analyse changes in student understanding as shown 
by the fired and dropped objects scales. Finally, we look at teacher misconceptions. 

The Experimental Lessons 
Teacher A1 wrote a handout for her students based on the experimental materials. 
Because Teacher B1 was uncertain about her ability to work through the 
experimental material, these handouts were also offered to her. As a result, Classes 
A1 and B1 used the same handout and the lessons followed a similar course close to 
the intended sequence. After each activity, the teachers discussed the implications of 
the results in terms of the students’ expectations and in terms of their knowledge 
about projectiles.  

In introducing the idea of projectile motion, Teacher A1 included dropped objects as 
well as thrown or fired objects. A discussion followed about Wile E. Coyote and the 
Road Runner in the Warner Brothers cartoon and how they would in reality not run 
horizontally off a cliff and then suddenly fall vertically downwards. Teacher B1 only 
discussed fired objects.  

Both teachers illustrated the horizontal and vertical components of motion by 
considering the vectors at several points along the trajectory of a projectile. They also 
discussed forces, emphasising that there is only one force (gravity) and that the 
vertical speed decreases by 9.8 m/s each second as the projectile rises and increases 
by 9.8 m/s each second on the way down. The vector diagrams also prompted a 
discussion of the vertical and horizontal velocity at the maximum height.  

Discussion of the trajectories in the coins experiment raised many issues, including 
air resistance, friction, gravity, and the question (again) as to whether there was a 
horizontal force on the ball. These discussions were robust and gave students many 
opportunities to confront their misconceptions.  

The students spent approximately 30 minutes playing with the suggested websites 
(Fowler, 1998; Stanbrough, 1998). This activity enabled them to “see” the impact of 
air resistance, and how different initial velocities and angles lead to different 
trajectories.  

Finally the equations of motion were introduced via a simple problem, starting with 
the horizontal and vertical acceleration and integrating to find the x and y components 
of motion. The constants of integration were calculated from the initial conditions. 
During this part of the lessons and in subsequent work when the students asked about 
questions from their textbook, the teachers emphasised the link between this more 
abstract content and the earlier activities.  

The lesson sequence of experimentation before formalisation allowed the students to 
become familiar with a number of different contexts before the introduction of the 
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algebraic techniques. The lesson transcripts show that the graphing, questioning, 
discussing, and web surfing provided a sound background for the algebraic approach. 

The Traditional Lessons 
Classes A2 and B2 both covered the topic in a similar manner. Teacher A2 included 
worked examples in class, while Teacher B2 spent the majority of the lesson time 
dealing with confusion over the algebra. 

In the first lesson, both teachers talked very briefly about balls being thrown into the 
air. Several students showed that they had an impetus view of projectile motion: 

S1: Is it steeper to start with and then kind of drop a little bit?  

S2: It goes along and then drops 

Without noting such misconceptions, both teachers then derived the equations of 
motion from the horizontal and vertical acceleration, presenting the analysis in 
general terms rather than using a specific question as a basis. The students were not 
very involved in the derivation of the equations of motion. The majority of students 
in both classes did not seem to understand the need for decomposing motion into 
horizontal and vertical components, and the teachers gave no reason in their 
“explanations”. Students had particular difficulty understanding the constants of 
integration, and in fact many of them did not seem to understand what was meant by 
the term “initial conditions”. Finally, in exasperation one student in Class B2 said 

S3: Just tell us in words without all the V’s and stuff. What’s the point of it? 

After a long explanation about how the equations were parametric equations, Teacher 
B2 admitted that it was all “a little bit abstract”. To which the student replied:  

S3: I like things more concrete. I like to know what’s going on, especially if it’s a 
practical question. I need the practical explanation. 

Changes in Students’ Understanding 
Figures 1 and 2 show students’ mean scores on the fired and dropped objects scales 
in each class. In each case, the left hand column refers to the interview administered 
before the teaching and the right hand column refers to the interview administered 
afterwards. Recall that a higher score indicates fewer misconceptions. 

Three of the four classes were initially very similar on the fired objects scale (Figure 
1), with Class B1 unaccountably lower. Classes A2 and B2 showed no change after 
the teaching, but Classes A1 and B1 showed a substantial improvement. (Statistical 
tests could not be made because of the lack of random assignment and the small cell 
sizes.) However, in both experimental classes, there were still many students with 
misconceptions about the motion of fired objects.  
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Figure 1: Mean percentage correct in 
each class for fired objects  

Figure 2: Mean percentage correct in 
each class for dropped objects  

The four classes were also initially similar on the dropped objects scale (Figure 2). 
Although all classes showed an increase after the teaching, Classes A1 and B1 
showed greater increases in mean scores (77% and 24% respectively) than Classes 
A2 and B2 (12% and 10% respectively). More importantly, all but one student in 
Class A1 showed they had no misconceptions. 

These results indicate that the experimental teaching unit had the desired effect in 
reducing student misconceptions. But the effect was not uniform across the two 
scales and, with one exception, it was not very great.   

Teacher Misconceptions 
There were several times when the teachers revealed their own misconceptions about 
projectile motion, thus reducing the effectiveness of their teaching.  

Although Teacher A1 generally showed an excellent understanding of projectile 
motion, she did once slip inadvertently into impetus theory: In a discussion about 
what happens at the maximum height of the trajectory, she incorrectly stated that the 
projectile “starts to be affected by gravity”. 

Teacher B1 was not consistent in her understanding of projectiles launched from a 
moving carrier. She correctly used an example of throwing car keys in the air while 
walking as an example of projectile motion. However, she became confused when a 
student mentioned a newspaper article in which a number of stowaways were 
reported to have fallen from an aeroplane wheel bay into an airport car park. Teacher 
B1 concluded incorrectly that the wheel bays were opened right above the car park, 
and no student protested. Through this one example, she negated much of the conflict 
created by the earlier examples.  

Teacher B2 did not seem to understand gravity:  
T: Because gravity is the deceleration of an object. Gravity is 9.8 m/s2. That means 

I throw something up in the air then this gravity affects it by 9.8 m/s2.  

S: Does that mean that you have to throw something greater than 9.8 m/s for it to 
go up? 

The subsequent discussion did not help the students to differentiate between velocity 
and acceleration, and appeared to increase their misconceptions about gravity. 
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The teachers’ misconceptions were quite obvious during the interviews. For example, 
Teacher A2 indicated an impetus approach to projectile motion: 

T: If you’ve given it a push, you must have given it a force. 

When asked about objects dropped from a plane, she was torn between the bomb 
dropping depicted in the film “The Dam Busters” and her misconceptions: 

T: I’m thinking of “The Dam Busters” now. In theory, ignore wind, I say it should 
go straight down but I know in fact it wouldn’t. The bomb didn’t. 

DISCUSSION 
The experimental teaching unit set out to show the students by cognitive conflict and 
“playing” with projectiles that they had misconceptions; then, through discussion and 
reflection, it was intended that students should deal with those misconceptions. The 
unit was also designed to help students gain a qualitative understanding before the 
standard algebraic techniques were introduced. 

The results suggest that the unit was partially successful in helping students deal with 
their misconceptions. Almost all the students in one class eliminated their 
misconceptions about objects dropped from a moving carrier, but they still had 
misconceptions about fired or thrown objects. In the other experimental class, there 
were still many misconceptions about both types of projectiles. On the other hand, 
the teaching in the comparison classes, which did not confront student 
misconceptions, had virtually no effect on student misconceptions.  

It seems to us that the main reason why teaching was more effective in some cases 
than others lies in the teachers’ own understanding of projectile motion.  

Figures 1 and 2 show that Teacher A1 was the most effective teacher, but she was 
more so for dropped than fired objects. She became aware of her misconceptions 
during the preliminary discussions, she worked to overcome them, and she was 
clearly successful in helping her students with their misconceptions. But she seemed 
less comfortable with fired objects, and an analysis of the lesson transcripts shows 
that she paid more attention to dropped than fired objects in her teaching.  

By contrast, Teacher B1 was only moderately effective on both scales. While she was 
aware of her misconceptions, this was not sufficient to change her ideas (Viennot & 
Rozier, 1994). Although she made no errors when she discussed the ideas from the 
notes, she made several errors when the discussions extended to other examples. 

It was clear from the interviews and observations that Teachers A2 and B2 were not 
aware of their own misconceptions or those of their students. Accordingly, their class 
activities and discussion did not challenge student misconceptionsindeed, there 
was some evidence that they actually reinforced student misconceptions. In their 
classes, the majority of students continued to believe that a projectile had a horizontal 
force acting on itbut they learned to use equations of motion that assumed there 
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was no such force. It is little wonder that such students should have difficulties 
solving problems that go beyond routine applications of the equations of motion.  
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AN INVESTIGATION OF A PRESERVICE TEACHER’S USE OF 
REPRESENTATIONS IN SOLVING ALGEBRAIC PROBLEMS 

INVOLVING EXPONENTIAL RELATIONSHIPS 
Norma Presmeg and Rajeev Nenduradu 
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As part of a larger investigation of preservice teachers’ use of, and movement 
amongst, various modes of representing exponential relationships, this report focuses 
on one case study, that of Mike, whose facility in moving amongst representational 
registers was not matched by conceptual understanding of the underlying 
mathematical ideas as he attempted to solve algebraic problems involving 
exponential relationships. Mike’s case casts doubt on the theoretical assumption that 
students who can move fluently amongst various inscriptions representing the same 
concept have of necessity attained conceptual knowledge of the relationships 
involved. 

The purpose of the study, including the case reported in this paper, was to identify 
and characterize preservice teachers’ use of representations in solving algebraic 
problems involving exponential relationships. The significance of the investigation 
stems from the increasing awareness amongst mathematics education researchers of 
the role of inscriptions (as some researchers prefer to call representations – Roth, 
2003) in the teaching and learning of mathematics. The use of the term inscriptions 
avoids the ambiguity generated by a distinction between external and internal modes 
of representation: while both are important in learning mathematics (Presmeg, 1997), 
we are concerned in this paper with inscriptions, i.e., external representations such as 
marks on paper. In this paper, using this sense, we shall use the two terms 
inscriptions and representations interchangeably. From early work on visualization 
(Dreyfus, 1991b) and on systems of representation (Goldin, 1992), through two 
Working Groups on the role of representations in the extended PME community (and 
their resulting publications: Goldin & Janvier, 1998; Hitt, 2002), to a current interest 
in semiotics as a theoretical framework for studying inscriptions (Sáenz-Ludlow & 
Presmeg, in progress), it is acknowledged that how mathematical ideas are 
represented is an issue of importance in mathematics education at all levels.  

This importance was reflected in the USA’s National Council of Teachers of 
Mathematics’ inclusion of representations in their Process Standards for the first 
time (NCTM, 2000). Learning mathematical representations should provide students 
the “opportunity to understand the power and beauty of mathematics and equip them 
to use representations in their personal lives” (NCTM, 2000, p. 364). In this context, 
students have to familiarize themselves with a diversity of representations and should 
be able to use these different forms of representations flexibly. In order to accomplish 
this goal, teachers play a significant role in developing and promoting flexible use of 
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multiple representations during their instruction in mathematics classrooms (National 
Research Council, 2002). To this end, teacher education programs should include 
topics in algebra, in particular, those topics that foster preservice teachers’ flexible 
use of representations (Ball, 1990, 2003). Hence our focus was on the inscriptions 
used by preservice teachers, as a prelude to further research on ways that this flexible 
use might be fostered. Exponential functions were chosen because many students and 
preservice teachers in particular find this a difficult topic to grasp and represent 
(Goldin & Herscovics, 1991). Thus, the purpose of the research was to identify and 
characterize different representations that preservice teachers use – and how they use 
them – in solving algebraic problems involving exponential relationships. 

THEORETICAL FRAMEWORK 
The theoretical perspectives that provided lenses were as follows. Firstly, a theory 
proposed by Dreyfus (1991a) posited that the learning process evolves in four stages 
through the use of representations, moving from the use of a single representation at 
the first stage to the ability to make flexible use of representations at the last stage. 
Moreover, each stage determines individual levels of understanding of a concept. 
Secondly, our investigation was informed by Duval’s (1999) notion of registers, and 
his stress on the importance of students being able to work within and among 
registers, with fluent conversion of representations in this movement. 

Dreyfus (1991a) argued that abstracting and representing are complementary 
processes. He then discussed how these two processes are related in learning. In 
particular, he suggested that the learning process proceeds through four stages: 1) 
using a single representation, 2) using more than one representation in parallel, 3) 
making links between parallel representations, and 4) integrating representations and 
flexible switching between them. For instance, in learning the concept of function, 
students can start with any one of numerical, graphical, or algebraic representations. 
In the second stage, these representations may be used in parallel to learn the same 
mathematical concept. The following stage is reached when students begin to make 
links among the representations. Abstraction of the mathematical concept is reached 
in the last stage where students are able to switch flexibly among different 
representations as well as being able to integrate those representations. Once the 
fourth stage is attained, students are said to form an abstract notion of the 
mathematical concept or to “own” that concept. Thus, the four stages can be 
considered as increasing levels of understanding with an individual having a limited 
understanding of a concept at stage one and an abstract or highest level of 
understanding at the fourth stage. 

Duval (1999) proposed a framework for analysing the cognitive functioning of 
mathematical thinking and conditions of learning. He argued that students work with 
different registers - forms of representation - that are crucial in understanding 
students’ mathematical thinking. According to Duval (1999), there are three 
requirements in learning mathematics, as follows: 
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to compare similar representations within the same register in order to discriminate 
relevant values within a mathematical understanding; 

to convert a representation from one register to another; and 

to discriminate the specific way of working in order to understand the mathematical 
processing that is performed in this register (p. 24). 

Both of these theoretical formulations suggested that “switching flexibly” (Dreyfus), 
or “converting a representation from one register to another” (Duval), are a sine qua 
non of relational understanding (Skemp, 1987) in learning mathematics. Thus in our 
analysis of Mike’s inscriptions we paid attention to this aspect and the issues 
associated with it. 

METHODOLOGY 
The larger investigation, of which the reported research is a part, was characterized as 
a qualitative instrumental case study (Stake, 2000), because the focus of the research 
was not the participants themselves, but rather the issue of how their modes of 
mathematical representation could be characterized. The instrumental case study 
involved five participants selected from a class (A) designed to promote preservice 
elementary and middle school (K-8) teachers’ use of various mathematical 
inscriptions. However, in this report we focus on one case, that of Mike 
(pseudonym). We have chosen to report on Mike’s use of inscriptions because his use 
casts doubt on some possible interpretations of previously published theoretical 
assumptions. 

Participant 
Mike was the only male non-traditional middle school major preservice teacher in 
class A. He was one of the three preservice teachers of average achievement who 
were selected for the research (the other two – of the five participants – were of 
above average achievement), from a total of fifteen preservice teachers, based on his 
previous grades in college algebra courses and a test given on functions at the 
beginning of the spring semester of 2004. Mike was verbal and asked questions when 
he did not understand any specific concept discussed in class (a second criterion for 
selection, the assumption being that more verbal students would be less reticent about 
their thought processes in interviews). 

Data collection, instrumentation, and analysis 
Data were collected over the whole spring semester in 2004. The data corpus for the 
whole study included task-based interviews, classroom observations, interviewer’s 
notes (second author), and one reflective journal. In this paper, we focus on two one-
hour audio-taped interview, in each of which Mike was asked to solve two open-
ended tasks on exponential relationships. Task-based interviews were used because 
they are powerful means to focus on “subjects’ processes of addressing mathematical 
tasks, rather than just on patterns of correct and incorrect answers [representations] in 
the results they produce” (Goldin, 2000, p. 520; our insertion). 
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The audio-taped interviews were transcribed and transcripts were analysed. A matrix 
was constructed in order to see patterns in Mike’s responses. The matrix was 
organized according to his responses to each of the four interview items, taking into 
account Dreyfus’ (1991a) theoretical perspective of a hierarchy of levels of 
representation. 

RESULTS 
There were two major results from the analysis of Mike’s data. Firstly, 
tabular/numerical and algebraic representations were predominant in Mike’s use of 
representations in solving the given algebraic tasks (table 1). He used graphical 
representation only once (task #3) for solving the four given tasks. Secondly, in task 
#3 (Endangered Species), discussed in more detail in what follows, he used tabular, 
graphical, and algebraic representations to find a solution, whilst interpreting the task 
as a linear situation instead of an exponential one.  

Task Types of representations used 

#1 (Who wants to become a 
millionaire? You do!) 

Numerical 

 

Tabular   

#2 (Population growth in United 
States) 

Numerical   Algebraic  

#3 (Endangered species)  Tabular Algebraic Graphical 

#4 (Bank problem) Numerical  Algebraic  

   Table 1: Types of representations used in the four tasks involving exponential 
relationships. 

Table 1 demonstrates that Mike used numerical and algebraic representations more 
frequently to solve the four tasks given to him during the two interviews. It is 
interesting to note that in task #3, although he used three different kinds of 
inscriptions and made connections among them, because he treated the relationship as 
a linear one it may be deduced that his understanding of the underlying concepts was 
limited, as shown in the following analysis (see figure 1). 

Mike started task #3 (Endangered species) by drawing a table. He wrote the given 
information in the task under the heading year and number of whales respectively. 
Mike calculated the first differences between 5000 and 4500, and then between 4500 
and 4050 to get 500 and 450 respectively. As these differences were not constant, he 
calculated the second difference between 500 and 450 to get 50. He then assumed 
that the population declined in this manner and proceeded to subtract 50 from the first 
differences to get the number of whales in the years 1997 through 2001 to get 2550 as 
his answer for the first part of the given task.  
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Figure 1: Mike’s inscriptions for task #3. 

             (Task #3 was adapted and modified from Lappan et al., 1998, p. 74 #1) 
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When the interviewer (the second author) asked Mike if he could solve the first part 
in another way, Mike wrote the general form of a linear equation (y = mx + b) and 
then wrote 5000(x) – 50 to relate to his tabular representation. He then tried to verify 
mentally whether his algebraic equation held for x equal to one but got 4050 rather 
than 4500 as the number of whales for the year 1995.  

He then tried to take y = -500(x) + 5000 as the equation and tried to verify this 
equation for x equal to 1 and 2 respectively. Although the equation was satisfied for x 
= 1, it was not true for x = 2 where Mike got 4000 as his answer. Clearly, Mike was 
having difficulty relating the tabular representation to the algebraic representation. 
His difficulties seemed to arise from the fact that Mike assumed the second 
differences to be a constant (i.e., 50), which therefore should have resulted in a 
quadratic equation instead of a linear equation. In his first linear equation, Mike used 
–50 as the y-intercept and later used –500 as the slope. Clearly, Mike was trying to 
guess the algebraic equation and showed limited understanding of the concept of 
slope and y-intercept. He did not perceive that the given task involved an exponential 
relationship with decay factor 0.9. 

When the interviewer asked Mike if he could solve the task in yet another way, he 
drew a straight line as a graphical representation using the values from his table. It is 
interesting to note that the points from the table do not lie in a straight line but Mike 
“forced” the graph to be a straight line using his linear equation to relate to the 
graphical representation. Again, Mike was trying to make connections among the 
algebraic, tabular, and algebraic representations to solve the first part of the given 
task. However, his understanding of the related concept involved in the given 
situation did not match with what he showed in his solution. Also, Mike showed a 
limited understanding of the concepts of slope and y-intercept through the equations 
he wrote.  

The results showed that Mike was able to use tabular, algebraic, and graphical 
inscriptions as well as make some links among these representations. Thus, using 
Dreyfus’ perspective on learning, Mike should be in the third level of Dreyfus’s 
hierarchy. However, Mike’s interpretation of the related concept in the given task and 
the inappropriate use of the concepts of slope and y-intercept from his linear 
equations showed that he had an instrumental understanding (Skemp, 1987). This 
result may be interpreted as contrary to Dreyfus’ perspective of hierarchical levels on 
learning in the sense that at the third level Mike should have had a relational 
understanding as demonstrated by his use of inscriptions. 

IMPLICATIONS FOR FUTURE RESEARCH 
We recognize that Dreyfus did not intend his four levels to be used in an instrumental 
way to classify whether students had come to “own” an abstract, relational 
understanding of a mathematical concept: his model takes account of the 
complexities of individual cognition. However, lest the theoretical assumptions of 
both Dreyfus and Duval come to be characterized in such a way (according to 
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Peirce’s Law of Mindi, 1992), Mike’s case provides a cautionary note that fluency of 
conversion amongst representational registers is not a sufficient criterion for inferring 
a robust, relational grasp of the concepts involved.  

The research reported in this paper thus suggests that in the quest to find effective 
ways of fostering flexible movement among various forms of inscriptions by 
preservice teachers, it will be necessary to pay attention to deeper aspects of the kinds 
of thinking implicated. Ultimately, the question of what is meant by relational 
understanding is at the heart of such efforts. Students’ inscriptions, and how they use 
and move amongst them, may provide a window into their cognition, on which 
instruction may build. However, in and of itself, conversion between registers is 
insufficient as a goal of instruction, as Mike’s case demonstrates. 
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The cognitive significance of the body has become one of the major topics in current 
psychology. However, it is our contention that claims about the embodied nature of 
thinking must come to terms with the problem of the relationship between the body as 
a locus for the constitution of students’ subjective mathematical meanings and the 
historical cultural system of mathematical meanings conveyed by school instruction. 
Referring to episodes from a Grade 9 mathematics lesson, we here sketch a 
theoretical account of the aforementioned relationship that emphasizes the social and 
cultural nature of thinking and the cognitive role played by body, signs, and artifacts.  

INTRODUCTION: THE EMBODIED MIND 
The cognitive significance of the body has become one of the major topics in current 
psychology. Thus, it is now often claimed that human concepts are crucially shaped 
by our bodies and our senses (see e.g. Lakoff and Johnson, 1999; Lakoff and Núñez, 
2000). The empiricists of the 18th century could not have agreed more. For the 
empiricists, who asserted that nothing is in the intellect which was not first in the 
senses, both body and sensuous impressions were indeed the gate to knowledge. For 
the rationalists, such as Leibniz and Descartes, the gate to knowledge was the realm 
of innate logic, a realm from which body and sense data were excluded. They 
continued a long tradition going back to Plato who said that “if we are ever to have 
pure knowledge of anything, we must get rid of the body and contemplate things by 
themselves with the soul” (Phaedo, 66b-67b). 

Current claims concerning the cognitive significance of the body, however, do not 
necessarily entail a return to empiricism. They should rather be seen as an attempt to 
relocate the role of the sensual in the realm of the conceptual. Now, was it not 
precisely the problem of the sensual and the conceptual that Piaget wanted to unravel 
with his genetic epistemology? Did he not insist that knowledge starts with body 
actions? In a recent PME research forum, Nemirovsky suggested a list of guiding 
questions as a basis for a research agenda, among which are the following two: 
“What are the roles of perceptuo-motor activity, by which we mean bodily actions, 
gestures, manipulation of materials, acts of drawing, etc., in the learning of 
mathematics? How does bodily activity become part of imagining the motion and 
shape of mathematical entities?” (Nemirovsky, 2003). One of the audience’s 
impressions was that Nemirovsky’s questions had already been answered by Piaget’s 
epistemology. In a certain sense, this is the case. However, as a good Kantian and 
follower of 18th century Enlightenment philosophy, Piaget sought to answer the riddle 
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of the sensual and the conceptual through a combination of empiricism and 
rationalism: for Piaget, knowledge starts with sense data but knowledge and ideas 
cannot be reduced to a combination of impressions distinguished by their intensity, as 
empiricists like Hume proposed; for Piaget, it is the logic-mathematical structures 
which will pick sensual knowledge up and transform it into abstract thinking. 
Nemirovky’s questions make sense only in the current context of psychological and 
educational theories that seek to place the cognitive relevance of the body in a 
context larger than the limiting one of the sensorimotor stage that marks the 
beginning of the conceptual development of the child in Piaget’s account. Despite 
their different perspectives, what these theories are claiming is that sensorimotor 
activity is not merely a stage of development that fades away in more advanced 
stages, but rather is thoroughly present in thinking and conceptualizing. 

This claim for the full insertion of the body in the act of knowing is an indication, we 
think, of a turning point in contemporary views of knowledge formation. While 
mainstream 20th century psychology was subsumed in the empire of the written 
tradition −a tradition that since the invention of printing in the 15th century endowed 
the written word with an unprecedented degree of authority, a tradition that justified 
the use of tests and questionnaires to investigate the depths of the mind− we now live 
at a time when new forms of knowledge representations (such as digital ones) have 
made a definite incursion in all the spheres of life. Of course, to be fruitful, the plea 
for an embodied mind has still to be accompanied by theoretical elaborations about 
knowledge formation. If the télos (i.e. the end or final cause) of conceptual 
development can no longer be imputed to universally valid logic-mathematical 
structures only —as was the case in Piaget’s genetic epistemology— how then are we 
to account for it? Piaget and Husserl were certainly right in asserting that the body is 
a locus for the production of meaning and the first opening of intentionality towards 
the world. Nevertheless, the world that the body encounters is a cultural world 
populated by other bodies, objects, signs, and meanings, a world already endowed 
with ethical, aesthetical, scientific and other values. These values provide the world 
with specific configurations that, instead of being neutral, qualify the body with the 
historicity of events and concepts deposited in language, artifacts, and institutions 
(Foucault, 2001, p. 1011). Hence, there are some theoretical problems that the 
paradigm of the embodied mind needs to tackle, in order to avoid a theory where the 
body is considered as the refuge of the transcendental “I” of idealism and to 
overcome critics like Eagleton who sees in the claims of the embodied perspective a 
theory that in the end is no more than “the return in a more sophisticated register of 
the old organicism” or else a token of “the post-modern cult of pleasure” and love for 
the concrete (Eagleton, 1998, pp. 157-58).  

It is our contention that an account of the embodied nature of thinking must come to 
terms with the problem of the relationship between the body as a locus for the 
constitution of an individual’s subjective meanings and the historically constituted 
cultural system of meanings and concepts that exists prior to that particular 
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individual’s actions. In what follows we sketch, from a semiotic-cultural perspective, 
some general points that might be seen as a preliminary contribution to the problem 
at hand. Since our main interest is the understanding of the learning and teaching of 
mathematics, we shall focus on the meaning of thinking and learning and the role of 
body, signs and objects therein. Our theoretical discussion will be intermingled with 
comments on a Grade 9 mathematics lesson. 

THINKING AS SOCIAL PRAXIS 
While traditional cognitive psychology considered thinking as the mental processing 
of information carried out by an individual, for the semiotic-cultural perspective here 
advocated, thinking is a form of social praxis (Wartofsky, 1979). 

Thinking as a form of social praxis means that thinking is an active mode of social 
participation in which what we know and the way we come to know it is framed by 
cultural forms of rationality (i.e., by cultural forms of understanding and acting in 
the world) out of which specific kinds of questions and problems are posed. To 
illustrate this idea, let us turn to a passage of a Grade 9 lesson in our ongoing 6-year 
longitudinal classroom-based research program. The lesson was about the 
interpretation of graphs in a technological environment based on a graphic calculator 
TI 83+ and a probe −a Calculator Based Ranger or CBR. The students were familiar 
with the calculator graph environment, whereas the CBR was new for them. Prior to 
the passage that we shall discuss (“Pierre and Marthe’s walk”), the teacher explained 
to the students how the CBR worked (its wave sending-
receiving mechanism to measure the distance between 
itself and the target, distance limitations, distortions, etc.). 
One student was chosen to walk towards a door, holding 
the CBR and pointing it towards the door, to stop a few 
seconds and then to walk backwards from the door (the 
target). The class discussed the graph obtained on the 
calculator through the CBR. After this introductory 
activity, the students, in small groups of three, had to 
describe the motion to be performed by a student walking 
with the CBR in order to match a given graph (not shown 
here). Later, the students verified their hypothesis by doing 
the experiment. Right after this verification, the students worked on the interpretation 
of a graph related to a story in which two children, Pierre and Marthe walked in a 
straight line, the latter pointing a CBR to the former. The graph showed the 
relationship between the elapsed time (horizontal axis) and the distance between the 
children (vertical axis) as measured by the CBR (see Figure 1). The mathematical 
problem was intended as a way to introduce the students to a particular mode of 
thinking −a cultural kind of reflexion about the world conveyed by contemporary 
school instruction. Through this problem, the students became involved in a social 
praxis that goes back to the 15th century investigation of body motions, a historical 
revolutionary form of thinking about natural phenomena different from the previous 

Figure 1. Pierre and 
Marthe’s graph 
walk. 
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Aristotelian paradigm of efficient causes. Naturally, we are not asserting that the 
students are aware of this fact. This is not the point. The point is that, from the outset, 
the problem on which the students had to reflect was framed by a cultural kind of 
rationality that legitimizes the problem and endows it with meaning. The relevance of 
this remark for our understanding of the students’ mathematical thinking resides in 
the fact that what the students will know as a result of their participation in the 
classroom activity and the way they will come to know it is framed by a historically 
constituted mode of thinking. However, this remark does not mean that the students 
are a clean slate or tabula rasa on which the classroom activity impresses knowledge. 
Indeed, what marks the distinctiveness of thinking is its reflexive nature, something to 
be understood not as the individuals’ passive reception of the external reality but as a 
re- flection, i.e. a dialectic process between individuals and their reality, a socio-
cultural process of active and creative efforts to align subjective meanings with 
cultural ones. The following excerpt suggests the non-transparency of the kind of 
mathematical reflexions that were required from the students. The excerpt, that 
comes from one of the small groups in which the class was divided, starts with an 
intervention by the researcher to clarify some basic meanings of the graph that were 
difficult for the students.  

1 Researcher: What is important is that, here (pointing to 
segment AB), it went up … the probe 
(CBR) is there (pointing to Pierre, the 
child on the left on the accompanying 
drawing; see Figure 2). So, what does that 
(pointing to segment AB) mean in relation 
to that? (indicating the distance between 
the children in the accompanying 
drawing).  

2 Karla:  They were closer over there? (inaudible) 
3 Researcher:  Here (points to (0,0)) they were at a certain distance. Here (points to 

t =1) were they further apart? 
4 Karla :  (with hesitation and doubt) further apart…? 
5 Cindy :   closer…? OK, hold on… […] 

Although the three students in this group were able to successfully interpret the graph 
of the previous problem, here the difficulty arose from the fact that the problem 
required the students to make sense of a graph involving relative positions. Thinking 
mathematically, that is to say, entering here into this social praxis of graph 
interpretation requires an imaginative endeavor aimed at aligning the subjective 
meaning of signs with their cultural, objective meanings. Signs, indeed, are both 
social objects and subjective products. Signs in general and mathematical signs in 
particular (like the graph in our example) are social objects in that they are bearers of 
culturally objective facts in the world that transcend the will of the individual. They 
are subjective products in that in using them, the individual expresses subjective and 
personal intentions. This double role of signs should not be understood as a 

 

Figure 2. The child 
with the CBR is 
indicated through a 
gesture. 
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dichotomous division. On the contrary, the use of signs rests on understanding, that is 
the transformation or interpretation of a sign into a previous sign (e.g. an interiorized 
one, in Vygotsky’s terms) for which the individual has attained a more or less stable 
cultural meaning. Let us turn to the next part of the previous excerpt to observe the 
genesis of understanding. 

THE LANGUAGE OF SPACE 
Cindy continued her utterance: 

5 Cindy:  […] OK, hold on. Here (indicating with her pen the point (0,0)), when 
they start at zero … (they) are … closer, right? … They start at zero… 
Well, there they start here (she indicates the point A) … No … that 
wouldn’t make sense. 

6 Karla:  They’re further! (gesture indicating the segment AB)  
7 Cindy: No, I think that they are closer here (segment AB; see Figure 3, first 

picture), and there (gesture indicating BC; see second picture) they are 
closer, and there (gesture indicating CD; see third picture) they move 
away, and they move away here (indicating segment DE; fourth picture) 
and there (pointing to segment EF; fifth picture) they arrive together. 

     

Figure 3. Pointing gestures indicating the segment AB, BC, CD, DE, and EF. 

As we can see from the excerpt, segments were interpreted in accordance to their 
perceptual inclination as signifying proximity or separation between Pierre and 
Marthe. The linguistic adverbs “closer”, “near”, as well as verbs and expressions 
such as “to move away” and “to arrive together” permitted the students to elaborate 
an initial understanding. This linguistic-based understanding consisted in the 
transformation of the graph sign into a verbal sign (made up of verbs, adverbs, etc. 
See line 7). Language offers each one of us a way to objectify the space in which we 
live and move. With its rich arsenal of deictics (e.g. “here”, “there”), spatial adverbs 
(e.g. “closer”, “near”), etc. language enables us to express and shape our intimate 
experience of space. By casting our experience in the linguistic categories of our 
culture, language allows us to do what colors allow the painter to do: to create, so to 
speak, a personal “linguistic painting”. Like the painting of the artist, which carries 
the historical-cultural experience of colors, the “linguistic paintings” of the students 
carry deposited sediments of the spatial, historical experience of previous generations 
who used and refined the language of space that we have come to use. Language 
makes both our experience of space and our understanding of it simultaneously 
intimate and cultural −or better still, language makes them culturally intimate. 
However, it would be inaccurate to say that the students’ understanding was 
linguistic-based only. In the next section, we elaborate upon this idea. 
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THINKING AS MEDIATED BY, AND LOCATED IN, BODY, ARTIFACTS, 
AND SIGNS 
In the previous excerpt we saw that, along with key linguistic signs (adverbs, deictics, 
etc.), understanding was achieved through pointing gestures and the kinesthetic 
action of moving a pen along the graph, all of this synchronized with parts of the 
students’ linguistic utterances. Thus, language (in its various dimensions: lexical, 
syntactic, pragmatic −e.g., pauses, modes to express doubt, exclamations), the 
Cartesian graph, the pen, and the students’ hands were mediating tools. We want to 
suggest that, because thinking cannot be reduced to mental-cerebral activity, thinking 
is not only mediated by, but also located in, body, artifacts, and signs. As the 
anthropologist C. Geertz remarked after discussing the pitfalls of reducing thinking to 
an essentially mental intracerebral process, “the human brain is thoroughly dependent 
upon cultural resources for its very operation; and those resources are, consequently, 
not adjuncts to, but constituents of, mental activity” Geertz (1973, p. 76). 
The most important point, however, is not to acknowledge our cognitive dependence 
on cultural resources, but to realize that they are an integral part of thinking and that 
in learning how to use them, the natural-biological line of development of our central 
psychological functions, such as attention, memory and symbolization are altered. 
Referring to these cultural resources as psychological tools, Vygotsky wrote: 

By being included in the process of behavior, the psychological tool alters the entire flow 
and structure of mental functions. It does this by determining the structure of a new 
instrumental act just as a technical tool alters the process of a natural adaptation by 
determining the form of labor operations. (Vygotsky, 1981, 137) 

In terms of our discussion of thinking as social praxis, the previous remarks add an 
important element. The Cartesian graph, for instance, is not merely something to 
learn to read, something to make sense of. The graph, the calculator, the CBR, are 
cultural resources which bear an embodied intelligence (Pea, 1993) and carry in 
themselves, in a compressed way, socio-historical experiences of cognitive activity 
and artistic and scientific standards of inquiry (Lektorsky, 1984). This embodied 
intelligence and compressed historical cognitive experience offer an orientation to 
our cognitive activity. 
But again, this orientation presented in the cultural system of ideas and the embodied 
intelligence carried by the artifacts that the body encounters as it moves in the world, 
are an overture towards possible paths of conceptual development. Since the child 
cannot merely be carried along by its social environment and since the latter cannot 
determine the child’s individual thinking, as Vygotsky argued against the 
behaviorists of his time, the problem, from an educational viewpoint, is to present the 
child with the occasions to align his or her subjective meanings with cultural ones. 
Bearing this in mind, let us go back to our classroom episode. 
REFINING MEANING 

8 Karla:  (after a pause of ± 3 sec of reflection) But Cindy, this (CD) goes up 
[and] this (AB) goes up … that means it is the same thing! […] 
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9 Celeste: Huuuh? … It’s the same thing?! Then what? (in a tone denoting 
confusion) […] Yeah! They are maybe closer here (pointing to AB), 
closer (pointing to BC), further (pointing to CD), further (pointing to 
DE), closer (pointing to EF). 

10 Karla:  But they can’t be closer here ( pointing to CD) […] It (indicating CD) 
is going up, and so is this one (pointing to AB)! […]  

11 Cindy:  They move away!! So, that (CD), it’s you move back; that (DE), you 
move forward! 

12 Karla:  (after a pause of ±3 s) I don’t get it! 

From the beginning AB was associated with ‘being close’. And since AB and CD 
both were said to ‘go up’, CD should also mean ‘being close’. And this, Karla claims 
(line 10), is not right. Celeste then adds a new element: the children moved back! 
Their final written interpretation reads: “At the beginning “A” they moved back 
slowly and equally together at a distance of 1m. After, they stopped and then began 
to move back again, but faster. Then they moved forward again with the same speed 
at which they moved back the second time. After they stopped and they were 
finished.”  
Continuing on with our artist metaphor we can say that, by introducing the idea of 
moving back, the students added a new color to their mathematical painting. 
Unfortunately, neither the introduction of this idea nor the experiment with the CBR 
that they carried out later to test their hypothesis were enough to close the gap 
between the students’ subjective meaning and the cultural one. The students still had 
to refine their manner of thinking about relative motion in a deeper way and to insert 
the role of the CBR technological artifact into their reflexions. The general learning 
achievement of the class was still far from the one determined by curriculum 
expectations. It took the teacher several lessons and general discussions to make 
apparent for the students the targeted kind of mathematical reflexion. 

CONCLUDING REMARKS 
Drawing from Wartofsky’s work, in this paper we suggested that thinking is an 
interpretative and transformative reflexive social praxis encompassed by a cultural 
rationality and oriented from the outset towards a cultural objective system of ideas. 
In contrast to other social praxes, mathematical thinking is characterized by its 
orientation towards a theoretical, practical, and aesthetical understanding of 
historical-cultural reality. Thinking, we proposed, is not only mediated by, but also 
located in signs, artifacts, and body. If it makes sense to talk about embodiment, it is 
not because we have discovered that the “thinking substances” that we are (to use 
Descartes’ term) have −notwithstanding Plato and the rationalists− a body which is a 
source of cognition. Body certainly is a locus for the production of meaning and the 
first opening of intentionality towards the world. But the object that the body 
encounters is more than a mere thing: it is a cultural object. From an educational 
viewpoint, the problem is that the cultural conceptuality embodied in the object is not 
necessarily apparent for the students. The cultural object is seen or perceived in a 
certain way, as interpreted through the students’ mediated reflexion and as refracted 
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by their particular subjective meanings. Where Grade 12 students see a Cartesian 
graph, Kindergarten students see a bunch of lines with no connection to a relationship 
between mathematical variables. 
The apprehension of the object in its cultural dimension −i.e. the apprehension of the 
cultural conceptual content and meaning of the object− requires students to engage in 
an interpretative and imaginative process whose outcome is an alignment of 
subjective and cultural meanings. Thus, in the example discussed here, the students 
dealt with a Cartesian graph − a complex mathematical sign whose objective cultural 
meaning was elaborated in the course of centuries. The alignment of subjective and 
cultural meanings involved a profound active re-interpretation of signs by the 
students, framed by the teacher and the particular context of the classroom, leading to 
a progressive awareness of significations and conceptual relations that remained, in 
the beginning, tenaciously inaccessible to the students (e.g. that the segment AB may 
mean a part of the children’s walk in which Marthe moved faster than Pierre or Pierre 
moved slower than Marthe). The aforementioned alignment of meaning should not be 
understood, however, as the absorption of the students into their culture: it is only one 
step in the positioning of the students in this distinctive social praxis that we here 
called thinking. But because of its own reflexive, interpretative, and imaginative 
nature, thinking also means transformation, a going-beyond, an outdoing of what is 
given. The subjective dimension of thinking, as something accomplished by 
historically-situated and unique individuals, makes possible the overcoming of the 
actual and the expansion and modification of knowledge and culture. 
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GENERALIZATION STRATEGIES OF BEGINNING HIGH 
SCHOOL ALGEBRA STUDENTS * 
Joanne Rossi Becker and Ferdinand Rivera 

San José State University, USA 

This is a qualitative study of 22 9th graders performing generalizations on a task 
involving linear patterns. Our research questions were: What enables/hinders 
students’ abilities to generalize a linear pattern? What strategies do successful 
students use to develop an explicit generalization? How do students make use of 
visual and numerical cues in developing a generalization? Do students use different 
representations equally? Can students connect different representations of a pattern 
with fluency? Twenty-three different strategies were identified falling into three 
types, numerical, figural, and pragmatic, based on students’ exhibited strategies, 
understanding of variables, and representational fluency.  

BACKGROUND 
In 1999, with a grant from the Noyce Foundation, San Jose State University and 30 
school districts formed a Mathematics Assessment Collaborative (MAC) in an effort 
to balance state-sponsored multiple-choice tests and to provide multiple measures to 
evaluate students. The MAC exams are summative performance assessments in 
grades 3-10. The exams are hand scored using a point rubric and audited for 
reliability. Student papers are returned to teachers for further instruction and 
programmatic review. In developing this model system of performance assessment, 
the MAC spent a year writing Core Ideas for each grade level tested, adapting the 
National Council of Teachers of Mathematics Standards (NCTM, 2000). The 
assessments are written to match these Core Ideas. MARS results are correlated to 
state test results and analyzed by various demographic characteristics of students. In 
2003, over 60,000 students were tested by the MAC. 
At the eighth and ninth grades, one of the Core Ideas tested is that of patterns, 
relations and functions. Students are asked: to generalize patterns using explicitly 
defined functions; and, understand relations and functions and select, convert flexibly 
among, and use various representations for them. Over the five years of MARS data 
collections, we have found a similar pattern; while students are quite successful in 
dealing with particular cases of patterns in visual and tabular form, they have 
considerable difficulty in using algebra to express relationships or to generalize to an 
explicit, closed formula for a linear pattern. Summary data are shown in Table 1. To 
gain more insights, we embarked on an in-depth study of a small number of 9th grade 
students to pinpoint more specifically why they have difficulties in forming 
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 1999 2000 2001 2002 2003 
 9th 8th 8th 9th 8th 9th 8th 9th 
Ability to 
deal with 
particular 

80% 87% 72% 80% 74% 71% 56% 54% 

Ability to 
generalize 

15% 21% 22% 12% 21% 17% 5% 9% 

  Table 1: 8th and 9th Grade Results on Patterns and Functions Items 
generalizations so we could help teachers find ways to ameliorate deficiencies in this 
critical area. Specifically, our research questions were: 1) What hinders students’ 
abilities to generalize a linear pattern? 2) What strategies do successful students use 
to develop an explicit generalization? 3) How do students make use of visual and 
numerical cues in developing a generalization? Do students use different 
representations equally? 4) Can students connect different representations of a pattern 
with fluency? 5) What can we glean from student work that will inform and improve 
instruction? 

THEORETICAL FRAMEWORK  
In everyday situations, children are naturally predisposed to performing 
generalizations. As bricoleurs, children use whatever is available to them to induce 
patterns from objects despite developmental physiological constraints and their 
limited social knowledge, experiences, and expertise (DeLoache, Miller, & 
Pierroutsakos, 1998). Contrary to either Piaget’s (1951) or Bruner’s (1966) view that 
children need powerful hypothetical analytic skills or that they must attain a certain 
level of conceptual and abstract development prior to being able to induce patterns 
from objects, developmental psychologists show that children certainly could on the 
basis of similarity. Medin, Goldstone, and Gentner (1993) perceive similarity as an 
initial organizing principle, and that similarity is not known a priori and it is not static 
(Smith & Heise, 1992). It is, however, variable as it is based on children’s ability to 
compare objects and determine what counts as meaningful and relevant features. 
Medin and Schaffer (1978) claim the significance of context in induction (i.e., a 
particular sample is a member of a pattern if it resembles some or all of the 
previously known samples in the pattern). Rosch (1978) demonstrates the role of 
typicality in assessing for similarity (i.e, a specific instance is a member of a class of 
objects if it appears to the observer as a typical example and if it resembles the 
known prototype examples of the class). What is significant for us in this study is 
Gentner’s (1989) classification of three kinds of similarity, namely: analogy, literal 
similarity, and mere-appearance matches. They differ from one another in terms of 
the role attributes and relations play in similarity. Attributes “describe properties of 
entities,” while relations “describe events, comparisons, or states applying to two or 
more entities” (p. 209). Analogical similarity focuses on relations and is not object-
dependent; mere-appearance matches focus on object attributes and descriptions; 



Rossi Becker & Rivera 

 

PME29 — 2005 4-123 

literal similarity is an overlap between analogy and mere-appearance matches as it 
utilizes commonalities that exist between attributes and relations. Gentner (1989) 
claims that young children and novices rely on mere-appearance matches and literal 
similarity. Also, a relational shift has been documented whereby young children 
would perform similarity on objects while older children and adults would induce 
relations with minimal need for surface support.  
Küchemann’s (1981) study highlights the ease with which beginning algebra students 
could associate letters as representing particular values versus letters as representing 
relationships: while these students could correctly deal with particular instances in a 
table of values that implicitly describe some mathematical relationship involving two 
quantities, they are unable to easily deal with the additional tasks of generalizing by 
way of pattern recognition and predicting by way of determining values for the larger 
cases. A related study by Stacey and Macgregor (2000) provides us with a 
characterization of the mathematical thinking employed by beginning algebra 
students on tasks involving pattern formulation: 1) Beginning algebra students could 
see valid patterns emerging from a given table of values; however, some of those 
patterns could not be easily translated symbolically. 2) Beginning algebra students 
perceive patterns as being generated by procedural rules for combining and obtaining 
numbers in either sequence of dependent and independent values, and not functional 
relationships. 3) Beginning algebra students have difficulty assigning correct 
representational meanings to the variables. 4) Beginning algebra students’ verbal and 
algebraic solutions are correlated in such a way that those who could clearly 
articulate their patterns tend to have greater success at writing the correct rules in 
symbolic forms. Stacey and Macgregor further insist that students’ facility with the 
properties of numbers and operations could assist them in obtaining a correct 
description of rules and relationships. Also, students need to know the structural 
nature of rules such as having only one simple rule for a given table of values.  

METHODS 
Twenty-two ninth grade students (11 males, 11 females) in a beginning algebra 
course in a public school in an urban setting participated in the study. The students 
had completed the task (see Figure 1) in December 2002 and were given the same 
task in May 2003 during an individual interview by the second author that was audio-
taped; interviews lasted about 20-30 minutes. Each participant was asked to read the 
problem and asked to think aloud as they solved the problem. The tapes were then 
transcribed by a graduate student and analyzed by both authors. The first level of 
analysis involved several individual readings of each transcript to identify patterns in 
strategies used for each of the six questions on the item. Then several follow-up 
discussions and cross-checking followed. 

RESULTS 
Twenty-three different strategies were used, as shown in Table 2 . The most common 
strategies are described more fully with portions of transcripts. Of course students 
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used more than one strategy as they solved different portions of the task. Ten of the 
strategies in the table are primarily visual in nature: 1, 4, 5, 9, 13, 14, 18, and 20-22.  
Marcia is using black and white square tiles to make patterns. 

 

 

 

 

 Pattern 1   Pattern 2   Pattern 3 

1.  How many black tiles are needed to make Pattern 4? _______________ 
Marcia begins to make a table to show the number of black and white tiles she is using. 

 Pattern Number  1 2 3 4 
 Number of White Tiles 16 24 
 Number of Black Tiles 5 9 
 Total    21 33 
2.  Fill in the missing numbers in Marcia’s table. 
3.  Marcia wants to know how many white tiles and black tiles there will be in the tenth 
pattern, but she does not want to draw all the patterns and count the squares. 
Explain or show another way she could find her answer. 
4., 5., & 6.  Using W for the number of white tiles and P for the pattern number, write 
down a rule or formula linking W with P. 
 Using B for the number of black tiles and P for the pattern number, write down a rule or 
formula linking B with P. 
 Now, using T for the total number of tiles and P for the pattern number, write down a 
rule or formula linking T with P. 

Figure 1: Tiling Squares Problem 

Visual Grouping Strategy (S1). Edward provided a prime example of a strategy of 
counting each “arm” of the pattern and then multiplying to get the total.  

I looked at pattern 3 and I saw the three pattern, three tiles, that are on each side so I 
thought I looked at the pattern two and it just added one so I multiplied four times four 
with all the sides and just added one in the middle [for pattern 4]. 

Visual Growth of Each Arm Strategy (S4). This strategy is similar to #1 except 
students used an additive rather than multiplicative approach to get the total number 
of tiles. 
Counting ELLs and Adding 4 Center Squares (S14). To find the number of white 
tiles in pattern #1, Alajandro saw four groups of three white tiles forming an L shape 
around the center black cross with an additional 4 center white squares on each side.  

You can see here, like, it’s three, three, three, three, plus twelve, and four, and the same 
here [referring to the next pattern]. The thing is you just add four more and if you are 
doing a table you just add 8, that’s 16, 24, 32, 40.  
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 Strategies No. Strategy Description Strategies No. Strategy Description 

2 Numerical use of finite 
differences in table 

1 Visual grouping by counting each 
arm; multiplicative relationship 

6 Random trial and error 4 Visual growth of each arm; additive 
method of counting 

6’ Systematic trial and error 5 Visual symmetry 

7 Numerical finite 
differences to generalize to 
closed formula 

9 Figural proportioning into pillars; add 
4 for external and 4 for internal 
squares 

8 Implicit recursion 13 Concentric visual counting 

10 Confusing dependent and 
independent variables 

14 Counting Ell shapes and adding 4 
center squares 

11 Extending the table 18 Chunking 

12 Missing independent 
variable 

20 Counting by one 

15 Adding two formulas for 
black and white 

21 Visual finite differences after random 
count 

16 Incorrect use of 
proportionality 

V
is

ua
l 

 

22 Visual finite differences after 
systematic count by 3s 

17 Get a formula and 
substitute to get 10th term 

DG* 3 Unable to generalize 

N
um

er
ic

al
 

  19 T in terms of B and W *Disjunctive Generalization 

Table 2: All Strategies Identified in Solving Tiling Squares Task 

Numerical Use of Finite Differences in Table Strategy (S2). Even some of the 
students who could not generalize, such as Rosendo, were adept at using finite 
differences in the table. This was obviously a strategy they had been taught. Rosendo 
showed her work on the paper by drawing a loop connecting the 5 and 9 in the table, 
then the 9 and the blank, which she filled in with 13. 

Marcia is using black and white square tiles to make patterns. How many black tiles are 
needed to make Pattern 4? Um, you keep adding 4, 4 plus [5] I think with the pattern. 

Trial and Error Strategy (S6/S6’). If one combines the systematic and unsystematic 
trial and error approach, this was a common strategy. Interestingly, there were two 
students who used Strategy #2, Finite Differences, yet did not transfer that 
information into their attempt to generalize to a formula. A third, Jennifer, did not use 
the table, but was able to get a formula through a guess and check strategy.  

S:   Black is 4n + 1. 
Interviewer:  How did you decide 4n + 1? 
S:  I started off with more like 2 and that didn’t work so then I tried to 

make 5 work and I did the same thing with 2, 3, and 2 and then when I 
tried it with 4, and I tried to figure a number to make 5 so I add 1, and I 
tried it on 2 and it still gave me the number. 
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Individual Patterns. We next graphed each student’s strategies on parts 1-6 of the 
task in Excel so we could examine trends over the course of the task as it ramped up 
from specific to general. Two examples of graphs are shown here for illustration. 
Katrina (Figure 2) began the problem with visual strategies, then changed to 
numerical use of finite differences to get a general formula, which she used to find 
the values for the 10th pattern. For part 6, the total number of tiles, she indicated to 
add the number of black and white tiles but did not produce a closed formula.  
Rani (Figure 3) also began with a visual strategy, then transitioned into using finite 
differences and extended the table to answer part 3. However, Rani had to construct 
the table all the way out to the 10th pattern number in order to correctly answer part 3. 
Thereafter, he used trial and error to try to get to a generalization but was unable to 
do so. For example, in part 4: 

I:  What makes it difficult to figure out that formula?  
S: Because I can’t find what links them to like equal 16 and then 24 or add up to 

make it. Number of white tiles goes up by 8. I don’t know how I would link to the 
number of patterns. 

Group Patterns. Because of our particular interest in students’ ability or inability to 
generalize, we focused our attention on part 3 of the task, which is the transition point 
between the specific and the general. In fact, 12 students used Strategy #17, in 
addition to other strategies, for this part of the task: they tried to get a formula that 
they could use to find the number of white and black tiles in the 10th pattern. Of those 
12, four students were unsuccessful in forming a generalization; one used purely 
numerical strategies, while the other three used visual or combined visual/numerical 
strategies. The other eight students were successful in generalizing; of those, three 
used purely numerical strategies to lead them to a generalization, while the other five 
used visual or visual/numerical. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2: Katrina’s Solution Path       
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Figure 3: Rani’s Solution Path 

Inability to Generalize (S3). Table 3 below shows the results on generalization of 
the 22 students. Two of the 13 classified as unable to generalize had no success on 
any part of the problem, while the rest were able to do the first three parts of the task. 

Category Number 
Able to generalize all parts 5 
Able to generalize partially 4 
Unable to generalize 13 

Table 3: Summary of Results on Generalization 

Of the remaining 11 who were unable to generalize, all but one started with a visual 
strategy but transitioned to a numerical one. At that point, they generally did not 
return to the visual cues at all, even when they got stuck using their numerical 
strategies. The most common numerical strategy was to extend the table. One student 
confused the roles of the independent and dependent variables, and another left out 
the independent variable. The four students who were able to generalize partially did 
parts 4 and 5 correctly but completed part 6 by indicating in words or symbols (e.g., 
B+W) to add the number of black and white tiles; that is, they did not find an explicit 
formula for the total number of tiles in terms of the pattern number as asked for in the 
task. 

DISCUSSION 
This study is consistent with findings from an earlier study we conducted with 
preservice elementary teachers (Rivera & Becker, 2003) as well as work done by 
Küchemann (1981) and Stacey & Macgregor (2000). Overall, students’ strategies 
appeared to be predominantly numerical. In this study we identify three types of 
generalization based on similarity (numerical, figural. and pragmatic) in accord with 
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findings by Gentner (1989) in which children were shown to exhibit different 
similarity strategies when making inductions involving everyday objects. Students 
who use numerical generalization employ trial and error as a similarity strategy with 
no sense of what the coefficients in the linear pattern represent. The variables are 
used merely as placeholders with no meaning except as a generator for linear 
sequences of numbers, with lack of representational fluency. Students who use 
figural generalization employ perceptual similarity strategies in which the focus is on 
relationships among numbers in the linear sequence. Variables are seen as not only 
placeholders but within the context of a functional relationship. Students who use 
pragmatic generalization employ both numerical and figural strategies and are 
representation-ally fluent; that is, they see sequences of numbers as consisting of both 
properties and relationships. We see that figural generalizers tend to be pragmatic 
eventually. Finally, students who fail to generalize (disjunctive generalizers) tend to 
start out with numerical strategies; however, they lack the flexibility to try other 
approaches and see possible connections between different forms of representation 
and generalization strategies. 
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SYNCHRONIZING GESTURES, WORDS AND ACTIONS IN 
PATTERN GENERALIZATIONS 

Cristina Sabena(1), Luis Radford(2), Caroline Bardini(2), 
(1)Università di Torino, Italy   (2)Université Laurentienne, Canada 

In this paper we focus on the role of signs in students’ perceptive processes 
underpinning the generalization of numeric-geometric patterns. Based on a video-
taped Grade 9 classroom group activity undertaken by three students and framed by 
a cultural-semiotic theoretical perspective, we carry out a microgenetic analysis of 
an elementary form of mathematical generalization termed “factual”. We present a 
detailed analysis of the dynamics between oral speech and gestures. Two main 
results are: the detection of intra-personal and inter-personal synchronizations 
between different semiotic systems; and the individuation of the key role played by 
objectifying iconic gestures. 

INTRODUCTION AND THEORETICAL FRAMEWORK 
The crux of the generalization of patterns lies in the fact that it predicates something 
that holds for all the elements of a class based on the study of a few of them. One 
question that has to be asked in this context is, hence, the following: What is it which 
enables the generalization to be accomplished? In other words, what is that process 
that allows the students to see the general through/in the particular? (Mason, 1996). 
In the case of geometric-numeric patterns, one of the crucial aspects of this process is 
perception. To perceive something means to endow it with meaning, to subsume it in 
a general frame that makes the object of perception recognizable. Because the 
perceptive process is interpretative, what one student sees in a pattern can be different 
from what another student sees in the same pattern. 

The actual possibility of generalization therefore rests on perception and 
interpretation. In this paper, we are interested in better understanding the role of signs 
in students’ perceptive processes underpinning the generalization of numeric-
geometric patterns. As previous research suggests (Radford, 2002), perception as an 
active ongoing process of adjustments and refinements —a process in which the 
perceived object takes a progressive shape— is significantly dependent on the use of 
signs. With a pointing gesture, for instance, a student may indicate a specific part of a 
particular perceptual object to a colleague and enable him/her to attend to something 
that until then had remained unnoticed. The gesture here plays a specific role: the role 
of objectification, i.e., etymologically speaking, of making something apparent. 
Naturally, there are also other resources through which to accomplish an objectifying 
purpose: deictic words (e.g. “this”, “that”, “top”, “bottom”), letters, diagrams, body 
movements, etc. All such resources that play the aforementioned phenomenological 
role in knowledge formation have been termed semiotic means of objectification 
(Radford, 2003). 
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We are interested here in investigating the microgenesis of an elementary form of 
mathematical generalization —a generalization termed factual (Radford, 2003). For 
example, in the pattern shown below, a factual generalization enables the students to 
find the number of circles in any particular figure (e.g. fig 100, fig 900) without 
counting the circles one after the other. Factual generalizations differ from more 
complex forms of generalization (e.g. contextual and symbolic) in that their level of 
generality remains confined to the numeric realm. Because of its limited scope, 
young students using factual generalizations only, cannot answer questions to explain 
how to find out the number of circles in any figure or to find a formula to calculate 
the number of circles in Figure n. 

It is our contention that a microgenetic analysis of factual generalizations can shed 
some light on the way in which perception becomes refined in those crucial moments 
of the students’ mathematical experience leading to the accomplishment of a 
generalization. In carrying out the microgenetic analysis, we will focus the students’ 
deployment and coordination of semiotic means of objectification. In particular, we 
shall investigate the dynamics between oral speech and gestures. 

METHODOLOGY 
Our videotaped data comes from a 6-year longitudinal study, collected during 
classroom activities. In these activities, which are part of the regular school teaching 
lessons, the students spend a substantial period working together in small groups of 3 
or 4. At some points, the teacher (who interacts continuously with the different 
groups during the small group-work phase) conducts general discussions allowing the 
students to expose, confront and discuss their different solutions. In addition to 
collecting written material, tests and activity sheets, we have three or four video-
cameras each filming one group of students. Subsequently, transcriptions of the 
video-tapes are produced. Video-recorded material and transcriptions allow us to 
identify salient short passages that are then analysed using techniques of qualitative 
research in terms of the students’ use of semiotic resources (details in Radford, 
2000). 

We will focus here on the introductory question of a problem in a Grade 9 math 
lesson. This problem dealt with the study of an 
elementary geometric sequence (see Fig. 1). In 
the question that we will discuss, the students 
were required to continue the sequence, 
drawing figures number 4 and number 5 and 
then to find out the number of circles on figures 
number 10 and number 100.  

PROTOCOLS 
We will analyse the microgenesis of a factual generalization of one group of students, 
formed by Jay, Mimi (sitting side by side) and Rita (sitting in front of them). In the 

 

Figure 1. 
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Figure 2. Mimi’s first 
gesture on line 2. 
 

videotaped episode, Jay and Mimi keep the worksheet; they begin counting the 
number of circles in the figures, and realize that it increases by two each time. Then, 
Jay is about to draw figure 4, with the worksheet and a pencil in his hands:  

1 Rita:  You have five here… (pointing to figure 3 on 
the sheet) 

2 Mimi:  So, yeah, you have five on top (she points to 
the sheet, placing her hand in a horizontal 
position, in the space in which Jay is 
beginning to draw figure 4) and six on the... 
(she points again to the sheet, placing her 
hand a bit lower)              

3 Jay:  Why are you putting...? Oh yeah, yeah, there 
will be eleven, I think (He starts drawing 
figure 4) 

4 Rita:  Yep 
5 Mimi:  But you must go six on the bottom … (Jay has just finished drawing the 

first row of circles) and five on the top (Jay finishes drawing the second 
row) 

Although Jay materially undertakes the task of drawing figures 4 and 5, each student 
is engaged in the action. In line 1, Rita is not merely informing her group-mates that 
figure 4 contains a row of 5 circles. In fact, through a deictic gesture she is suggesting 
a qualitative and quantitative way to apprehend the next figures. Pointing to a specific 
part of figure 3, which is given on the sheet, but referring in her speech to figure 4, 
Rita provides a link between the two figures. Through her gesture-speech mismatch 
(i.e. through a gesture that refers to something while she talks about something else; 
see Goldin-Meadow, 2003), she is certainly suggesting a specific way to build figure 
4. This is an example of a process of perceptual semiosis, that is, a process in which 
perception is continuously refined through signs. 

This apprehension of the figure is easily adopted by Mimi, and properly described 
through the spatial deictics “top” and “bottom” (lines 2 and 5). It amounts to shifting 
from blunt counting to a scheme of counting. To notice this scheme is the first step 
towards the general.  

In line 2, Mimi’s words are accompanied by two corresponding deictic gestures, 
which accomplish a number of functions: (1) participating in the drawing process, by 
entering Jay’s personal space to offer guidance in carrying out the task; (2) depicting 
the spatial position of the rows in an iconic way, and (3) clarifying the reference of 
the uttered words. In line 5, Mimi does not make any gestures; rather, her words are 
perfectly synchronized with Jay’s action, almost directing him in the action of 
drawing: in fact, to complete her sentence with the description of the second row, 
Mimi waits until Jay finishes drawing the first row of circles. 

Later, the group work is interrupted by an announcement to the class about a 
forthcoming social activity. While Mimi and Rita pay attention to the announcement, 
Jay keeps on working, writing “23” and “203” as the answers for the question on the 
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number of circles in figures 10 and 100. So, when the girls return to the task, they ask 
Jay for an explanation of his results: 

6 Mimi:  (Talking to Jay) I just want to know how you figured it out. 
7 Jay:  Ok. Figure 4 has five on top, right? (with his pencil, he points to the top 

row of figure 4, moving his pencil 
from the left to the right) 

8 Mimi:  Yeah… 
9 Jay: …and it has six on the bottom (he 

points to the bottom row using a 
similar gesture as in line 7). […] 

10 Mimi: (pointing to the circles while 
counting) 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11. (Pause) […] Oh yeah. 
Figure 10 would have … 

11 Jay:  10 there would be like … 
12 Mimi: There would be eleven (she is 

making a quick gesture that points 
to the air. Jay is placing his hand 
in a horizontal position) and there 
would be ten (she is making the 
same quick gesture but higher up. 
Jay is shifting his hand lower 
down) right? 

13 Jay:  Eleven (similar gesture but more 
evident, with the whole hand) and 
twelve (same gesture but lower). 

14 Mimi:  Eleven and twelve. So it would 
make twenty-three, yeah. 

15 Jay:  100 would have one-hundred and 
one and one-hundred and two 
(same gestures as the previous 
ones, but in the space in front of 
his face). 

16 Mimi:  Ok. Cool. Got it now. I just 
wanted to know how you got that. 

 

To account for his results about figures 10 and 100, Jay (lines 7 and 9) starts talking 
about figure 4, already drawn on the sheet, and uses the speech-gesture combination 
previously introduced by Mimi (lines 2 and 5): the same deictic terms “top” and 
“bottom”, and analogous deictic gestures. Turning to figure 10, Mimi (line 12) 
matches her words with two gestures that refer to the two rows of the geometrical 
configuration. The same kind of gesture and uttered speech is then used by Jay, who 
corrects Mimi’s answer (line 13). Even if the figure is referred to in two slightly 
different ways by the two students, starting from the top (Jay) or from the bottom 
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Line 9 

 

Line 12 

 

Line 12 

 

Line 13 

 

Line 13 

 

Line 15 

 

Line 15 

Figure 3. Some gestures occurring in 
the lines of the dialogue. 
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(Mimi), the words-gesture match is perfectly accomplished in both cases in a very 
natural way. The same is true for Jay’s inference about figure 100 (line 15).  

The relevance of the previous remarks is that through a coordination of gestures and 
speech, the students are accomplishing an objectification of knowledge (Radford, 
2003), i.e., through signs of different sorts, the students are making apparent key 
traits of figure 100 —a figure that is not directly perceivable. The tight coordination 
between gestures and speech takes place in a particular segment of the students’ 
mathematical activity. These segments of mathematical activity, characterized by the 
crucial coordination of various semiotic systems leading to the objectification of 
knowledge, constitute what have previously been termed semiotic nodes (Radford et 
al. 2003). An index of its presence is the perfect coordination of time, words and 
movement reached in line 12 (see Fig. 4).  

 

                 12    Mimi:  There would be eleven and there would be ten right?     

                                        

Figure 4. Synchronization between the gestures of the two students 
Indeed as Fig. 4 illustrates, Mimi’s words are rhythmically beaten not only with her 
own gestures, but also with those of Jay. In fact, even if the students are not looking 
at each other, Jay’s hands are synchronized with Mimi’s words, and, as a 
consequence, with Mimi’s hands. 

Let us now focus on the internal dynamics of this semiotic node (which indeed 
involves the whole episode, going from line 6 to line 16) to disentangle the different 
specific semiotic components and describe how their mutual relations pave the way 
for students’ generalization. 

In Jay’s first utterance (lines 7 and 9), the deictic gestures appear endowed with a 
dynamic feature that clearly depicts the geometric apprehension of the figure as made 
up of two horizontal rows. Its goal is to clear away any ambiguity about the referent 
of the discourse, in order to explain a strategy. The figure (number 4) is perceptively 
present on the scene, and indeed materially touched by Jay through his pencil, a tool 
that can be actually considered part of his peripersonal space, that is the space 
immediately surrounding his body. Talking about figure 10, Mimi (line 12) performs 
two gestures that keep certain specific aspects of those of Jay, i.e. one gesture for 
each row, and the vertical shift. But now, because the referred figure is not available 
in the perceptual field, the gestures are made in the air. Also Jay’s last gestures (line 
14), referring to figure 100, appear in the air in the space in front of him, as if 
pointing to the rows of a non visible figure; indeed, if we pay attention to the position 
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of his hands when he refers to the different figures, we can notice a progressive 
detachment from the sheet: 

 

                                                   
 

Figure 5. 

The indexicality of the deictic gesture undergoes a gradual shift from an existential 
signification (referring to figures 4, materially present on the sheet) to an imaginative 
mode of signification (referring to figures 10 and 100). These gestures that mime or 
“iconize” the referent pinpoint and depict in an iconic way the essential features of 
the new referent, thus making it apparent. We term objectifying iconics these kinds of 
gestures which, thanks to their iconic features, play an important part in the process 
of knowledge objectification. Their role is in some way analogous to that of the 
deictic words previously termed objectifying deictics (Radford, 2002).  

Notice that the objectifying iconic gestures undergo a process of simplification that 
involves the loss of movement (along the rows of the figure) and a shortening of their 
duration. A progressive simplification is also evident in the uttered words: from line 
ten onward, the deictic terms disappear, leaving a barely numerical semantic content, 
organized by the conjunction “and”. Even if figures 10 and 100 are not materially 
present, the students can imagine them very precisely and would be able to draw 
them; but, having reached a certain stage in the process of objectification and 
socialization of the objectified knowledge, they do not need to specify all the details, 
and the reference to the form of the figure can smoothly remain implicit in their 
speech. This is also possible due to the role played by gestures. Let us focus on lines 
12, 13 and 15 (Fig. 3). 

The perfect synchronization between words and gestures allows the students to 
successfully cope with two intertwined aspects of the problem: one is numerical, 
discrete, and linear; the other is visual, geometrical, and analogical. The students 
handle the former through language, and the latter through gestures. They correspond 
to what Lemke (2003) terms the two fundamental types of meaning-making: 
meaning-by-kind or “typological meaning” (language) and “the meaning of 
continuous variation,” the meaning-by-degree or “topological meaning” (motor 
gestures or visual figures). He identifies in this inherent and unavoidable difference a 
main source of difficulties in learning mathematics, since “In general mathematical 
expressions are constructed by typological systems of signs, but the values of 

Referring to fig 4 Referring to fig 10 Referring to fig 100 
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mathematical expressions can in general vary by degree within the topology of the 
real numbers” (ibidem, p. 223). 

CONCLUDING REMARKS 
In this paper we focused on the genesis of a factual generalization. In investigating 
this kind of elementary form of mathematical generalization our goal was to unravel 
the semiotic activity that underpins its objectification. Previous research suggested 
the crucial role of signs in the students’ progressive process of apprehension of the 
pattern. However, the detailed micro study of this process of perceptual semiosis —
the interpretative process that enables the students to go beyond the particular and to 
attain the general— still needs to be better understood. As it has been suggested in 
earlier work (Radford, 2003), factual generalizations constitute, to an important 
extent, the basis for more sophisticated forms of generalizations.  

Our microgenetic analysis intimates that the process of perceptual semiosis here 
studied was underlined by two kinds of meanings. On one hand, there is a typological 
meaning that emphasizes the dimension of “quantitas”. On the other hand, there is a 
topological meaning that highlights the dimension of the “qualitas” induced by the 
geometric nature of the figures of the pattern. We saw here that the two aspects are 
inherently merged. Because the goal of the factual generalization is precisely to spare 
one from counting the circles in a figure one after the other, the numerical and the 
geometrical dimensions have to be harmonized. To harmonize them, the students 
activate a number of semiotic systems: oral speech, drawn figures, and gestures 
whose coordination by the students constitutes a semiotic node of their ongoing 
activity. Our analysis suggests the occurrence of gesture-speech match and mismatch 
and the critical role of gestures in the objectification of knowledge. Thus, based on 
the particular figures (e.g., figures 3 and 4), the students started talking about non-
present terms such as figure 10 and figure 100. The latter were objectified (i.e., made 
apparent) thanks to couples of iconic gestures that represent the geometrical 
components that are essential in a particular figure apprehension —e.g., two 
horizontal rows of circles (see Fig 5). These objectifying iconic gestures bear the 
analogical aspect of the problem and allow the students to pair it with its 
correspondent typological meaning (expressed in the uttered speech), to successfully 
accomplish the given task.  

In addition to this, our results also point to another aspect of the problem. As 
previously discussed, (Radford et al., 2004), there can be synchronization between 
different semiotic systems activated by the same individual: lines 3, 7 and 13 show 
examples of this. However, we also found evidence here of synchronization between 
individuals. In this case, it can occur between different semiotic systems, as in line 5, 
where Mimi is almost directing Jay’s drawing action, or between different 
enactments of the same semiotic means by different students, as in line 12, where we 
observe Mimi’s and Jay’s simultaneous gesturing actions perfectly coordinated with 
Mimi’s utterance. Thus, besides an intra-synchronization (i.e., an intra-subject or 
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intra-personal synchronization) —of which the gesture speech-match is a particular 
case— an inter-synchronization (or inter-subject or inter-personal synchronization) 
also appears. 

The hints provided by our micro-analysis need to be investigated further. In particular 
we need to better characterize the dynamics of semiotic nodes in factual, as well as in 
other more sophisticated forms of generalization, related not only to the context of 
patterns but to other domains of mathematics.  

Acknowledgment: This paper is a result of a research program funded by the Social 
Sciences and Humanities Research Council of Canada (SSHRC/CRSH). 
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Many students do not apply their real world intuitions and sense-making abilities 
when solving mathematics problems in school. In an effort to better understand how 
to help students draw upon these valued resources, we investigate the manner in 
which the solution to a particular problem activity is repeatedly re-interpreted by a 
student. This is done within the context of a models and modeling framework in 
which we discuss the modeling cycles and associated models that were used. We 
suggest that the nature of the problem activity combined with the time and support 
needed to cycle through multiple models contributed to this student’s ability to move 
beyond his initial, simplistic solution, toward a more complex solution, one that 
ultimately fit well within his own “real world” intuitions and experiences. 

INTRODUCTION 

The fundamental premise of this research is that students should be able to learn 
mathematics with understanding. A central component of understanding involves 
reflecting upon one’s own solution processes, and then refining and revising the 
solution as appropriate in order to produce solutions that make sense. (Hiebert et.al., 
1997). Unfortunately, this act of understanding does not occur as often as we would 
hope. Indeed, the mathematics education research literature is replete with instances 
in which young students provide solutions to mathematical problems that make little 
or no real world sense (Carpenter, Lindquist, Matthews, & Silver, 1983; Greer, 1997; 
Yoshida, Verschaffel, & De Corte, 1997; Vinner, 2000). The same is true for college 
level students. Verschaffel, De Corte, & Borghart, (1997) report that college students 
“revealed a strong tendency …to exclude real-world knowledge from their own 
spontaneous solutions of school word problems” (p. 339). Inoue, (2002) also found 
that college students responded to mathematical problems with unrealistic answers, 
even when specifically asked to use their real world sense making skills.  

Wyndhamn and Saljo (1997) speculate that one reason for the lack of sense making is 
that students often interpret word problems by “follow[ing] rules and use[ing] 
symbols without reflecting on, or analyzing, what these rules and symbols imply in 
the specific context in which they are used.” (p. 362). In this research, we suggest 
that an important component of helping students to make meaningful sense of the 
mathematics they encounter involves building a learning environment in which 
meaning is highly valued, and where students are consistently encouraged to reflect 
on their own problem solving processes, to test their ideas in the context of the 
problem, and then to refine and revise their solutions accordingly. We contend that 
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this must happen over the course of many cycles (modeling cycles, as will be 
described later in the paper). In such an environment, simplistic or nonsensical 
responses can become increasingly refined thereby resulting in mathematically 
sensible solutions. In this paper, we document one such instance along with the 
corresponding stages of revision.  

FRAMEWORK 
A models and modeling perspective was used to guide all levels of this research. We 
refer to the development of mathematical ideas in terms of "models" and "modeling 
cycles" (c.f. Lesh & Doerr, 2000; Schorr & Koellner-Clark, 2003). Briefly stated, a 
model can be considered to be a system for describing, explaining, constructing or 
manipulating a complex series of experiences. An individual can interpret a situation 
by mapping it into his or her own descriptive or explanatory system for making sense 
of the situation. Once the situation has been mapped into the internal model, 
transformations within the model can occur, which in turn can produce predictions, 
descriptions, or explanations for use in the problem situation (Schorr & Koellner-
Clark, 2003). Models tend to develop in stages where early models are often fuzzy or 
distorted versions of later, more advanced models. We contend that in many cases, 
students never cycle through multiple models, and their first or second cut solution 
reflects that. It is our hypothesis that when given the opportunity to cycle through 
multiple models in a supportive learning environment, students can develop 
mathematically more sophisticated and thoughtful solutions (Schorr & Lesh, 2003).  

A learning environment consists of at least two critical and interrelated components. 
The first relates to the classroom atmosphere, and the second relates to the nature and 
type of problem solving experiences that the students encounter. We contend that 
classrooms that encourage students to talk about their ideas, reflect on the 
reasonableness of their solutions (orally and in writing), listen to the solutions of 
others, discuss different representations of the same problem and the relationship 
among representations, and share, defend and justify their solutions—orally and in 
written form, are more likely to result in sense making. In such classrooms, ideas are 
embraced, reflective activity is expected, and personal experience is valued. 

Since a main purpose of this study was to investigate students’ modeling cycles, it 
was not only important to encourage an atmosphere and learning environment in 
which sense making was valued, but also to find a problem activity that had the 
potential to elicit a thoughtful, sensible solution. The activity that was chosen was 
designed to encourage problem solvers to produce products that were not simply 
answers to specific questions; but in addition entailed constructions, descriptions, and 
explanations, that revealed many aspects of the thought process that goes into the 
final solution (Amit, Kelly & Lesh, 1994). Solutions to activities like the one that was 
chosen often involve sequences of modeling cycles in which the “given” information 
is systematically re-interpreted in a variety of ways (Lesh & Doerr, 2000; English, 
1997).  
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In the sections that follow, we will provide evidence of the models and modeling 
cycles that occurred. For each cycle, we will offer our interpretation of the meaning 
of the particular model, the influence of real world sense making, and the 
implications of the changes in the final solution.  

METHODS AND PROCEDURES 
The context for this research was a course that was designed by the author (who was 
the classroom teacher) in order to help poorly performing students to succeed in 
college level courses. This particular class consisted of eight students, all of whom 
were recent graduates of local urban high schools. The students met with the teacher 
and a teaching assistant twice weekly for approximately one hour per session for a 
total of 14 weeks. 

On this particular occasion, which occurred midway through the term, all students 
were asked to solve the “Radio Problem” (see below). They were given the option of 
working alone or with a partner. They were all asked to keep a written journal in 
which they included reflections on their work, and what, if anything, they might 
change when they resumed their work. They were also told that there was more than 
one solution path that could be taken to solve the problem. All students worked on 
the activity for a total of three hours spread over as many sessions. When the students 
completed their solutions, they were asked to formally present their work to the class. 
Selected students were interviewed after their presentations about their solutions and 
strategies.  All sessions, presentations, and interviews were videotaped. The teacher 
also kept careful field notes. Data include all of the written work, videotapes and field 
notes. 

The Radio Problem Activity: The activity that follows is adapted from a problem 
developed by the Educational Testing Service as part of the PACKETS® program1. 
The problem was designed to relate to similar experiences that the students might 
have had when purchasing portable radios with headsets. Note that the final solution 
is not simply a specific solution that relates to the unique set of data, but rather one 
that can be generalized to other radios with different attributes. 

The editors of Consumer Reports want to make a new consumer guide for products that 
are important to teenagers. The first items that they want to rate are portable radio-
cassette players with headsets. They need your help to develop a rating system…The 
editors want a rating system that readers can use to rate any model (even if it is not listed 
on the attached list), and compare the models to determine which are the “best buys”. 
The editors have also gathered the attached information for some models. They plan to 
use these as examples to show readers how to use the rating system. To help the editors, 
please: I) Develop a rating system for these players. Be sure that the system can be used 

                                              
1 The problem was taken from the PACKETS® program for Middle School Mathematics which was 
developed by the Educational Testing  Service. 
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to identify overall “best buys” which take into account the factors that the survey 
indicates are important. Also, readers should be able to use the rating system with ANY 
other players, including those not listed in the guide, so include any tables or charts that 
are part of your system. II) Write clear step-by-step instructions that make it easy for 
readers to use your rating system. III) Write a letter to the editors explaining why you 
decided on your rating system and describe its advantages and disadvantages. 

Included was a comprehensive data table which listed information for each of 11 
brands of radios: The chart below represents only two of the brands, (due to space 
limitations). 

Brand Price 
(dollars) 

Dimensions 

(inches) 

Weight 

(ounces) 

Tape 
Sound 
Quality 

Radio 
Sound 
Quality 

Battery 
Life 
(hours) 

Number 
of AA 
batteries 

Comments 

(on a 
separate 
list) 

Aiwa $49 51/4x 31/2 
x 1 3/8 

good good good 12 2 A,B,C,1 

Sony $69 5 3/8 x 4x 
1 3/4 

14 fair poor 10 1/2 4 B,F,G,H,J, 
1,4,7,9,10 

RESULTS 
This paper focuses on one particular student, James, whose work is chosen to be 
representative of the class. James began by constructing a model that represented his 
solution to the task. The model served as a means by which he could consider the 
feasibility and utility of his solution as a rating system. As James solved the problem, 
he often experienced a conflict between his own personal experience of listening to 
radios and the choices he had made as a result of applying his model (as noted in his 
reflections and comments). This pattern of considering the solution and assessing its 
utility in a real world context occurred several times until James reached what he 
considered to be a useful and generalizable solution. James noted that when he first 
began, he “…felt this project couldn’t be done.” but then had what he termed a 
“breakthrough”. He said “Once I got that, it made me want to progress.” (noted in his 
written reflection). Below, we briefly describe what he did, how he reflected on his 
work (taken from his written reflections, oral comments, and final presentation).  

First Model: Rating List. James counted the number of advantages and 
disadvantages (as provided in the last column of the data table) for each radio. He 
added the number of advantages (each advantage was assigned the value +1) to the 
disadvantages (each disadvantage was assigned the value –1) thereby getting a 
positive number when the number of advantages exceeded the disadvantages and a 
negative number when the disadvantages exceeded the advantages. He then paired 
each radio with its corresponding outcome and listed them in an ascending and 
sequential order. In this “rating list” values ranged from +2 to –6. As part of his 
written reflection he noted that, “My first attempt was rushed, kind of a scapegoat, 
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and mainly left too many questions open…” He then discussed the usability of the 
solution, e.g., the rating list, and as he did, he expressed his dissatisfaction with it. He 
noted that it would not be “accommodating to the teenage crowd” since it was not “ 
what teenagers are looking for” (per his written reflection on his initial solution). 
James acknowledged that he had not really found a solution that addressed the needs 
of the teenaged crowd--the target population for the problem, and those most likely to 
purchase the radios.  More specifically he stated”…you must take into consideration 
what teen-agers are looking for including: good sound quality, low price, low cost of 
running and lightweight.” From this point on, he consistently referred to “the teenage 
crowd” as being the important factor as he reflected upon the changes that needed to 
be made.  

Second Model: checklist. James built a new physical representation (model) using 
many of the information provided in the data table. He selected categories such as a 
radio’s weight, price, and battery life to be included in the model, and ignored such 
categories as size of radio and sound quality. He then sorted the data by magnitude in 
ascending order, e.g. price was arranged from cheapest to most expensive, also taking 
into account the frequency of each value’s occurrence. James determined what he 
considered to be a “good” range of data per category as well as a “not good” range, (a 
price that ranged from $39 to $69 was identified by James as a “good”). A numerical 
value was allocated to each data range: “good” data received a higher number of 
points (3) and all the rest received 0 points. James then attempted to test his model by 
rating a subset of the radios according to the above criteria. This resulted in a “best 
buy” list where the radio that had the highest rating was deemed as the “best” radio.  

The transition from the first to the second “model” was rather dramatic. Instead of 
continuing to use only one dimension, i.e. the advantages and disadvantages of the 
radios (as he had previously done), he adopted a multi-dimensional approach in 
which he selected information from the data (table), intentionally ignored some of the 
other information (such as brand name), and then defined ranges of “good” with 
associated numerical values. One piece of information that he chose to ignore, 
namely, the brand name, proved to be very important as it allowed him to consider 
the rating of radios in a more generalizeable way (a key aspect of his next model).  

The supportive learning environment provided him with an opportunity to take the 
time to consider “what is important for teenagers” and reflect on his work. Building 
upon his reflections, he proceeded to select relevant categories and eliminate non-
relevant categories. His decision was based on personal beliefs and preferences. For 
example, he noted that he did not pay attention to the category of “size of radio” 
because he thought that size did not play an important role in teenagers’ purchasing 
decisions. He also felt that for most people, a less expensive price is a good price. 
However, a really cheap price may be indicative of poor quality. He stated “if it is too 
cheap it ‘s probably not good”. Following this logic, he decided exclude the cheaper 
prices (such as $24, $33 and $35) in the range of “good”.  
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As with his first model, the end result of this new model involved verification and 
utilization of using a subset of the radios. Although the new model was more 
comprehensive than the first, James was still dissatisfied. He concluded by saying: “it 
does not capture everything, it does not balance”. This statement marks the transition 
point into the next model. 

Third Model: “prototype chart” – refined and expanded checklist. James “fine 
tuned” and revised the boundaries of the data ranges within the existing category 
boundaries. He added an intermediate range of “medium” and assigned numbers: 3 
point for good, 2 for medium and all the rest 0 points. He continued using a method 
in which different categories were “weighted” differently. For example, the rating 
corresponding to the price or weight of the radio was done on a scale of 0 to 3, 
whereas the rating corresponding to the “life of a battery” category was based on a 0 
to 2 scale. These were justified and explained by James as he noted “price is 
important and battery life is important, but from a teenagers perspective, price is 
more important.” Next he expanded the scope of the categories to be included in the 
decision making process by adding categories with qualitative data. A sound quality 
category was added to his checklist along with a rating of 2 for good sound quality, 1 
for fair sound quality and 0 for poor sound quality were assigned.  
In the new scaling system, it appears as if James’ allocation of weights to the 
different categories represented his own way of conceptualizing what is important in 
the purchasing of a radio. For example, price is more important then battery life; 
therefore a “good” price contributes 3 points to the rating of the radio while the 
longest battery life contributes only 2 points. As a final step, James applied the model 
to the rating of the radios. He was pleased with the results and commented that “it 
balances pretty well”.  At this time, James realized that the task called for rating 
instructions that could be applicable to any radio and not limited to the 11 described 
in the task. James felt that his current model did not fully comply with that (see the 
statement of the activity). This realization marked the transition point that led James 
to the fourth and final model. 

Fourth Model: General Chart and Operating Manual. James expanded the data 
boundaries to account for any radio’s price and weight. He did so by adding the 
phrases less or over at the end of the “good” range. In addition, James created a table 
that included all of the categories, all data values, both quantitative and qualitative, 
and a list of advantages and disadvantages. He also added a “key” so that the user 
could easily discern how to use the point value. For 3 points he used brackets, for two 
points he used a curled line, and so on. He wrote guidelines to account for special 
case scenarios. For instance, if the overall rating of the product is –6, James decided 
that the radio should be penalized with the loss of another 2 points. This was done 
because a rating that was that that low meant that the radio was of poor quality, and 
should have –2 points added to the overall rating. James also attached a rather 
detailed manual so that a novice rater could easily use his guide. As part of his 
finished product he wrote  
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You simply place your name of brand walkman into the column (price), scroll right to the 
next column identifying where the characteristic of your walkman falls under, recognize 
the point value, and scroll down placing the point value in the void. Continue this 
process. After all point values for each category are in the voids, add them all together to 
get your total worth. In regards to tape and radio sound quality, point values are as so: 
‘Good’ is worth 2 points, ‘Fair’ is worth 1 point, and poor has no worth. All of these 
components in sync will result in total worth or a “best buy’. Special considerations are 
present on the chart but hold no real dilemmas. 

In addition, James recommended that one should rate the sound quality and the 
overall tape quality by playing actual music on the radio. After the rating process was 
complete, James further recommended that all points should be summed up for the 
different radio brands, and based upon this summation, one could choose the radio of 
his/her liking. In the end, James checked the final model by rating each of the radios 
on the original list, and creating a new list. Both the model and the new list were to 
his satisfaction and he even expanded the targeted audience, claiming that this new 
“best buy” list could be useful to those interested in purchasing a new radio as well as 
those who sell radios because the list illustrates and summarizes each product’s 
performance. James summed this up by saying, “With this rating system, the 
consumer’s task will be virtually effortless and seem more inviting, leaving the buyer 
with no other option but to take advantage of it.” 

CONCLUSIONS 
James went through several cycles in order to solve the problem, cycles that reflected 
a progression from simplistic to more complex and generalizeable. We suggest that 
the first or second solutions that James produced are more typical of the solutions that 
one would expect in many classrooms, solutions that do not fully build upon 
students’ personal, sense making capabilities. It was only through repeated reflection 
and revision (in which James experienced a conflict between his own personal 
experience and his mathematical solution), that James was prompted to revise, test, 
and refine his work. This type of reflection and revision was consistently encouraged 
within the classroom environment, in conjunction with the use of carefully chosen 
problem activities. This particular task was specifically designed to capitalize on 
students’ personal experiences with purchasing radios, thereby providing a context in 
which sense making could be applied. Further, the problem called for a solution that 
was more than a specific solution for a unique set of data (involving a concrete and 
local situation), but rather one that could be generalized to include many different 
types of situations, and whose processes could relate to a whole class of structurally 
similar problems involving quantifying qualitative data; working with extreme and 
diversified situations, some of which are directly related (for example, the longer the 
battery life, the higher the rating), while others within the same problem are not (for 
example, the higher the price, the lower the rating); the invention and application of 
weighted scales; etc. We believe that this type of mathematical activity is critical if 
students are to experience the types of ”breakthroughs” that James described.  
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NEGOTIATING ABOUT PERCEIVED VALUE DIFFERENCES IN 
MATHEMATICS TEACHING: THE CASE OF IMMIGRANT 

TEACHERS IN AUSTRALIA 
Wee Tiong Seah 

Monash University, Australia 

This paper reports on a qualitative research study exploring the socialisation 
experiences of immigrant secondary mathematics teachers practising in Australia. 
Teacher perception of differences in the ways their respective home and the 
Australian (host) cultures value aspects of mathematics teaching and learning was 
observed to lead to dissonance. Their negotiation about these differences highlighted 
the role played by personally-held values. Although each teacher participant adopts 
different approaches to mediate the different perceived value differences, the 
inclusive approaches of amalgamation and appropriation were most widely adopted. 
Implications towards optimising mathematics pedagogy, and towards meaningful 
professional support for mathematics teachers in transition, are suggested. 

I strongly believe that Maths is Maths in any culture. I teach Maths my own way, with a 
great passion and commitment to the students I teach. (Carla, immigrant teacher from 
Romania) 

INTRODUCTION 
We live at a time of ever increasing contact and communication across geopolitical 
boundaries. While the fight against terrorism involves many nations, air travel 
continues to enjoy increasing growth. As the 2004 Asian tsunami disaster 
demonstrated nature’s ability to unleash its force across countries, affecting the lives 
of people in even more nations, the coordination and success of the international 
relief aid effort highlighted the role of cross-cultural communication. Transnational 
migration continues to be a global phenomenon, and this includes the increase in 
demographic movement of teachers of mathematics around the world, either directly 
as a result of responding to mathematics teacher shortage in local schools, or 
indirectly due to one’s family making the move to another country. 
It is reasonable to suppose that teachers of mathematics may be less concerned than 
their colleagues of other subjects to teach in a different country. As the quote above 
demonstrates, (school) mathematics is often regarded as culture-independent. After 
all, topics such as the arithmetic operations and Pythagoras’ Theorem remain the 
same in different cultures and these same topics are taught in these different cultures. 
However, when teachers facilitate the learning process of these supposedly culture-
independent topics in mathematics classrooms in different cultures, surely the 
pedagogy is culture-dependent? For example, a mathematics teacher used to teaching 
in a teacher-centred manner in her home culture is likely to find it different − even 
difficult − to teach similar topics in a relatively student-centred learning environment. 
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In other words, mathematics pedagogy may actually be as culture-dependent as any 
other school subject. Yet, perhaps because of the belief that school mathematics is 
culture-independent, educational research into the pedagogical process and 
professional experiences related to mathematics teaching across cultures is at best 
scarce. 
It is within this context that the study reported in this paper is positioned. In 
particular, the study inquires into the professional socialisation (Su, Goldstein, 
Suzuki, & Kim, 1997) of immigrant teachers of mathematics practising in secondary 
schools in Victoria, Australia, and explores how these teachers negotiate any cultural 
difference they encounter in teaching and facilitating the learning of school 
mathematics. This paper will briefly position the construct of values as providing an 
appropriate framework to examine the socialisation experience of the immigrant 
teachers. An outline of the research methodology follows, before a summary of the 
findings is presented. The range of responses adopted by the teacher participants will 
also be discussed. 

THE VALUE-LADENNESS OF (MATHEMATICS) EDUCATION 
This study adopts the stance of social-cultural constructivism, acknowledging the 
development of mathematical knowledge as socialised knowledge, including 
ethnomathematics (Bishop, 1991; D'Ambrosio, 1985; Knijnik, 1993), and also 
recognising the socio-cultural context of mathematics teaching and learning in 
schools (Bishop, 1994; Schmidt, McKnight, Valverde, Houang, & Wiley, 1997). 
While the consideration of factors such as ethnicity, socio-economic levels and 
gender in mathematics education research has traditionally reflected the socio-
cultural aspect of facilitating school mathematics teaching and learning, this study 
explores the professional practice of immigrant mathematics teachers using another 
socio-cultural variable, that is, values. 
After all, the very act of educating is by nature value-laden (Gudmundsdottir, 1990). 
Teachers do  and are expected to  show the values that they themselves embrace 
(Veugelers & Kat, 2000). In this regard, immigrant teachers bring to the host culture 
their cultural ‘funds of knowledge’ (Moll, 1994) pertaining to content and pedagogy, 
which may be different from the corresponding dominant attitudes, beliefs and values 
in the host culture. Further, it is hard to discuss cultures and cultural differences 
without considering the values which constitute the shared meanings understood 
within groupings of individuals (Hofstede, 2001; Kluckhohn, 1962). Therefore, for 
immigrant mathematics teachers practising in Australia, the experiencing in the 
Australian classroom of value differences and the resultant dissonance are inevitable. 

VALUES RELATED TO SCHOOL MATHEMATICS EDUCATION 
Values related to school mathematics education may be regarded as representing 

an individual’s internalisation, ‘cognitisation’ and decontextualisation of affective 
constructs (such as beliefs and attitudes) in his/her socio-cultural context. Values related 
to mathematics education are inculcated through the nature of mathematics, through the 
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individual’s experience in the socio-cultural environment and in the mathematics 
classroom. These values form part of the individual’s personal value system, which 
equips him/her with cognitive and affective lenses to shape and modify his/her way of 
perceiving and interpreting the world, and to guide his/her choice of course of action. 
They also influence the development of other affective constructs related to mathematics 
education and to life. (Seah, 2003b) 

Bishop (1996) had earlier categorised these values as mathematical, mathematics 
educational, and general educational. In particular, Bishop (1988) also conceptualised 
three pairs of complementary mathematical values, being rationalism and objectism, 
control and progress, openness and mystery. On the other hand, mathematics 
pedagogy in different classrooms emphasise values such as technology, practice, and 
problem-solving to differing degrees. At the same time, there are also the general 
educational values which are espoused in mathematics classrooms differently, 
examples of which include neatness, creativity, and honesty. 
As depicted in the affective taxonomy of educational objectives (Krathwohl, Bloom, 
& Masia, 1964), values arise from the increasing internalisation of what Raths, 
Harmin, and Simon (1987) called ‘value indicators’, which include beliefs and 
attitudes. Whereas beliefs often deal with truth/falsity (Kluckhohn, 1962) and are 
thus often expressed in context (e.g., ‘All students can achieve good mathematics 
results’), values tend to be concerned with what is desirable or not (Rokeach, 1973). 
Thus, values are often expressed as single terms and context-independent. As alluded 
to in the definition of values above, in the affective taxonomy of educational 
objectives (Krathwohl et al., 1964), and in Raths et al.’s (1987) valuing process, the 
acquisition of values is a cognitive process. Even if the arousal of values in an 
individual may be an affective, emotional response to environmental stimuli, the 
notion of competing/conflicting values (Hofstede, 1997; Lewis-Shaw, 2001) implies 
that the act of valuing involves choice and decision-making; that is, the emphasis of 
values is in itself cognitive. 

In this light, what are some of the culturally-based differences in values related to 
mathematics, mathematics pedagogy and education which immigrant mathematics 
teachers find in the Australian classroom? More importantly, in the interest of 
retaining valuable professional resources, and of empowering them to optimise the 
mathematics learning experience of all students, how do immigrant teachers negotiate 
about the value differences they perceive in the Australian mathematics classroom? 
What are some of the environmental factors which facilitate or constrain the espousal 
of particular values in conflict? 

CONDUCTING THE STUDY 
As a research study which seeks to understand and to generate theory, rather than to 
test any hypothesis, it is essentially qualitative (Merriam, 1988) in approach. 
Purposive sampling (Merriam, 1988) from a larger pool of immigrant mathematics 
teachers (identified earlier through a state-wide postal survey of all secondary 
schools) had helped to identify eight teacher participants representing the different 
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education systems, both gender, professional placement across different parts of 
Victoria, and a diverse range of home cultures. 

The research method involved the analysis of data collected through semi-structured 
interviews, lesson observations, and questionnaires and teacher marking of student 
work. Questions arising from the research questions were cross-referenced across the 
different data sources so as to achieve triangulation and to enhance validity of 
findings. Details of the research methodology employed in the study are discussed in 
an earlier paper (Seah, 2003a). 

FINDINGS 
The 34 reported differences in cultural values as perceived by the eight teacher 
participants in their respective secondary mathematics classrooms related not only to 
mathematics as a scientific discipline, to mathematics pedagogy, to educational aims, 
but also to differences in the ways in which educational institutions adopt 
organisational values. In particular, two immigrant teachers (Deanne from Canada, 
and Betty from England) perceived the valuing of professional support and 
administrative support to be emphasised differently in their Australian workplaces. 

It is perhaps not surprising from the ensuing discussion that more than half of the 
perceived value differences were mathematics educational in nature. Interestingly, 
although value difference is regarded as relative (Hofstede, 1997) across cultures, 
none of the eight foreign cultures appeared to emphasise the values of technology and 
numeracy more than the Victorian mathematics curriculum. 

Current knowledge from human resource management (e.g., Hofstede’s (1997) 
‘acculturation curve’) suggests that the state of stability is eventually attained after a 
period of uncertainty and dissonance in cross-cultural transition. There was no 
evidence in this study, however, that this holds for (mathematics) teaching. Manoj, an 
immigrant teacher from Fiji who has had 27 years of teaching experience in 
Australia, continued to perceive value differences during his practice. Analysed data 
indicated that this is likely because the very nature of students, institution and society 
change in time, perhaps more frequently and/or more deep-rooted than in the 
commercial workplace! However, years of experience did help Manoj hone his 
ability and consolidate his confidence in responding to dissonance brought about by 
value differences. 

Confronted by the perceived value differences, each of the immigrant teachers was 
observed to adopt a variety of responsive approaches. That is, no one immigrant 
teacher negotiated about perceived differences in just any one particular way. These 
approaches are summarised in Table 1, the framework of which was adapted from 
Bishop (1994). 

The observation of the affinity response indicates that perceived value differences 
need not always lead to dissonance. For example, Betty found that some of the values 
that were operating in Australia resonated with what she personally embraced, values 
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which were not as valued in the British mathematics classroom. As such, she felt a 
sense of affinity to these relatively ‘Australian’ values, namely application and 
administrative support. 

Culture to 
which 
personal 
value is 
aligned 

 
Response 

 
Assumption 

 
Teaching 

Australian 
culture 

 
Affinity 

There is no culture 
conflict; my value is 
aligned with the 
Australian culture. 

The Australian culture 
supports my mathematics 
teaching style. 

Home 
culture 

 
Status quo 

My home culture 
should be espoused. 

I teach mathematics in the 
same way I did in my 
home culture. 

  
Assimilation 
 

The Australian culture 
should influence the 
surface characteristics 
of my mathematics 
teaching. 

I include the Australian 
cultural contexts in my 
teaching, such as in 
examples and problem 
sums. 

  
Accommodation 

The Australian culture 
should be espoused. 

Planning and classroom 
decisions portray the 
Australian culture. 

  
Amalgamation 

The essence of my 
home culture and the 
Australian culture 
should guide 
mathematics teaching. 

My teaching reflects a 
synthesis of teaching 
styles from my home 
culture and from 
Australia. 

  
Appropriation 

My home culture and 
the Australian culture 
should interact to 
inform my 
mathematics teaching. 

My mathematics teaching 
style consistently reflects 
an adaptation of my home 
culture to local norms and 
practices. 

Table 1: Responses by immigrant teachers to perceived value differences in 
mathematics education. 

Not all perceived value differences appeared to be mediated successfully by the 
immigrant teachers, however. For instance, although Carla (an immigrant teacher 
from Romania) found herself capable of accommodating (see Table 1) to a lesser 
emphasis of power distance in her Australian mathematics classroom, in some cases 
she appeared helpless and did not know how to respond to the value difference 
situation. 
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Thus, attending to the various contextual factors operating at the time when the value 
differences were perceived had meant the consideration of how the values underlying 
each of these factors might interact with the values that were already seen to be in 
conflict. For example, in Rana’s perception that product was valued more by her 
students in Australia, and process embraced more by her students in India, her 
responsive approach took into account several contextual factors, such as the nature 
of work in Australia, student self-esteem, and the relatively heavy teaching schedule 
in her Australian workplace. Each of these implied that Rana’s negotiation involved 
more than a choice between the valuing of process or product, to an interplay of 
values underlying the various contextual factors. Again, the role played by the 
teacher’s personal values in the negotiation of perceived value differences is a 
significant one. 
COMPLEMENTARITY OF VALUES THROUGH THE AMALGAMATION 
AND APPROPRIATION APPROACHES 
Interestingly, however, each and every one of the teacher participants was observed 
to adopt the amalgamation and/or appropriation approaches. This is noteworthy 
because these two approaches differ from the affinity, status quo, assimilation and 
accommodation approaches, in that instead of the values of either the home or 
Australian cultures being affirmed through the teachers’ response, amalgamation and 
appropriation combine aspects of both these cultures in ways which also re-establish 
the harmony and equilibrium within the particular teacher’s personal value schema. 
In this way, they may be perceived as being inclusive responsive approaches: 
approaches characterised by the inclusion, embracing, and mutual support of values 
from different cultures. On the other hand, the other four approaches may be called 
exclusive responsive approaches as some values tend to be excluded in the process. 

Through this expression of a ‘middle way’, these inclusive responsive approaches 
serve to enrich both the home and Australian cultures. In the case of amalgamation, 
this ‘middle way’ enables the concurrent emphasis of both cultures’ values as they 
are. Analogically, this is similar to the chemical formation of mixtures (versus 
compounds): the constituents of the mixture remain distinguishable and separable 
although they together have produced something new. For example, Betty’s response 
to a relatively higher emphasis of technology in the Australian mathematics 
classroom when she originally subscribed to paper-and-pencil and mental 
computations embraced in the British mathematics classroom (in her opinion), was 
one of amalgamating the different values: encouraging mental computation for 
simpler questions and responsible use of technology in more tedious calculations. 
On the other hand, in the case of appropriation, the relevant home and Australian 
cultures are seen to have interacted with each other and redefined each other, such 
that their individual nature has transformed in the process. Using the analogy of 
chemical formations again, this approach is akin to the production of compounds: 
while the properties of the constituents may be distinguishable in the nature of the 
compound, it would be impossible scientifically to isolate the constituents from it. 
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For example, when Manoj grew to understand the relative lack of connection 
between academic performance and personal success in the Australian society (when 
compared to his Fiji Indian culture), his approach to negotiating the cultures’ 
difference in the valuing of academic achievement was one of appropriating it to 
adapt its relevance in his Australian classroom. While he continued to value 
academic achievement, he no longer expected this to be embodied in the form of 
absolute assessment scores. Rather, its importance became one of each student 
performing to her best potential. 
Since the balance of emphasis between values changes with each classroom situation, 
appropriation is an ongoing process as the individual continually assesses how the 
conflicting values interact with each other in the different situations. 

CONCLUSION 
This paper has briefly reported on some of the findings relating to immigrant 
teachers’ negotiation of perceived value differences in the Australian mathematics 
classroom. In mediating the dissonance, the immigrant teachers re-established 
harmony and equilibrium within the personal value schemas. Although this has led to 
the adoption of a range of responsive approaches (listed in Table 1), the inclusive 
approaches of amalgamation and appropriation were by far most commonly used. 

This researching process has highlighted how the mathematics learning discourse in 
the classroom is indeed value-rich. There is thus a need for this aspect of 
mathematics education to be further researched upon, both for reasons of optimising 
school mathematics teaching and learning process, and of highlighting the role that 
mathematics education can − and does − play in the wider good of values education. 

The socialisation experience of immigrant teachers can possibly inform similar 
experiences of mathematics teacher in transition between other kinds of cultures (e.g. 
public and private schools). This study has shown that successful socialisation does 
not imply teacher enculturation into the host culture. Neither does it involve ways of 
preserving the teachers’ respective home cultures per se. Rather, an empowering 
professional development program should focus on enabling teachers to explore the 
values negotiation in relation to their own personal values. Importantly, this has the 
potential of developing mathematics teachers’ cultural intelligence (CQ), at a time 
when an individual’s capability to complement it with her intelligence quotient (IQ) 
and emotional intelligence (EQ) is most crucial for personal and professional health 
and growth. 
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DEVELOPMENT OF MATHEMATICAL NORMS  
IN AN EIGHTH-GRADE JAPANESE CLASSROOM 

Yasuhiro Sekiguchi 

Yamaguchi University, Japan 

Mathematical norms are important cultural knowledge of mathematical activities. 
This paper reports an analysis of mathematical norms in ten consecutive lessons 
taught by an eighth-grade Japanese teacher. The lessons were located in the unit of 
simultaneous linear equations. The videotapes of the lessons, their transcripts, and 
the interview data were analyzed qualitatively. Several major mathematical norms 
were found in the lessons. The teacher’s deliberate strategies to develop them were 
identified: using students’ work, making a comparison, and being considerate of 
those students who did not follow a norm. Complexities of research on mathematical 
norm are discussed. 

INTRODUCTION 
This paper reports an analysis of the ten consecutive lessons taught by one of the 
eighth-grade Japanese teachers who participated in the Learner’s Perspective Study 
(LPS), an international research project coordinated by David Clarke (see Clarke, 
2004). The analysis focuses on mathematical norms introduced by the teacher. 

As Clarke (2004) points out, one of the goals of LPS is to complement TIMSS 1999 
Video Study. In Hiebert et al. (2003), the analysis of mathematics teaching focused 
on mathematical knowledge, procedures, and reasoning involved in the problems 
presented in the lessons. Teaching of mathematical norms was beyond their analysis. 
Though the mathematical norms are often not explicitly taught by teachers nor 
written in textbooks, they are crucial when the learning process of mathematics is 
conceived as mathematical activities. 

Mathematical norms are knowledge “about” doing mathematics; therefore, they 
belong to the domain of metaknowledge in mathematics. It is hypothesized that 
beginning teachers are often occupied with covering curriculum content, paying their 
attention to mathematical knowledge and skills: Competent teachers as selected in 
LPS by design would invest more time and effort in teaching of metaknowledge. The 
major questions guided this analysis of Japanese data are, What mathematical norms 
would surface in the lessons? How would the teacher introduce, negotiate or establish 
those norms during the lessons? In the future those questions will be investigated in 
LPS’s lesson data of other countries, too. 

THEORETICAL FRAMEWORK 
Scientists search for patterns, regularities, rules, or laws in the real world, and try to 
build causal theories, so as to be able to explain the phenomena in which they are 
interested; Understanding of causal relationships is useful for prediction and control. 
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Social sciences, likewise, study those patterns, norms, regularities, rules, or laws 
appearing in human activities (cultures), so that they can explain and understand 
human activities. Positivist sociologies are known to have assumed a “normative” 
conception of human action: It has three main components, “actors,” “rules,” and 
“situations,” and presumes that “actors know and follow rules in social situations” 
(Mehan & Wood, 1975, p. 74). This conception closely parallels that of natural 
phenomenon: “Physical objects follow natural laws in the physical world.” 

Ethnomethodologists had also studied people’s “rule” use in social situations, but 
they made strong attacks to the positivist’s normative conception. They claimed that 
actors, rules, and situations were mutually shaped in practice, in their terminology, 
“reflexively” related to each other (Mehan & Wood, 1975, pp. 75-76). 

Cobb and his colleagues (Yackel & Cobb, 1996; McClain & Cobb, 2001) introduced 
the notion of “norms” of classroom process as a device to interpret classroom 
processes and clarify how children’s beliefs and values develop. They identified 
several classroom social norms working in their project classroom, such as “Students 
were obliged to explain and justify their reasoning.” 

They also pointed out that there were norms specific to mathematics in the classroom, 
which they called “sociomathematical” norms. By using the prefix “socio-” they 
seem to be trying to stress that norms of mathematical activities depend on the 
community (Yackel & Cobb, 1996, p. 461). They contend that the mathematical 
activity has norms as constituent, and that norms are reflexively related to beliefs and 
values of mathematical activities. 

In this paper I will use a simpler word “mathematical” norm to refer to a norm in the 
mathematical activity, rather than “sociomathemtical” norm. This is because I 
consider that mathematics is intrinsically sociocultural activity as current 
philosophies of mathematics and sociocultural theories inform. The prefix “socio-” of 
the sociomathematical norm is redundant as far as we accept this understanding. 

For the framework of Yackel & Cobb (1996), the notion of sociomathematical norm 
appears to hold a central position of classroom mathematical activity: 

These sociomathematical norms are intrinsic aspects of the classroom’s mathematical 
microculture. Nevertheless, although they are specific to mathematics, they cut across 
areas of mathematical content by dealing with mathematical qualities of solutions, such 
as their similarities and differences, sophistication, and efficiency. Additionally, they 
encompass ways of judging what counts as an acceptable mathematical explanation. 
(Yackel & Cobb, 1996, p. 474) 

However, this strong emphasis on norms has a danger of leading to the positivist’s 
normative conception. The symbolic interactionism and ethnomethodology do not put 
norms on the central place in explaining social conduct: 

Rather than the major criterion people employ to regulate their own and other’s conduct, 
social norms are one of several forms of knowledge that people employ in their everyday 
conduct. ... It should not be thought, however, that norms are constantly implicated in 
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acts, nor that people behave by finding the appropriate norms that govern each and every 
social situation. (Hewitt, 1994, p.160) 

We should avoid the tendency to explain classroom processes with too much 
emphasis on abstract norms. Rather, as Waschescio (1998, p. 235) also pointed out, 
norms should be understood as cultural “tools,” which may or may not enhance 
mathematical activities. 

RESEARCH PROCESSES 
Unlike TIMSS 1999 Video Study, in LPS project, eighth-grade teachers were not 
randomly selected. Only those who were considered “competent” by local educators 
were selected. In addition, for each teacher, ten consecutive lessons were videotaped 
by three cameras (teacher camera, student camera, whole class camera). Students 
were interviewed by the stimulated-recall method using videotapes of the lessons.  

This paper analyzes one Japanese teacher’s ten consecutive lessons that were located 
in the unit of simultaneous linear equations, covering the linear combination method 
(“addition or subtraction method”), the substitution method, and part of application 
problems. The videotapes of the lessons, their transcripts, and the interview data were 
analyzed qualitatively. To let mathematical norms emerge from the data, any piece of 
the data that appeared to indicate beliefs on how to work on mathematics was coded, 
and the normative aspects behind those beliefs were repeatedly analyzed. 

The eighth-grade students had experienced huge amount of mathematical activities 
since entering schools. They must have been equipped with many mathematical 
norms, some of which would have been working when they participated in this 
research. This report analyzed only the ones that the teacher emphasized during the 
lessons because I was interested in how the teacher introduced or developed 
mathematical norms in the classroom. 

MATHEMATICAL NORMS IN THE CLASSROOM 
Norm 1: Efficiency 
The value of pursuing efficient ways of solving problems is generally shared among 
mathematicians. Many theories, theorems, and formulae in mathematics have been 
produced to improve efficiency. In this class also, the teacher encouraged the students 
to pursue efficient ways of solving simultaneous equations. 

In the first lesson (L1), the class discussed a simultaneous equations: 5x + 2y = 
9…(1)�-5x + 3y = 1 …(2). The teacher asked a student KORI write his solution on 
the board. He subtracted (2) from (1), obtaining 10x – y = 8. Solving it for x, he put it 
into (1), obtaining the value of y. Finally, he put the value of y into (1), and got the 
value of x. After KORI explained his solution to the class, the teacher asked to the 
class: “OK, any question? Can you understand? Well, do you have any thoughts as 
work out this question? Any impressions of this explanation?” (L1 10’54”)[This 
notation indicates that this talk occurred in 10 min. and 54 sec. from the start of L1]. 
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A student SUZU responded to it: “I think there is much simpler one.” SUZU wrote 
his solution on the board: He added (1) and (2), and got an equation without variable 
x. And he solved it for y, and got the value of y. He then put it into one of the given 
equations, and got the value of x. 

The students were then seeing two different solutions on the board. The teacher 
explained the reason why he asked KORI to write his solution on the board. The 
teacher intentionally chose KORI because he had observed at the previous lesson that 
KORI had solved the problem differently from the other students: “Almost, actually 
almost students have this opinion that I saw the class that we did yesterday. And in 
fact, the way which KORI did was different so that I wanted them to write on the 
blackboard” (15’27”). 

The teacher thought that by comparing solutions with different degrees of difficulties, 
students would be able to appreciate an easier one well: “I think you can know which 
point was difficult as you compare the difficult way and the easier one” (15’48”). 
Finally, the teacher concluded that SUZU’s solution was easier and better than 
KORI: 

Now, actually that way is much better than this way, when we compare the calculations 
so far. As a result, it is better to notice that this way, which SUZU wrote, is better, you 
know? (16’24”) 

He asked the students where they thought KORI’s solution was more complicated 
than SUZU. This question tried to elaborate inefficiency of KORI’s solution. 

Up to this point, the teacher seems to be putting more value on efficient solutions. 
The students seem to be encouraged pursuing as efficient solutions as they can. 
KORI’s solution seems to be devalued. This does not mean that inefficient solutions 
are useless, however. First, the teacher soon pointed out that KORI’s method gave the 
same result as SUZU. Second, he suggested that KORI’s method contained an 
important idea: “There are some important ideas in this [KORI’s] process, I think” 
(19’21”), which I discuss next. 

Norm 2: Even inefficient attempts could contain important ideas 
Efficiency is not the only value in pursuing mathematics. New ideas for developing 
new ways of solving problems are equally important in mathematics. Those could be 
discovered through numerous inefficient, or failed attempts as the history of 
mathematics shows. In this class, the teacher once gave an opportunity for the whole 
class to appreciate an important idea found in an “inefficient” solution. 

In L1 the teacher pursued “KORI’s idea,” and went into the idea of the substitution 
method, which was formally introduced at L7. This pursuit continued well into the 
next lesson L2. Thus, he seems to believe that even inefficient attempts could contain 
important ideas.  

In addition to this normative action, the teacher paid respect and care to both 
solutions. Devaluing one’s idea may hurt his or her feeling. When KORI received 
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negative opinions to his solution, the teacher encouraged KORI: “It’s OK. Don’t be 
depressed as it didn’t go well. It is better to get some comments, right? Don’t 
worry”(L1 13’42”). By pursuing KORI’s idea with the whole class, the teacher 
showed further care to the student whose idea had been devalued. 

Norm 3: In mathematics you cannot write what you have not shown to be true 
yet 
Mathematics is traditionally written in the deductive way: It must begin with axioms, 
definitions, or already proved theorems, and proceed logically. Therefore, you cannot 
write what you have not shown to be true yet. This norm is emphasized especially in 
the teaching of proof in geometry in Japan. 

In L3, the teacher reviewed the solution of a simultaneous equation: 3x + 2y = 23, 5x 
+ 2y = 29. As homework, he had asked the students to do checking of the solution. 
First, he asked UCHI to put up his work on the board (Figure 1). As a “different 
way,” he then asked KIZU to put up his work on the board (Figure 2). 

By putting x = 3, y = 7 into 3x + 2y = 23 and 5x + 2y = 29 

3X3 � 2X7 = 23 
   9 � 14 = 23 
        23 = 23 

5X3 � 2X7 = 29 
    15 + 14 = 29 
        29 = 29 

Figure 1: UCHI’s writing on the board. 

 

By putting x = 3, y = 7 into 3x + 2y = 23 

   3x3 + 2x7 
= 9 + 14 = 23 

By putting x = 3, y = 7 into 5x + 2y = 29 

    5x3 + 2x7 
= 15 + 14 = 29 

Figure 2: KIZU’s writing on the board. 

The teacher posed the class a question what differences they noticed between them. 
The students discussed the question with nearby students. After that, UCHI and 
KIZU explained their work in front. The teacher mentioned that most of the students 
did the same way as UCHI did. Reviewing the checking of the solution of linear 
equations studied at previous year, the teacher pointed out UCHI’s writing used an 
unconfirmed fact: 

This is just substituting x as three, and y as seven into the equation, right? It’s just 
substitution, right? It’s just substitution but this is already an equality, so the right side 
and the left side have to be equivalent, doesn’t it? But you can’t confirm that yet, can 
you? Right? Which means, if you write it this way, actually,[Writes on the 
blackboard]you’ve already shown that the right side and the left side are equivalent at 
this point. But you haven’t confirmed that yet (L3 36’28”). 

Here the teacher was trying to let the students be aware of a mathematical norm that 
if you write an equation in your solution, it means that you have already shown the 
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equality, or that in a mathematical explanation you cannot write what you have not 
shown to be true yet. 

Based on this norm, the teacher accepted KIZU’s way of checking, and devalued 
UCHI’s way. Again, the teacher did not forget reminding the students of the fact that 
most of the students did the UCHI’s way: You were not the only one who did wrong.  

Norm 4: Accuracy is more valued than speed 
In mathematics, establishing truths is one of the most important goals. In the history 
of mathematics, numerous mathematicians have strived to establish the truths of 
“conjectures.” Therefore, the accuracy of the solution is often more valued than the 
efficiency, though in the application of mathematics to the real world, efficiency is 
sometimes more valued. 

The teacher often emphasized to the students the importance of checking solutions by 
themselves. When writing a solution process, if one omits to write several 
intermediate steps, one could save time. But, then it may become harder to check the 
procedures. In L5, when the teacher was circling among the students, DOEN asked 
him if he could omit writing calculations in the solution process. The teacher advised 
him not to omit them: 

Oh, okay, maybe you should write down up to this expression. Because, when you want 
to check later, if you don’t have this part, you suddenly come up with this expression. For 
example, for this question, negative seventeen y equals to negative fifty-one. So, it will 
be easier if you have a clue for what you have done by then, but what if you don’t have 
it? I don’t think you have to write down the whole process you took, so, maybe this part 
can come off, but you had better leave the calculations part if you think about the 
checking. When you try to check, you have another way from always substituting it, but 
following what you have done. I think that’ll be easier for those situations. I recommend 
you to leave it for a while. In the future, it will be easy to do a sum in your head. [To 
Class]The thing is, it’s better to be able to do accurate calculations rather than quick 
calculations [the italics are added by the author]. (L5 26’31”)  

PATTERNS IN NORM DEVELOPMENT 
From the data discussed above, there seem to be at least three strategies the teacher 
used to develop mathematical norms. 

Using students’ work 
The teacher explains a norm by using students’ work as an exemplification of what it 
means to follow the norm.  

Since any norm has generality, it could be communicated by using only general terms 
like “in a mathematical explanation you cannot write what you have not shown to be 
true yet.” But the teacher in this study talked about norms almost always by using 
students’ work. In addition, the teacher did not use any artificial example: He always 
used actual work of students. 
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Making a comparison 
Sometimes the teacher lets the whole class to compare two of their work on the 
blackboard, and points out that one of them follows a norm properly, and the other do 
not (see Norms 1 and 3). Then, the teacher asks the students to follow the norm.  

This seems to correspond to “neriage,” which is an instructional strategy common in 
Japanese elementary schools. Japanese elementary teachers often ask children to 
present their own ideas or solutions on the blackboard. Then comparing their writing 
the children discuss what they notice of them. This process of comparative discussion 
is called “neriage.” (kneading). Since “neriage” accompanies comparative discussion, 
this is not just “sharing ideas” (cf. McClain & Cobb, 2001, p. 247). 

Being considerate of those students who did not follow a norm 
The teacher often discussed that a student’s work did not follow a norm. When doing 
it, he took careful measures to reduce psychological and social damage of the student. 

DISCUSSION 
The present paper identified three patterns in developing mathematical norms. The 
use of students’ work seems very important. Since a norm is about how to work on 
mathematics, the use of mathematical work is natural for communicating a norm. 
Also, since students are familiar with their work, the use of students’ work would 
facilitate students’ understanding of the norm. Comparison of students’ work would 
also be very helpful for students to produce clear understanding of the norm as well 
as their metacognition of their own work. Since pointing out students’ violation of a 
norm may hurt their feeling, being considerate of those students who did not follow 
the norm seems a hallmark of “competent” teachers. In the data on Norms 1-3, the 
teacher made considerate moves explicitly. For the data on Norm 4, he did so 
implicitly by not pointing out any student’s violation. 

These three patterns would be found in common strategies of introducing norms. For 
example, Voigt (1995) discusses an “indirect” way of introducing a norm about 
“what counts as an elegant mathematical solution.” The strategy highlights students’ 
elegant solutions. Thus, it uses students’ work, and has students compare their 
solutions implicitly. Also, avoiding explicit negative evaluation, the indirect way 
takes care of the feeling of those students who did not follow the norm. 

Studying norms requires understanding of relationships between various norms. A 
classroom in Japanese schools constitutes a community where a teacher and students 
stay together, negotiate meanings, share common goals, and shape their identities. It 
forms a “community of practice.” A community generates, maintains, modifies, or 
eliminates various kinds of patterns called norms, standards, obligations, rules, 
routines, and the like. Consider a mathematical norm that I identified above, “in 
mathematics you cannot write what you have not shown to be true yet.” This is 
consistent with a general moral “You should not tell a lie to people.” The 
mathematical norm seems to be backed or authorized by the social norm. That is why 
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the norm appeals to educators and students. Also, consider the teacher’s considerate 
treatment with unsatisfactory fulfilment of mathematical norm, which I identified. 
The teacher’s treatment seems consistent with a social norm such as “Any attempt to 
explain his or her thinking should be respected” (cf. McClain & Cobb, 2001, p. 245). 

Furthermore, norms may cause a dilemma. In fact, Norms 1 and 2 appear 
contradictory. Also, Norm 4 indicates that the efficiency is not always given the 
highest value. Which norm to use seems to depend on the context where participants 
are situated. As discussed at the theoretical framework, norms cannot prescribe 
participants’ behaviour. Norms are no more than useful cultural knowledge.  
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This research offers empirical evidence of the importance of supplying diverse 
symbolic representations in order to support concept development in mathematics. 
Graphical representation can be a helpful symbolic tool for concept development in 
the conceptual field of additive structures. Nevertheless, this symbolic tool has 
specific difficulties that are better dealt with when graphics are combined with 
symbolic-manipulative tools like building blocks. This combination showed to be 
effective in the context of a didactic sequence addressed to students in the beginning 
of elementary school level and aimed to support conceptual development in the 
domain of additive structures. It provides a theoretical backing for the proposal of 
using diverse symbolic representations in concept development in mathematics. 

The availability of symbolic representations is considered very helpful in conceptual 
building, since each particular representation (or symbolic model) allows different 
approaches of conceptual properties (Vergnaud, 1997; Nunes, 1997). In mathematical 
education, symbolic representation based on concrete artifacts has been considered 
specially beneficial, since these artifacts are supposed to allow a concrete-
metaphorical approach to abstract principles (Selva, 2003; Da Rocha Falcão, 1995; 
Gravemeijer, 1994; Bonotto, 2003; Bills, Ainley & Wilson, 2003). In fact, the 
representational power of concrete devices used as didactic tools is not inherent to 
these devices per se, but is construed in a social and meaningful context of use 
(Vygotsky, 2001; Meira, 1998). According to this theoretical approach, the 
“epistemic fidelity” of representational devices is an essentialist idea to overcome. 
Cartesian graphics are another symbolic representational support for dealing with 
quantities and their relations. This specific tool has a widespread use in and out of 
school context; it allows comparisons, demonstration of tendencies in a serial set of 
data, with the support of  visual-cognitive schemas, like “bigger/taller/longer/ is 
more”. Even though the use of graphics is supported by these perceptual schemas, 
this representational tool is not easy to be used by children at elementary school level 
(Selva & Da Rocha Falcão, 2002; Bell e Janvier, 1981; Ainley, 2000; Guimarães, 
2002). The present research tried then to propose a didactic approach of graphics at 
pre-elementary school level, in the general context of additive structures. This 
didactic effort covered two studies, as described below. 
The first study was a clinical-exploratory enquiry about the use of building bricks 
(like those developed by Lego - see illustration 1 below) as manipulative auxiliary 
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tools for graphics comprehension, these graphics being used afterwards as auxiliary 
tools in solving additive problems.  
Twelve pairs of six to seven year-old students (pre-elementary Brazilian public 
school level) were presented to a set of situations in which they were asked to use the 
building bricks by organizing them in piles to represent quantities. Each pair of 
children worked under the supervision of a teacher-researcher in a working-room at 
school, in a clinical basis, the complete set of activities being covered in seven sixty 
minutes long meetings. These activities are summarized below: 
1. Familiarization with the building blocks: free manipulation; counting of 
blocks, comparison of piles of blocks. 
2.   Representing quantities using blocks and solving additive problems:  

3.   Solving comparison problems: 

 
4.   Using different units of measure:  

     A            B         C            D 
 
 
 
 

Are there more chicks or frogs? 
How many more chicks do we need to have the same 
amount of chicks and frogs? 
How many animals are there in total? 
I was told that there were also some beetles in this set 
of 12 animals. How many beetles were there? 3 chicks       5 frogs       

Maria  Joana       

These piles represent the number of school days lost 
by Maria  (4 days) and Joana (6 days). 
Who lost more school days? How many school days 
has Joana lost more than Maria? 
Patrícia, another girl, has had 6 absences. We know 
she had 2 absences more than Luíza. How many 
absences has Luíza had?  

These piles of bricks  represent the 
quantities of absences of four students 
during the school-year. In the case of C, we 
used a double-brick that is equivalent to two 
single bricks. Can we say that B and C had 
the same amount of absences? 
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5.    Attributing different values to each brick in a pile:  

 
6. Using piles of bricks covered by opaque paper, in order to avoid 
direct visual inspection of the number of bricks per pile. On the 
other hand, subjects were introduced to the use of  a paper-device 
for measuring the number of bricks per pile, as shown in the 
illustration on the right: 
 
 

7. Using bar graphics in the place of piles of bricks: how many cows are there? What 
about birds? How many animals in total are there? How many chicks are there more 
than dogs? 
 
 
 
 
 
 
 
 
8. Thinking about tendencies in a bar graphic: the growing of a quantity (height in 
centimeters) during a period (weeks). What is probably going to happen in the fourth 
week? 

Each brick in the piles representing the 
pencils owned by Augusto and Pedro 
stands for 2 units. How many pencils 
does each boy have? 
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SUMMARY OF RESULTS OF STUDY 1 
Clinical analysis of the protocols produced by the pairs in cooperation with the 
researcher showed that they were able to perform all the activities proposed. 
Nevertheless, three aspects concerning the use of graphics were sources of difficulty:  

1. Summing up quantities represented by different columns of the graphic: in the 
protocol on the right, when asked about the sum of 
books (“livros”) and magazines (“gibis”), this pair 
decided to move the column of magazines to the 
top of the column of books, in order to see the 
total amount of books and magazines, but they 
represented the column of magazines with 6 units 
(instead of 8), in order to equalize the heights of 
the original column of magazines and the height of 
the transported column: 

2. Considering different baselines (starting points) 
to compare columns representing different 
quantities: this pair of children puts two columns 
to be compared in different starting points, what 
makes this comparison task inaccurate.  

 

3. Representing tendencies properly: this pair of children 
understood that the weight of a baby represented by the graphic 
on the right was increasing, but could not represent properly 
the continuation of the tendency (see the two last columns on 
the right) :  

 

On the other hand, subjects have shown to be able to move from representing 
quantities through building bricks to doing it through graphics, as suggested by their 
good performance in activity 7 (see description below). We decided then to test more 
effectively the didactic importance of building bricks combined to graphics as 
representational tools for problem solving in the conceptual field of additive 
structures. In this second study, the research question was the following: is the 
combination in a didactic sequence between concrete-manipulative representational 
tools (building bricks) and graphics really helpful in concept development in the 
conceptual field of additive structures? Or would the proposition of a set of activities 
concerning the use of graphics (without activities with bricks) allow students to reach 
an equivalent level of conceptual development? In order to answer this question, 
twenty-seven children at pre-elementary school level and thirty children in the first 
year of elementary level, with ages varying between 6 and 8 years, from a private 
elementary school in Recife (Brazil) took part in this second study. These children 
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were divided, in a controlled way, in three groups: Experimental group 1, submitted 
to learning activities covering building bricks and the use of graphics, as firstly 
explored in study 1; Experimental group 2, submitted to activities concerning only 
the use of graphics, without any exploration of manipulative tools like building 
bricks; finally, a Control group, submitted only to algorithmic activities involving the 
same numbers and operations explored by the experimental groups, but without any 
offer of didactic activity explicitly aimed at conceptual development (for ethical 
reasons children of control group and experimental group 2 were submitted to the 
same activity of experimental group 1 at the end of the research). The three groups 
were submitted to a same pre-test, post-test and delayed post-test (eight weeks after 
the teaching intervention). Pre and post-tests consisted of a set of thirty problems of 
combination and comparison, concerning the conceptual field of additive structures. 
These problems were presented under two forms: verbal-pictorial and graphic. Both 
forms and structure of problems were randomly presented. Examples of structure and 
form of representation of the problems are given below: 

 

 

 

 

 

 

 

 

 

 

 

Both pre and post tests were presented collectively, in the classroom. Problems were 
displayed with the aid of a data-show apparatus, and the children didn’t have access 
to any aid during tests. Each child had a booklet with reproductions of all the 
questions displayed, where he/she could write their answers.  

The didactic intervention proposed for the two experimental groups consisted of the 
assisted resolution of nine combination problems and eighteen comparison problems. 
Forms of presentation and structure of problems were randomized, the whole set of 
twenty-seven problems being presented in three subsets of nine problems in a daily 
session. Control group, as mentioned before, was invited to solve 27 additive 
operations in a session (making this calculation activity was a familiar task for them). 
Children of the three groups were assisted by teachers-researchers during the 

Structure of problem: comparison 

Form of presentation: verbal-pictorial 

Problem: A toy-shop has six teddy-bears and 
two teddy-rabbits. How many more teddy-
bears are there than teddy-rabbits? 

Structure of problem: combination 

Form of presentation: graphic 

Problem: A boy has little boats and 
trains. How many toys has this boy in 
all? 
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intervention session, their roles consisting mainly in explaining the activities and 
encouraging debate and argumentation inside the group.  

SUMMARY OF RESULTS OF STUDY 2 
Performance of children in the post-test was submitted to an analysis of variance 
having as sources of effect the school level (pre-elementary versus first elementary 
level) and the group (experimental 1 or 2 or control). A significant isolated effect of 
both school level (F=4.61, 1 d.f., p=.037) and group (F=9.552, 2 d.f., p=.000) was 
observed. Interaction between these two sources of interaction was not observed 
(Finter= .229, 2 d.f., p> .05). Children from the first elementary level performed 
significantly better than pre-elementary (difference confirmed by U Mann-Whitney 
test, U=78.5, one-tailed, p<.000). Children from experimental group 1 
(bricks+graphic) and experimental group 2 (graphic) performed significantly better 
than children from control group (Bonferroni test, p=.000 and p=.033, respectively), 
but these two experimental groups did not show significant difference when their 
performance in post-test was compared.  

A second analysis of variance was performed having the same factors of previous 
ANOVA as sources of effect, and performance in a delayed post-test as dependent 
variable. Results of this analysis was quite similar to those from previous analysis, 
since isolated effect of school level remains in the same way detected for post-test 
(UM-W = 99.5 , one-tailed, p<.000), as well as isolated effect of group, this time with a 
slight difference: significant difference was noticed only between experimental group 
1 and control group (Bonferroni test, p=.014). Interaction effects of both sources of 
variance analyzed were equally non-significant. A closer analysis of data showed that 
children from pre-elementary school level, experimental group 2 have had their 
performance lowered from post-test to delayed post-test, which was not the case for 
children from first elementary level, as suggested by the graphics below: 
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Graphic 1: Mean level of right answers in pre, post and delayed post-test, pre-
elementary level group.  
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Graphic 2: Mean level of right answers in pre, post and delayed post-test,  
first-elementary level group.  

CONCLUSIONS AND FINAL REMARKS 
Empirical evidences gathered here support the general theoretical hypothesis that 
symbolic representations are relevant in concept development in mathematics. More 
specifically, the combination of symbolic tools, including concrete-manipulative 
tools (like building bricks) as precursors of graphics showed to be effective in 
conceptual development in the conceptual field of additive structures. Nevertheless, 
representational aids are not completely effective by themselves, since previous 
development allows different outcomes for the same didactic tools, as shown by 
decreasing performance of pre-elementary students from post-test to eight-weeks 
later delayed post-test. As shown by data from study 2, younger students are those for 
whom the use of concrete-manipulative representational aids are specially relevant 
for concept development.  

Good didactic effects of the combination of symbolic representations, as shown by 
both experimental groups when performances at pre and post-tests are compared, do 
not allow theoretical interpretations in terms of the developmental precedence of 
concrete, more primitive representations over abstract, more developed ones. 
Representations allow ways of thinking about information, relations and models; 
diverse availability of representations can be helpful in concept development, as 
shown by these data. It does not mean that abstract is based upon concrete because of 
a “natural” order of acquisition concrete first, then abstract (as criticized by 
Vygotsky, 2001). On the other hand, the interest of combining familiar, practical 
knowledge with incoming new and formal knowledge, in a metaphorical way (Lakoff 
& Núñez, 2000) receives empirical support by the data presented here.  

References  
Ainley, J. (2000). Exploring the transparence of graphs and graphing. In Proc. 24th Conf. of 

the Int. Group for the Psychology of Mathematics Education (vol. 2, pp.2-9). Hiroshima, 
Japan: PME.  



Selva, da Rocha Falcão & Nunes 

 

4-168 PME29 — 2005 

Bills, L., Ainley, J. & Wilson, K. (2003). Particular and general in early symbolic 
manipulation. In Proc. 27th Conf. of the Int. Group for the Psychology of Mathematics 
Education (vol. 2, pp.105-112). Hawai, EUA: PME. 

Bonotto, C. (2003). Investigating the mathematics incorporated in the real world as a 
starting point for mathematics classroom activities. In Proc. 27th Conf. of the Int. Group 
for the Psychology of Mathematics Education (vol. 2, pp.129-136). Hawai, EUA: PME.  

Bell, A. & Janvier, C. (1981). The interpretation of graphs representing situations. For the 
Learning of Mathematics, vol.2, nº1, p. 34-42.  

Da Rocha Falcão, J.T. (1995). A case study of algebraic scaffolding: from balance scale to 
algebraic notation. In Proc. 19th Conf. of the Int. Group for the Psychology of 
Mathematics Education (vol. 2, pp. 66-73), Recife, Brazil: PME. 

Gravemeijer, K.P.E. (1994). Development and realistic mathematics education. Utrecht: CD 
B Press. 

Guimarães, G. L. (2002). Interpretando e construindo gráficos de barras. Unpublished 
doctorate thesis, Graduate Program in Psychology, Universidade Federal de Pernambuco, 
Brasil.  

Lakoff, G. & Núñez, R.E. (2000). Where mathematics comes from: how the embodied mind 
brings mathematics into being. New York, Basic Books. 

Meira, L. (1998). Making sense of instructional devices: the emergence of transparence in 
mathematical activity, Journal for Research in Mathematics Education, 29, 2, p. 121-
142. 

Nunes, T. (1997). Systems of signs and mathematical reasoning. In: Nunes, T. & Bryant, P. 
(Eds.) Learning and teaching mathematics: na international perspective. London: 
Psychology Press. 

Selva, A.C.V. (2003). Um experimento de ensino sobre a resolução de problemas de 
estrutura aditiva a partir de gráficos de barra. Procs. of 26ª Reunião Anual da ANPED – 
Santos, Brasil. 

Selva, A.C.V., Da Rocha Falcão, J.T. (2002). Understanding and using graphs: a didactic 
sequence for pre-school children. In Proc. 26th Conf. of the Int. Group for the Psychology 
of Mathematics Education (vol. 1, pp. 316). Norwich, UK: PME. 

Vergnaud, G. (1997). The nature of mathematical concepts. In Nunes, T., Bryant, P. (1997) 
Learning and teaching mathematics: an international perspective. London, Psychology 
Press. 

Vygotski, L.S. (2001). A construção do pensamento e da linguagem. São Paulo, Martins 
Fontes. 



 

 

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 169-175. Melbourne: PME.  4-169 
 

FROM THE EVERYDAY, THROUGH THE INAUTHENTIC, TO 
MATHEMATICS: REFLECTION ON THE PROCESS OF 

TEACHING FROM CONTEXTS 
Godfrey Sethole 

Tshwane University of Technology, South Africa  

 

This paper highlights an attempt by two grade 8 teachers, Bulelwa and Kevin, to 
draw in the everyday in the teaching of mathematics. Though located in different 
South African contexts and settings, both teachers tend to enable their learners’ 
access to mathematics by rendering the everyday inauthentic. I argue that 
inauthenticating the everyday is an unavoidable strategy by which the everyday 
considerations are silenced and not necessarily teachers’ lack of empowerment, as it 
is sometimes claimed. 

Within the mathematics education community, the relative merits and demerits of 
incorporating the everyday in mathematics remains one unresolved aspect. Whilst a 
number of studies cite the benefits of summoning the everyday in the teaching of 
mathematics (e.g., Skovsmose, 1994; Santos & Matos, 2002), others suggest that the 
everyday, when recruited into the mathematics, tends to conceal or draw some 
learners’ attention away from the latter (Cooper & Dunne, 2000). Therefore, the 
challenge of balancing access to mathematics with recruitment of the everyday 
remains one of the central themes regarding the mathematics-everyday relationship. 

The new South African education curriculum, Curriculum 2005 (C2005) has offered 
a definition of mathematics which makes the mathematics-everyday relationship 
important to reflect on. In its definition, C2005 advances an epistemological position 
of mathematics as a unique subject, “with its own symbols and language” and 
suggests the teaching of mathematics which incorporates the everyday. (DoE, 
2000:16) This definition presents a practical challenge for teachers with regard to, on 
the one hand making mathematics accessible and, on the other, recruiting the 
everyday.  

In this paper I draw on the experiences of two grade 8 teachers, Bulelwa and Kevin*, 
who were trying to implement C2005. I particularly highlight and reflect on the way 
the two negotiated the challenge of summoning the everyday in order to enable their 
learners’ access to the mathematics content. I will organize this discussion into four 
sections. In the second section I will provide the context in which the study took 
place. I will then, in the third and fourth sections respectively discuss the teachers’ 
motivations for drawing in the everyday and the way in which they moved from these 
contexts to the mathematics. The final section will provide some reflections and 

                                              
* Not the teachers’ real names 
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implications for the inclusion of the everyday in mathematics. I start this discussion 
though, by reflecting on studies and opinions expressed in relation to the tension 
between the everyday and mathematics.  

BLURRING THE MATHEMATICS-EVERYDAY BOUNDARY  
Bernstein offers, at a more general level, analytical tools by which it is possible to 
infer that recruitment of the everyday into mathematics entails ‘interfering’ with the 
boundary between these two discourses. Using a theoretical construct of 
classification, Bernstein’s (2000) argues that a discourse attains its uniqueness on the 
basis of the extent to which it manages to insulate itself from other discourses. He 
draws a distinction between weak and strong classification. “In the case of strong 
classification, each category has its unique identity, unique voice, its own specialized 
rules of internal relations. In the case of weak classification, we have less specialized 
discourses, less specialized identities, less specialized voices.” On the basis of this 
theory, one may infer that that there exists an epistemological boundary between 
mathematics and the everyday and incorporation of the everyday into mathematics 
renders mathematics difficult to identify.  

That mathematics looses its ‘voice’ in the face of the everyday contributes towards 
the suspicion that other researchers have on the value of including the everyday in 
mathematics. As Gellert, Jablonka and Keitel claim, keeping mathematics insulated 
from everyday realities is, for the majority of academic mathematicians, “the most 
powerful aspect of mathematics” (2001: 57). Pimm (1987) observes how the use of 
everyday English words some and all tend to confuse students’ interpretation of 
mathematics statements. In particular, students regarded the two terms as contrastive 
rather than inclusive; that is, some entails not all. Rowlands and Carson (2002) 
maintain that mathematics transcends cultural practices. The substance of arguments 
which discourage summoning the everyday is that access towards mathematics is 
thus made difficult for learners. Other researchers (Verschaffel & De Corte, 1997; 
Nyabanyaba, 2002) appreciate the challenge brought by the inclusion of the everyday 
in mathematics, nonetheless, they cautiously argue in favour of blurring the boundary 
between the two.  

Some studies have however highlighted the potential gains of drawing in the 
everyday in mathematics. For example, drawing from a socio-cultural perspective, 
Mukhopadhyay (1988: 135) outlines the way in which an activity on a popular doll 
Barbie helped learners realize that a real-life Barbie would be unnatural and unreal. 
Within the domain of ethnomathematics, Stillman (1995) has shown the way in 
which patterns made during the imprinting of tapa can be useful for teaching contents 
such as matrices vectors and sequences.  

The substance of the studies cited above hinges on the relative merits or demerits of 
blurring the epistemological boundary between the everyday and mathematics. In the 
next section I turn to one aspect of this particular study; the context. 
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CONTEXT OF THE STUDY 
This paper emerges out of a two-year national collaborative research project, the 
Learners’ Perspective Study (South Africa), in which I participated as a novice 
researcher. The overall intention of this study was to gain insights into learners’ 
perspectives about their experiences of mathematics lessons. Thirty eight Grade 8 
mathematics lessons in three different schools were observed and videotaped. For 
each lesson we (1) focused on the interactions of a particular group of learners (2) 
collected their written work and (3) interviewed at the end of the lesson. In addition, 
teachers shared their impressions about each lesson by completing a questionnaire. At 
the end of the data collection process at each school, each teacher was interviewed 
about various aspects of their lessons. All the three schools are situated in Kwazulu-
Natal province and are within a 30 km radius of the major city, Durban. Whilst 
differently resourced; all these schools had access to telephone services and 
electricity and were thus not a representative sample of schools in the province, the 
majority of whom have no access to these resourses ((Financial Mail, 02/1999 page 
25). For purposes of this paper I focus on two of the three teachers whose lessons I 
was more exposed to and in whose interview I was able to participate. 

Both Bulelwa and Kevin are regarded by their peers and learners in their respective 
schools as good teachers. Both hold senior positions in their respective schools and 
by South African standards they are amongst the better qualified teachers. In 
particular, Bulelwa holds a Barchelor’s degree in Science with Mathematics and 
Statistics majors, a Higher Diploma in education and a B.Ed (Honours). She teaches 
in Umhlanga High school which is situated in Umlazi township, a single race 
residential area for blacks. She has been a teacher for over ten years, though she had 
only been teaching at this particular school for just over one year. All the staff 
members and learners at this school were black. We observed 9 of Bulelwa’s 
mathematics lessons in a class of 38 learners. Kevin taught at Settlers High school 
situated in a predominantly white affluent suburban area. He held a four year 
teaching diploma and had been teaching at Settlers for twelve years. Kevin’s class 
had twenty-eight learners, three of whom were non-white. We observed fourteen of 
the grade 8 mathematics lessons at Settlers.  

Bulelwa and Kevin thus had different backgrounds both in terms of their educational 
tours, race and teaching settings. In the following section I focus on the way in which 
the two rationalized the use of the everyday.  

INTRODUCING THE EVERYDAY 
The mathematics content for all the nine lessons that we observed at Umhlanga was 
number patterns. It was only in five of these lessons that Bulelwa drew in the 
everyday. She used worksheets as teaching resourses. The everyday themes that she 
drew in were Ancient Societies’ practices (lessons 1 and 2), AIDS (lessons 7 and 8) 
and Flowers (lesson 9). For purposes of this paper, I will only focus on Bulelwa’s 
drawing in of the theme AIDS. Of the fifteen lessons we observed at Settlers, it was 
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five in which the everyday was drawn in. Kevin, unlike Bulelwa, did not plan a 
lesson around a particular theme, instead, he used word problems. Some of these 
word problems drew from the everyday realities. For this paper I will focus on the 
experiences of the first lesson. 

Bulelwa’s rationale for including the everyday: The first paragraph in the 
worksheet that Bulelwa used for lesson 7 provided a rational for the incorporation of 
the everyday to the students. It particularly made reference to the relationship 
between ‘mathematics and the natural environment’. The rationale for blurring the 
boundary between mathematics and the everyday was rooted in the utilitarian value 
of mathematics for everyday experiences. In other words, Bulelwa presented 
mathematics as a tool to engage the everyday.  

Mathematicians have studied number patterns for many years. It was discovered that 
there are links between mathematics and our natural environment and sometimes 
events occurring in our societies. For this reason an understanding of algebra is 
central to using mathematics in setting up models of real life situations. (Worksheet 
5, lesson 7 & 8) 

 In setting up the scene for lesson 7, Bulelwa (T) reiterated the significance of 
mathematics with specific reference to engaging or solving the escalation of AIDS. 
She told learners,  

7 T:… we are still looking at the number patterns but now we are trying to relate what is 
happening in mathematics classes to real life situations. We are actually trying to see 
whether what you learn in mathematics classes is actually relevant… Do they help 
mathematicians to figure out what is happening in real life? So I picked that one where 
mathematicians are trying to use mathematics to solve real life problems. Problem which 
is actually epidemic… which is big for South Africa. We are having so many people 
dying of AIDS.  

The AIDS context had an emotional appeal to this classroom community because of 
the proximity of the school to an area where an AIDS activist Gugu Dlamini was 
stoned to death for declaring her HIV-positive status.  

Kevin’s rationale for the everyday: In his written reflection about the first lesson, 
Kevin indicated that his use of word problems was motivated by a desire to illustrate 
connections between ordinary English and mathematics equations. On the basis of the 
worksheet he used, ‘ordinary English’ referred to tasks whose wording referenced 
both the everyday contexts like the price of chocolate and mathematics context like 
the area of a rectangle.  In setting the scene for the lesson the first lesson, he (K) said 
to the learners:  

32: K: ….. Okay what we’re doing now we’re doing equations and often you want to 
know how you can use something in, in maths, in real life. So can you remember the 
problems I was giving you; things like three CDs cost you three hundred and sixty Rand 
what does one cost? Okay that’s a real life situation you use in equations. 
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One purpose of the lesson, according to Kevin, was to illustrate the value of 
‘equations’ in real life settings. He, like Bulelwa, argued that there was a place for 
mathematics in the learners’ lived experiences. To illustrate this point, he made up an 
example by making use of one of the learners, Kelley. He asked for Kelley and her 
sister’s age. On establishing that Kelly was thirteen and her sister fifteen, he phrased 
this question.  

38 K: Okay if we were to say we didn’t know you’re thirteen and she is fifteen. Okay 
Kelly’s age and her sister’s age add up to twenty-eight and if Kelly is two years younger 
than her sister how old is Kelly? Okay something like that. Okay, out of your minds goes 
thirteen and fifteen jot down for me on how you would work that out. (At this stage 
learners take their books out and begin working the sum out). 

Bulelwa and Kevin thus drew in contexts which were qualitatively different. The 
AIDS context was not benign; it had the potential to spark different types of non-
mathematical arguments and discussions. Kevin, on the other hand, used a context 
which was not as emotional. In addition, the visibility of the context in Bulelwa’s and 
Kevin’s class differed. Bulelwa followed up a theme of AIDS over two lessons whilst 
Kevin mentioned a range of contexts in one lesson. Therefore, Kevin’s learners spent 
relatively less time reflecting on the given contexts. 

Despite these differences, both Kevin and Bulelwa saw the value of blurring the 
boundary between the mathematics and the everyday. They made public to their 
learners, the potential of a dialogue between mathematics and the everyday. 
Mathematics, as they presented the subject, stood in an “open relationship” with the 
other realities (Bernstein, 2001:10). Having blurred the mathematics-everyday 
boundary, the next section focuses on how the two attempt to make mathematics 
visible.  

FROM THE EVERYDAY TO MATHEMATICS 
Bulelwa handed out a worksheet, in lesson 7, which showed two tables (Figure 1). 
The first table depicts the rate of increase in the world population (in millions) and 
the second shows world increase in the number of AIDS sufferers (in millions). 

The first question required learners to ‘describe the pattern of population increase 
every 40 years’ and the second required them to ‘describe the pattern of increasing 
AIDS sufferers’. Even though world population trends and the rate of increase of 
AIDS sufferers are real world phenomena, the figures in the tables are not. The use of 
these figures renders these contexts inauthentic. Yet, the use of these figures also 
enable learners to notice a ‘describable’ pattern. A pattern which fit the exponential 

functions, f (n) = 3.2
n−1960

40 (n�1960) and 199727.16 −nx (n�1997) for the world population 
growth and rate of increase in AIDS sufferers respectively. The use of genuine 
figures would generate a messy data which learners may have found difficult to 
describe. 
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Year 1960 2000 2040 2080 2120 

World population growth 3 000 6 000 12 000   

 

Year 1997 1998 1999 2000 2001 

World increase in the number of 
AIDS sufferers 

16.7 33.4 66.8   

Figure 1: Two tables in Bulelwa’s worksheet 

The first task from the worksheet that Kevin asked learners to engage made reference 
to children’s ages. It stated that: “John’s age is p years. Write down in terms of p, 
Sue’s age if Sue is 10 years older than John”. Whilst referencing names of real 
people; this context provides age as p, not a useful indicator of a person’s age in real 
life settings. The use of p thus renders the task inauthentic from an everyday’s 
perspective. However, the use of p also enables the introduction of algebraic 
expressions and then equations. Secondly, Kevin’s use of Kelley (referred to earlier) 
as a person whose age was to be calculated exemplified the inauthenticity of the 
activity. Kelley had just highlighted her age as thirteen, it was therefore not 
meaningful, from an everyday perspective, to embark on a calculation of her age.   

In both cases, having recruited the everyday, Bulelwa and Kevin silence it by pruning 
it off some its attributes. Pruned off its real life attributes, the everyday becomes 
inauthentic, a “strange real world” which is no more than a see-through into the 
mathematics content (Cooper & Dunne, 2000). So, access to mathematics is achieved 
through modifying and thus inauthenticating the everyday contexts. 

CONCLUSION 
This paper provides a practical challenge faced by two teachers of embracing the 
everyday whilst at the same time enabling access to mathematics. In embracing the 
everyday, Bulelwa could refer to AIDS as an epidemic as a result of which many 
people are dying. Non-mathematical discussions about the “traditional practices” and 
sexual habits that promote the transmission of AIDS could find legitimacy within this 
context (Sethole, Adler & Vithal, 2002). Similarly, Kevin could reference non-
mathematical aspects about Kelley; her age and her sister’s. However, engagement in 
these discussions conceals distinctions between mathematics and the everyday. 

There has been much and substantiated criticisms regarding inauthenticating of the 
contexts by Bulelwa and Kevin. At a moral level, Bulelwa’s figures about AIDS 
sufferers can be regarded as misleading. Kevin’s expectation that learners should 
calculate Kelley’s age, which she publicly announced in the classroom may seem 
senseless. My view is that expecting access to the formal structure of mathematics 
through the everyday (as does C2005) needs to be seriously reflected on. However 
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noble, the possible limitations and pedagogic challenges of this expectation needs 
highlighting. How do teachers move away from the everyday as an object of 
reflection to the everyday as a see-through towards the mathematics? Is it possible 
that teachers can enable access to mathematics without rendering the everyday as see-
throughs?  

Inauthenticating the everyday in order to access mathematics seems to me more a 
function of wishing to access mathematics through meaningful contexts than the 
teachers’ ability or inability to recruit the everyday in their teaching.  
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Data reported in this paper is part of a larger study which explored form five (14 to 
16 year olds) students’ ideas in probability and statistics. This paper presents and 
discusses the ways in which students made sense of task involving independence 
construct obtained from the individual interviews. The findings revealed that many of 
the students used strategies based on beliefs, prior experiences (everyday and school) 
and intuitive strategies such as representativeness. While more students showed 
competence on coin tossing question they were less competent on the birth order 
question. This could be due to contextual or linguistic problems. The paper concludes 
by suggesting some implications for further research.  

INTRODUCTION 
Over the past years, there has been a movement in many countries to include 
probability and statistics at every level in the mathematics curricula. In western 
countries such as Australia (Australian Education Council, 1991), New Zealand 
(Ministry of Education, 1992) and the United States (Shaughnessy & Zawojewski, 
1999) these developments are reflected in official documents and in materials 
produced for teachers. In line with these moves, Fiji has also produced a new 
mathematics prescription at the primary level that gives more emphasis to statistics at 
this level (Fijian Ministry of Education, 1994). Clearly the emphasis is on producing 
intelligent citizens who can reason with statistical ideas and make sense of statistical 
information.  

Despite its decade-long presence in mathematics curricular, statistics is an area still in 
its infancy. Research shows that many students find probability difficult to learn and 
understand in both formal and everyday contexts (Barnes, 1998; Fischbein and 
Schnarch, 1997; Fischbein, Nello, & Marino, 1991; Shaughnessy & Zawojewski 
(1999). We need to better understand how learning and understanding may be 
influenced by ideas and intuitions developed in early years. 

Concerns about the importance of statistics in everyday life and a lack of research in 
this area determined the focus of my study. Overall, the study was designed to 
investigate the ideas form five students have about statistics and probability. This 
paper presents and discusses data obtained from the probability task involving 
independence construct. Prior to discussing the details of my own research, I will 
briefly mention the theoretical framework and some related literature.  
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THEORETICAL FRAMEWORK 
Much recent research suggests that socio-cultural theories combined with elements of 
constructivist theory provide a useful model of how students learn mathematics. 
Constructivist theory in its various forms, is based on a generally agreed principle 
that learners actively construct ways of knowing as they strive to reconcile present 
experiences with already existing knowledge (von Glasersfeld, 1993). Students are no 
longer viewed as passive absorbers of mathematical knowledge conveyed by adults; 
rather they are considered to construct their own meanings actively by reformulating 
the new information or restructuring their prior knowledge (Cobb, 1994). This active 
construction process may result in alternative conceptions as well as the students 
learning the concepts intended by the teacher.  

Another notion of constructivism derives its origins from the work of socio-cultural 
theorists such as Vygotsky (1978) and Lave (1991) who suggest that learning should 
be thought of more as the product of a social process and less as an individual 
activity. There is strong emphasis on social interactions, language, experience, 
catering for cultural diversity and contexts for learning in the learning process rather 
than cognitive ability only. Mevarech and Kramarsky (1997) claim that the extensive 
exposure of our students to statistics outside schools may create a unique situation 
where students enter the mathematics class with considerable amount of knowledge. 
This research was therefore designed to identify students' ideas, and to examine how 
they construct them.  

PREVIOUS RESEARCH ON PROBABILITY  
A number of research studies from different theoretical perspectives seem to show 
that students tend to have intuitions which impede their learning of probability 
concepts. Some prevalent ways of thinking which inhibit the learning of probability 
include the following:  

• Representativeness: According to this strategy students make decisions 
about the likelihood of an event based upon how similar the event is to the 
population from which it is drawn or how similar the event is to the process 
by which the outcome is generated (Tversky & Kahneman, 1974). For 
instance, a long string of heads does not appear to be representative of the 
random process of flipping a coin, and so those who are employing 
representativeness would expect tails to be more likely on subsequent tosses 
until things evened out. Of course, the belief violates independence construct 
which is a fundamental property of true random sampling. 

• Equiprobability bias: Students who use this bias tend to assume that random 
events are equiprobable by nature. Hence, the chances of getting different 
outcomes, for instance, three fives or one five on three rolls of a die are 
viewed as equally likely events (Lecoutre, 1992).  

• Outcome orientation: Falk and Konold (1992) point out that the fundamental 
difference between formal and informal views of probability concerns the 
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perceived objective in reasoning about uncertainty. Formal probability is 
mostly concerned with deriving measures of uncertainty, or answering the 
question How often will event A occur in the long run? On the other hand 
what most people want is to predict what will occur in a single instance to 
answer the question Will A occur or not? Thus, the goal in dealing with 
uncertainty is to predict the outcome of a single next trial rather than to 
estimate what is likely to occur at the series of events. Konold (1989) refers 
to this perspective as the outcome approach. 

• Beliefs: Research shows that a number of children think that their results 
depend on a force, beyond their control, which determines the eventual 
outcome of an event. Sometimes this force is God or some other force such 
as wind, other times wishing or pleasing (Amir and Williams, 1994;; Truran, 
1994).  

• Human Control: Research designed to explore children’s ability to 
generalise the behaviour of random generators such as dice and spinners 
show that a number of children think that their results depend on how one 
throws or handles these different devices (Shaughnessy & Zawojewski, 
1999; Truran, 1994). 

Whether one explains the reasoning in probabilistic thinking by using naive strategies 
such as representativeness and equiprobability or by deterministic belief systems such 
outcomes can be controlled, the fact remains that students seem very susceptible to 
using these types of judgements and in some sense all of these general claims seem to 
be valid. Different problems address different pieces of this knowledge.  

OVERVIEW OF THE STUDY 
Sample. The study took place in a co-educational private secondary school in Fiji. 
The class consisted of 29 students aged 14 to 16 years. According to the teacher, 
none of the students in the sample had previously received any in-depth instruction in 
statistics. Fourteen students were chosen from the class, the criteria for selection 
included gender and achievement.  

Task. The baby (Item 1A) and the coin questions (Item 1B) were used to explore 
students' understanding of the independence concept and responses demanded both 
numerical and qualitative descriptions. 

Item 1A: The baby problem       
The Singh family is expecting the birth of their fifth child. The first four children were 
girls. What is the probability that the fifth child will be a boy? Please explain your 
answer.  

Item 1B: Coin problem 
 (i)  If I toss this coin 20 times, what do you expect will occur?  

(ii)  Suppose that the first four tosses have been heads. That's four heads and no tails so 
far. What do you now expect from the next 16 tosses? Why do you think so?  
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Interviews. Each student was interviewed individually by myself in a room away 
from the rest of the class. The interviews were tape recorded for analysis. Each 
interview lasted about 40 to 50 minutes.  

RESULTS  
This section describes the patterns of thinking identified in response to the two 
questions. Extracts from typical individual interviews are used for illustrative 
purposes. Throughout the discussion, I is used for the interviewer and Sn for the nth 
student.  

A few students in my study believed in the independence of events, that is, that each 
successive trial is independent of the previous trials. For example, Student 12 was 
able to use the independence concept for both questions. With respect to the baby 
problem, she explained that since the fifth child could be a boy or a girl, the chance 
of getting a boy or a girl was 50%. For item 1B, she explained that since getting 
heads or tails were equally likely, she would expect about 8 heads and 8 tails.  

Prior beliefs and experiences played an important role in the thinking of many 
students. On the baby problem, four students related to their religious beliefs and 
experiences. The students thought that one can not make any predictions because the 
sex of the baby depends on God. The religious aspect is revealed in the response of 
Student 17 who explained:  

We can not say that Mrs Singh is going to give birth to a boy or a girl because whatever 
God gives, you have to accept it. 

It must be noted that the birth order problem is equivalent to the coin question (Item 
1B). However, when a different context is introduced, students are comfortable 
thinking deterministically. For instance, Student 2 was considered statistical on Item 
1B but she used the religious perspective on Item 1A. Student 3 tended to draw upon 
experiences gained from other subjects. She explained that the outcome was managed 
by the parents and tried to relate her previous knowledge of biology in responding to 
Item 1A. 

Two students in the present study thought that the results depend on individual 
control (Item 1B). The students said that people can control the outcome by throwing 
it in a certain direction or throwing it fast. This is reflected in the following interview: 

S20: Eh ... it will have 5 heads and 15 tails. 

I:  Why do you think that there will be 5 heads and 15 tails? 

S20: Eh ... because when you throw each time it comes head or tail 

I:  But you said more tails. Why do you think you will get more tails? 

S20: I will throw the coin in one direction so I will get HHH, when I change in 
another direction I will get all tails.It depends on how fast you throw and 
how fast the coin swings. 
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Some students based their reasoning on inappropriate rules and intuitions such as 
representativenes. Two students applied the n(E)/n(s) rule inappropriately. For 
example, with respect to Item 1A, student 25 said,  

Chance will be one upon five. Four girls and one to be born; don’t know whether it will 
be a boy or a girl. Like in dice there is one side and the total is six but one is the chance 
eh.  

Although the students had learnt finding probabilities using sample space, they 
applied this rule inappropriately. The data revealed that while two students used the 
representativeness strategy for the baby problem, six used it for the coin problem. 
Students using the representativeness strategy on Item 1B thought that there would be 
a balancing out so they would expect more tails. Even repeated probing did not 
produce any probabilistic thinking.  

One student drew upon the equiprobability bias on the coin problem. The student 
reasoned that if one tosses a coin 20 times, one expects to get 10 heads and 10 tails 
because one does not know which side will fall. Hence equal chance should be given 
to both events. In three cases, students could not explain their responses. For 
instance, Student 9 said that there will be equal number of heads and tails but could 
not explain her reasoning. 

DISCUSSION 
This section first discusses the results in a broader context. Then limitations of the 
study are discussed and suggestions made for directions for further research.  

Probability: A broader Context 
The results show students think that outcomes on random generators such as coins 
(Item 1B) can be controlled by individuals. The general belief is that results depend 
on how one throws or handles these different devices. The finding concurs with the 
results of studies by Amir and Williams (1994), Shaughnessy and Zawojewski (1999) 
and Truran (1994). It must be noted that the students using the control strategy in this 
study were boys. One explanation for this could be that boys are more likely to play 
sports and chance games that involve flipping coins and rolling dice to start these 
games. 

Although this study provides evidence that reliance upon control assumption can 
result in biased, non-statistical responses, in some cases this strategy may provide 
useful information for other purposes. For example, student 20’s knowledge of 
physics may have been reasonable. The responses raise further questions. Is there a 
weakness in the wording of this question in that it is completely open-ended and does 
not focus the students to draw on other relevant knowledge? Perhaps, including cues 
such as “fair” in the item would have aided in the interpretation of this question. Are 
the students aware of the differences in probabilistic reasoning compared with 
reasoning in other contexts? Although in probability theory we work with an 
idealised die or coin, deterministic physical laws govern what happens during these 
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trials. It does not make sense to say that the coin has a probability of one-half to be 
heads because the outcome can be completely determined by the manner in which it 
is thrown. Additionally, a good Bayesian statistician might not give 50/50 heads/tails 
as the likely outcome after a run of heads with a particular coin. Such a person might 
start looking at prior experience to inform a particular situation.  

With respect to students' beliefs, experiences and learning, it is evident that other 
researchers have encountered similar factors. Amir and Williams (1994) note that 
children's reasoning appeared to be related to their religious, superstitious and causal 
beliefs. In some respects, the findings of the present investigation go beyond those 
discussed above. The findings demonstrate how students' other school experiences 
also influence their construction of statistical ideas. At times the in-school 
experiences appear to have had a negative effect on the students. An example of 
negative effect that arose from other school experiences was the student who was 
deeply convinced that the father decides the sex of the baby. Gal (1998) suggests that 
such responses constitute what students know about the world, they cannot be judged 
as inappropriate until a students’ assumptions about the context of the data are fully 
explored. For instance, the students confronted with the problem concerning birth 
order (Item 1A) may not know which model is appropriate. The statistical model 
implies that both events are equally probable but the student does not know whether 
biologically there is some tendency for families to have offspring of a particular 
gender or the end result of boys to girls should be equivalent. We know now that 
giving birth to boys and girls is not random but affected by things like times of 
conception and genetic dispositions of the parents. Although the outcomes are 
independent across births, there are rare occasions of identical or fraternal twins and 
triplets. In short it is not possible to determine the nature of the error unambiguously 
on the basis of the students’ response.  

In the study described here, background knowledge, that is often invoked to support a 
student’s mathematical understanding, is getting in the way of efficient problem 
solving. Given how statistics is often taught through examples drawn from “real life” 
teachers need to exercise care in ensuring that this intended support apparatus is not 
counterproductive. This is particularly important in light of current curricula calls for 
pervasive use of contexts (Meyer, Dekker, & Querelle, 2001; Ministry of Education, 
1992) and research showing the effects of contexts on student’ ability to solve open 
ended tasks (Cooper & Dunne, 1997; Sullivan, Zevenbergen, & Mousley, 2002). 
Conversely, in spite of the importance of relating classroom mathematics to the real 
world, the results of my research indicate that students frequently fail to connect the 
mathematics they learn at school with situations in which it is needed. For instance, 
Student 2 used statistical principles on Item 1B whereas on Item 1 she refereed to her 
religious convictions. The findings support claims made by Lave (1991) that learning 
for students is situation specific and that connecting students’ everyday contexts to 
academic mathematics is not easy.  
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Limitations 
It must be acknowledged that the open-ended nature of the tasks and the lack of 
guidance given to students regarding what was required of them certainly influenced 
how students explained their understanding. The students may not have been 
particularly interested in these types of questions as they are not used to having to 
describe their reasoning in the classroom. Some students in this sample clearly had 
difficulty explaining explicitly about their thinking. Another reason could be that 
such questions do not appear in external examinations. Although the study provides 
some valuable insights into the kind of thinking that high school students use, the 
conclusions cannot claim generality because of a small sample. Additionally, the 
study was qualitative in emphasis and the results rely heavily on my skills to collect 
information from students. Some directions for future research are implied by the 
limitations of this study.  

Implications for Further Research  
One direction for further research could be to replicate the present study and include 
a larger sample of students from different ethnic backgrounds. Secondly, this small 
scale investigation into identifying and describing students’ reasoning from 
constructivism has opened up possibilities to do further research at a macro-level on 
students’ thinking and to develop explicit categories for responses. Such research 
would validate the framework of response levels described in literature (Watson & 
Callingham, 2003) and raise more awareness of the levels of thinking that need to be 
considered when planning instruction and developing students’ statistical thinking. 
The place of statistics has changed in the revised mathematics prescription. Statistics 
appears for the first time at all grade levels (Fijian Ministry of Education, Women, 
Culture, Science and Technology, 1994). Like the secondary school students, primary 
school students are likely to resort to non-statistical or deterministic explanations. 
Research efforts at this level are crucial in order to inform teachers, teacher educators 
and curriculum writers. 
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APPROACHES INTO TEACHER EDUCATION -  
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Research shows that most training programs aimed at qualifying pre-service teachers 
(PST) have a slight influence on their beliefs regarding learning and teaching. In 
order to understand the reasons of this phenomenon we asked our PST to write a 
portfolio while experiencing learning via a computerized-project-based-learning 
(CPBL) approach. Analysis of the PST's portfolio raised two main possible reasons 
for the stagnation of their beliefs: a lack of sufficient success in achieving expected 
goals, and an inadequate synchronization between the experience of innovative 
approaches and their implementation. In this paper we present a case study of one of 
our PST written reflections, in which those two issues are addressed.  

INTRODUCTION 
During the last two decades there have been intensive calls for implementing reforms 
in mathematics education (e.g., NCTM’s standards, 2000). No doubt teachers should 
be the ones that put the innovative approaches into practice. Unfortunately real 
modifications are not as widespread as was expected. Various explanations can be 
suggested in order to clarify this phenomenon of “stagnation”. One of the 
explanations might be related to what Desforges (1995) had found in his review of 
literature: teachers are not reflective; they are satisfied with their practices and do not 
tend to question educational processes. Moreover, they often disregard data that is 
inconsistent with their beliefs and practice and tend to avoid new experiences. 
Instead, they prefer to stick to only those practices that match their existing system of 
believes. Desforges (ibid) findings regarding the characteristics of in-service teachers 
raise two main questions: the first one concerns the underlying reasons of such 
behavior, and the second one relates to implication on teacher education. Since we 
mainly work with pre-service teachers (PST), we were curious about the latter 
question. It seems that the calls for reform disregard the difficulties experienced 
teachers might have while trying to adjust themselves to new settings. We were 
wondering whether experiencing innovative approaches while PST are in their 
process of training, constructing their pedagogical content knowledge, might raise 
their ability to adjust to innovative situations.  

In this paper we describe our experience with PST of mathematics, in which we 
attempted to demonstrate the benefits of inquiry-based learning as an example of 
innovative approach. Though we succeeded in exhibiting some of the advantages of 
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that method, still we had to confront several obstacles. As follows we explain some 
of their sources and nature. 

BACKGROUND  
Our study examined difficulties PST had in adjusting to an inquiry-based 
environment aimed at introducing some innovative didactical approaches for teaching 
junior high-school mathematics. In this paper we discuss some of the PST's dilemmas 
that might be attributed to the need for creating a new system of beliefs, which is not 
consistent with the existed one. The theoretical framework of this paper focuses on 
the meaning of 'system of beliefs', and on social and sociomathematical norms, which 
are among the constituents of such a system.  

System of beliefs. Beliefs are basic assumptions regarding perceptions and attitudes 
towards a certain reality. A System of beliefs does not require external approval 
(Tillema, 1998). The influence of beliefs is strongest on the meanings which people 
attribute to occurrences, and on activities they choose to carry out. PST hold beliefs 
regarding various aspects relating to teaching and learning, among them: their 
teaching role, students' learning processes, curriculum suitability, and so forth (Van-
Dijk, 1998). Their beliefs reflect their values in terms of what is "desirable". As a 
result of thousands of hours in an "apprenticeship of observation", which inspire 
school students' perception regarding teaching and learning (Lortie, 1975), PST begin 
their training with explicit ideas regarding relevant issues (Tilema, 1995). For 
example, many PST believe that teachers supply knowledge to their students, and 
learning means memorizing the contents (Richardson, 1996). Their memories of 
themselves as learners influence their expectations of their future students as well as 
their views regarding "proper" teaching strategies. The image they possess regarding 
"good teaching" relates to the kind of teacher they see themselves becoming. As a 
consequence PST tend to exhibit conservative teaching, replicating their own 
teachers. Research (e.g. Kagan, 1992) suggests that PST's personal beliefs and 
images are not affected by their training practice and generally remain unchanged. 
They tend to utilize the information they are exposed to during their training mainly 
to strengthen their existing beliefs and perceptions. That means that the contents that 
are being presented in teacher education programs are subject to interpretations 
according to PST's pre-existing beliefs (Tillema, 1998). Those interpretations also 
affect their performance in class (Kagan, 1992), since they rely on their own 
subjective theories of teaching or on what they believe will work in class. Moreover, 
many PST expect their educators to tell them explicitly how to teach. Some expect to 
learn from their own experience. Others believe that teaching is an activity that every 
one can do and there is little need for training (Calderhead, 1992).  

Social and sociomathemtical norms. Norms are among the constituents of system of 
beliefs. The theme of classroom norms has been largely discussed in recent years. 
Yackel and Cobb (1996) distinguished between general classroom social norms (for 
example: the need to explain or justify) and norms that are specific to students' 



Shriki & Lavy 

 

PME29 — 2005 4-187 

mathematical activities, termed as sociomathematical norms (for example: what 
counts as mathematically efficient, mathematically sophisticated, mathematically 
elegant, acceptable mathematical explanation and justification). The teacher's and the 
students' beliefs serve as key factors for negotiating classroom norms. The teacher-
students verbal interactions provide the opportunity to negotiate the 
sociomathematical norms, which are continually regenerated and modified, and 
might differ substantially from one classroom to another. 

METHODOLOGY 
The research data included: (a) Transcripts of videotapes of all the class sessions;  
(b) Two written questionnaires; (c) Students' portfolios that included a detailed 
description of the various phases of the project and reflection on the process;  
(d) Informal interviews. During the class sessions the students raised their questions 
and doubts, asked for their classmates’ advice, and presented their works.   

Looking for phenomenological categories in the PST's portfolios, we applied 
inductive analysis (Goetz & Lecompte, 1984). We studied all the students' utterances 
through the lenses that concerned their perception regarding various issues relating to 
teaching and learning.  

THE STUDY  
The Context. In this paper we present a case study of one PST who participated in an 
annual course named "Didactical foundations of mathematics instruction". This 
course focuses on theories and didactical methods implemented in teaching and 
learning geometry and algebra in junior high-school. One of the main didactical 
methods discussed in this course is learning via Project-Based-Learning (PBL). PBL 
is a teaching and learning strategy that involves students in complex activities, and 
enables them to engage in exploring important and meaningful questions through a 
continuous process of investigation and collaboration. This process includes posing 
problems, asking questions, making predictions, designing investigations, collecting 
and analyzing data, sharing ideas, and so on (Krajcik, Czerniak and Berger, 1999). 
We termed the approach used in the current study as Computerized-Project-Based-
Learning (CPBL) since it rested heavily on the use of computer software. Integrating 
computer software into the setting of PBL has many benefits. It enables the students 
to make a lot of experiments, observe stability/instability of phenomena, state and 
verify/refute conjectures easily and quickly, and so on (Marrades & Gutierrez, 2000).   

The Subjects. 25 college students (8 male and 17 female students) in their third year 
of studying towards a B.A. degree in mathematics education participated in the 
research. The discussed course was the first didactical course they had taken.  

In parallel the PST began their practice in school teaching. In the time they were 
working on the CPBL they mainly observed experienced teachers. 
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The CPBL. In order to clarify to the PST what we mean by CPBL and what its 
phases are, we exhibited a ready-made project which was based on Morgan’s 
theorem (Watanabe, Hanson & Nowosielski, 1996). The PST had experienced CPBL, 
which included the following phases (Lavy & Shriki, 2003): (1) Solving a given 
geometrical problem, which served as a starting point for the project; (2) Using the 
"what if not?" strategy (Brown & Walters, 1990) for creating various new problem 
situations on the basis of the given problem; (3) Choosing one of the new problem 
situations and posing as many relevant questions as possible; (4) Concentrating on 
one of the posed questions and looking for suitable strategies in order to solve it; (5) 
Raising assumptions and verifying/refuting them; (6) Generalizing findings and 
drawing conclusions; (7) Repeating stages 3-6, up to the point in which the student 
decided that the project has been exhausted.  

Experiencing the processes that are involved in CPBL enabled most of the PST to 
realize the benefits the learners gain from working on inquiry assignments (Lavy & 
Shriki, 2003). Among them: developing mathematical qualifications; increasing self-
confidence in the mathematics competence; learning in an exiting and challenging 
environment. However, we had difficulties in trying to bring the PST to internalize 
the importance of integrating CPBL into their future classes. Through the reflective 
process of the PST we tried to find explanations to those difficulties. In this paper we 
bring parts of the reflection of one representative student. This student was chosen 
since her expressed beliefs were similar to those of the majority, yet she was more 
expressive then the others.  

RESULTS AND DISCUSSION  
In the following section we describe the case study of Ruth, who is a typical student 
from our class of PST. Ruth's reflection enables learning about the characteristics of 
the existing system of beliefs PST hold, and the characteristics of new generated 
beliefs that emerge within an environment that encourages inquiry activities.  

Ruth's reflection shows that she experienced the process of learning in two modes in 
a sequential manner: first she experienced the learning processes as a student and 
then as a future teacher. In this section we relate to her system of beliefs, and use the 
abbreviations "eb" and "nb" for designating "existing belief" and "new belief", in 
accordance. We used "r1"and "r2" in order to designate the "repeat" of referring to a 
certain belief. In addition, we numbered each belief.  
 The Case of Ruth. Ruth is considered to be an average student; nevertheless her 
contribution to the class discussions was significant since she often tended to ask for 
further clarifications to issues that were raised by the students and the teacher. At the 
beginning of the process Ruth was motivated by her wish to discover a new 
mathematical regularity, and she kept on saying: "I want to be like Morgan, I want to 
discover a new regularity". At the initial phases of the project Ruth decided to focus 
on a problem situation in which she changed two of the original attributes. After a 
period of time, during which she kept on looking for regularities, she had managed to 
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find only marginal discoveries. As follows are some of her reflections during the 
various phases of her work.   

By the end of the first class session in which we explained and demonstrated the 
components of a project, Ruth wrote:  

At the beginning I asked myself whether there is any connection between what we ought 
to teach in school and what we have to do in this project. No one at school will ever let us 
teach in that manner [eb1]. Schools do not welcome such an approach [eb2]. So at the 
beginning I was not enthusiastic at all, until I heard about Morgan and his discovery. 
Only then I felt like I really want to do that - to explore and discover [nb1].   

Ruth began working on the project with great enthusiasm. After the second phase of 
the project she wrote:  

After I wrote the list of various new problem situations I felt good as if I was going to 
discover something new in mathematics – I really love it! [r1nb1].  

After the 4th phase Ruth reflected:  
The work was very interesting and challenging [nb2]. At the beginning I felt a sense of 
anxiety, afraid I would choose to concentrate on an 'inappropriate’ attribute, and it would 
be a waste of time [eb3]. But shortly after, when I worked with the software, I felt 
confident and it was clear to me that I will gain something meaningful from this project. I 
believe I will discover a new regularity [r2nb1]. 

During the 5th phase, after working without finding anything that seemed to her as a 
meaningful discovery, she wrote:  

Sometimes during the work on the project I felt a lack of motivation. Perhaps it is 
because I am not used to activities of this kind [eb4]. During my school years we were 
asked to prove existing mathematical regularities [eb5], and now we are asked to do 
something different, something that we are not used to – to discover something new. 
Since when do we have to choose the problem, to solve it and to investigate it? [r2nb1]. 

In her final reflection Ruth wrote:  
…Contrarily to what I had said before I must say that when I observe and examine what I 
had gone through during the work on the project, I realize that only a minor part of the 
sessions contributed to my professional growth. As part of my educational duties I have 
to teach in various classes. I don't know yet how to teach and handle class situations in 
the traditional way [eb6], and you expect that I will adopt and implement innovative 
teaching approaches which I do not see their relevance to my work.  

From the above excerpts it can be seen that Ruth holds beliefs regarding her current 
state as learner (nb1, nb2), her past experience as school student (eb3, eb4, eb5) and 
her role as a teacher (eb1,eb2,eb3,eb). Ruth's beliefs regarding herself as a future 
teacher are in fact a projection of her experience as a school student. 

Ruth's beliefs regarding her state as a learner. At the beginning Ruth was 
enthusiastic. Influenced by the story about Morgan, she was eager to discover a new 
regularity [nb1]. The work with the interactive software, which facilitated the 
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examination of many problem situations, reinforced her self-confidence in her ability 
to discover a new regularity [r1nb1]. She began to develop the belief that a discovery 
process is a challenging and interesting one [nb2]. As long as Ruth felt that she was 
able to progress in her work, she expressed a tendency towards adopting new beliefs 
concerning the essence of learning. However, Ruth's enthusiasm began to fade with 
time, as a result of unfulfilled self-expectations. When Ruth faced a situation in 
which she did not mange to discover any meaningful regularity she used her initial 
system of beliefs regarding learning in order to justify her failure [eb4,eb5]. In fact, 
she does not take responsibility for her lack of success. Instead of searching for new 
directions in the project, she retreated and used her existing system of beliefs as an 
"alibi" for her lack of success. Namely, she uses the fact that she is not familiar with 
this kind of learning, and the fact that it is not the way she believes school students 
should learn, as causes for not finding a new mathematical regularity. Her attachment 
to her existing system of beliefs points to the fact that she did not make any genuine 
links between this system and the new beliefs [nb1,nb2] she was beginning to 
consider enthusiastically in the initial stages.  

Ruth's beliefs regarding her role as a teacher. Ruth started the project with a rigid 
system of beliefs concerning classroom norms that relate to teaching, learning and 
school functioning: schools have their own rules regarding "proper" teaching 
methods, and inquiry-based learning is not part of them (eb1, eb2); teachers should 
not invest time and efforts in methods that do not guarantee success or lead the 
student through "vague paths" (eb3), which are time consumers. The rules of the 
game in the mathematics class, the sociomathematics norms, are clear: teachers 
provide the problems and the students solve them (eb5).  

Due to Ruth's limited experience as a teacher, it can be seen that her beliefs regarding 
teaching are based on what Lortie (1975) calls "thousands of hours in an 
"apprenticeship of observation". Indeed, Ruth's memories of herself as learner 
(Grossman, 1990) influence her willingness to open her mind to new teaching ideas, 
and in fact inhibit her professional growth. As long as Ruth experienced success she 
was demonstrating a tendency towards developing new beliefs. However, as can be 
seen from Ruth's reflection, she did so merely from the learner perspective. Namely, 
she did not consider any possible change in her beliefs regarding the teacher’s role. 
Her disappointment caused her to examine the process from the teacher’s perspective 
as well, using her existing system of beliefs. In the beginning of the process Ruth 
revealed her beliefs regarding school as a conservative organization (eb1, eb2). In the 
4th and 5th phases she related to her beliefs (or sociomathematical norms) regarding 
her role as teacher (eb3,eb4,eb5) according to which the students should be led in a 
path that guarantees success or otherwise it is "a waste of time". In addition, the 
teachers should be the problems providers. Those problems ought to be already 
known theorems. The students' task is to find the correct proofs.  

To summarize, Ruth's past experiences is dominant in determining her views and 
beliefs regarding learning and teaching. The experiences she gained during the 
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semester were subjected to interpretations in accordance with her already existing 
system of beliefs. Consequently, it seems that these experiences had slight influence, 
if any, on changing her beliefs. These findings are consistent with Kagan (1992). 

CONCLUSIONS  
Lamm (2000) had found that PST's systems of beliefs do not require external 
approval, and consequently many believe that teacher education programs have a 
slight influence, if any, on changing those beliefs. In our study we found 
reinforcement to Lamm's findings. Trying to comprehend the reasons that underlie 
this phenomenon, we used the analysis of the PST's portfolios. Through the PST's 
written reflections (with Ruth as a typical case) we managed to identify two main 
possible explanations:  

Experiencing success as a motive for developing new beliefs. As long as Ruth was 
experiencing success she was willing to adjust her existing system of beliefs to the 
new learning situations. When Ruth felt that she was not fulfilling her self- 
expectations she "retreated" to her existing system of beliefs, and utilized them for  
justifying her failure. It can be assumed that experiencing success can serve as a 
motive for developing a new system of beliefs. However, a long period of time is 
needed in order to learn how to implement an inquiry activity and to be able to 
present a meaningful product. Thus, if teacher's educators wish to assure PST 
success, they should allow their students to experience this process, as well as other 
processes that concern innovative approaches, during the whole period of their 
training.  
Choosing the proper timing for experiencing innovative approaches. In her final 
reflection, Ruth's excerpt eb6, points to the central role of choosing the right timing 
for introducing innovative approaches. As a "product" of the educational system, the 
PST had assimilated all the norms that are associated with this traditional 
organization. Moreover, during the period of their training they get their practical 
experience within that same system. Adopting innovative teaching/learning 
approaches requires the ability to adjust the existing system of beliefs to the desirable 
change. In order to do so, the PST must be convinced that this change is beneficial 
for them. The question is how to make them realize the necessity for change. 
Apparently, in order to reach a situation in which a change or an update of an existing 
system of beliefs regarding teaching and learning, will occurre, this system of beliefs 
has to be based on an extensive teaching experience and not on theoretical 
perceptions. It is reasonable to assume that PST would be able to recognize that the 
methods they are using are not satisfying only following a real practice, which will 
yield a conflict. Conflict is an essential psychological substance for considering new 
ideas. Therefore, it might be suggested that the exposure to innovative approaches 
will be gradual and continuant. PST should be instructed and guided how to 
implement innovative methods during their practical training. From our experience 
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experiencing innovative approaches in the framework of a didactical course without 
practicing it in class is to some extent insignificant.  
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A mathematics university student as a future mathematician should have the ability to 
find “new” mathematics structures or construct theorems based on particular 
axioms. That ability can be created by using problem posing tasks. To do the tasks, 
students with different abilities will use different thinking strategies. To understand 
them exactly, we conducted descriptive research. The high group initiated the 
process of reconstructing theorems with identifying and understanding axioms, 
making a visual diagram or making a conjecture and constructing the “new” 
theorem. The modest group began with understanding information (making a 
definition), drawing diagrams and calculating the number of lines and parallel lines, 
then constructing theorems. That pattern is similar for the low group.  

INTRODUCTION 
The fundamental changing of mathematics structure especially geometry occurred 
when axioms (i.e., the parallel axiom (postulate)) of Euclid geometry were modified. 
It fostered the developmental of non Euclid geometry, which was developed by Janos 
Bolyai, N. Lobachevsky and Rieman. Bolyai and Lobachevsky constructed a new 
geometry structure by changing the Euclid parallel axiom with the statement: “There 
exists a line l and a point A such that at least two distinct lines pass through A that are 
parallel to l”. The statement of this geometry seems of questionable truth, but in the 
end it was useful and important in application when modern physics developed 
rapidly. This parallel postulate is known as the Hyperbolic Parallel Postulate and its 
Geometry is called Hyperbolic Geometry. In the mathematics deductive structure, 
this creatively invented axioms of Bolyai and Lobachevsky generated consistent 
theorems and no contradiction each other. Another creation by changing the parallel 
axiom of Euclid was done by the Germany mathematician Bernhard Riemann. He 
changed the parallel axiom of Euclid to the statement: “Given any line l and any point 
P not on l, there is no line through P that is parallel to l”. This axiom is known as the 
Elliptic parallel axiom and its geometry is called Elliptic Geometry.  

Based on that axiomatic system, they derived different theorems such as the 
following:  

Hyperbolic Geometry:  the angle sum of triangle is less than 180°. 
Euclid Geometry:   the angle sum of triangle is equal to 180°. 
Elliptic Geometry:  the angle sum of triangle is more than 180°. 

(Wallace and West, 1992). 
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The innovation of such a mathematics structure is initially a creation of a 
mathematician who is challenged to explore a new structure or to prove a truth with a 
different method. Such a creation may lead to a structure that becomes its own right. 
Bell (1981) pointed out that the first most important activity of research 
mathematicians is creating new mathematics and discovering relationships within and 
among mathematical structures. The second most important work of mathematicians 
is to demonstrate theorem proving to the satisfaction of the mathematical community. 
Occasionally, mathematicians are curious to prove theorems with different methods. 
An example is the Pythagoras’ theorem which is already proved with more than 100 
methods. Modification of Pythagoras’ theorem developed with attempting to discover 
some positive integers such that xn + yn = zn, for n > 2. This theorem is known as 
Fermat’s last theorem.  

The activity to discover and construct axioms or theorems is very important to 
students who study mathematics in order to understand and involve them in 
constructing new mathematical structures. Otherwise, they will ask questions such as: 
“how did mathematicians discover this theorem or theory? Where does it come from? 
Is there anything to encourage them constructing a conjecture? What is the next 
developing?” Our students must make a final project which one alternative is to 
construct some theorems based on particular axioms or initial theorems. Thereby, 
when the lecturer teaches about a mathematics structure, they should not just 
introduce and prove theorems and let student’s asking questions go unsatisfied. If it 
happens, their motivation will decrease and their attention becomes weak. Of course, 
this situation would disadvantage the development of mathematics. A lecturer should 
teach students how to discover and generate theorems or mathematics structures. The 
question is how to train them to develop such skill? 

Villiers (1995) suggested problem posing activities or constructing conjectures at 
regular intervals in classrooms and encouraged students to formulate their own 
questions and to investigate them. At the heart of making conjectures and problem 
posing lies the ability to look and ask questions from different perspectives. For 
example, a good habit is to ask questions such as “what happen if it is changed?”, 
“what happen if…?”, “what if not”, which will direct the students to form conjectures 
or new theorems. Lecturers should explain that an intelligent mathematician is not 
just as a good problem solver but also a creative problem poser. A mathematician’s 
task is never stopped, they continually look back to the original problem or its 
solution and pose questions related with original or initial problems. Based on 
Villers’s experience, this activity motivated students because they were involved in 
constructing and proving theorems. Beside that, problem posing gives other benefits, 
such as to increase problem solving ability, making students be active, and enriching 
fundamental concepts.  

Silver and Cai (1996:292) has noted that the term “problem posing” is generally 
applied to three quite distinct forms of mathematical cognitive activity:  
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1. Pre-solution posing, in which one generates original problems from a presented 
stimulus situation;  

2. Within-solution posing, in which one reformulates a problem as it is being solved;  

3. Post solution posing, in which one modifies the goals or conditions of an already 
solved problem to generate new problems.  

This investigation uses a form of pre-solution posing. Students pose or generate a 
problem (theorems) from a stimulus situation (an axiomatic system).  

Considering the above argument, I saw that problem posing can be used as an 
alternative to train student’s skill in reconstructing theorems. This activity can be 
given mainly in the Mathematics Foundation Course, such as logic or set theory. The 
description of this course is to give understanding and training to set up deductive 
reasoning which is systematically and regularly based on language and principles of 
logic and set theory (UNESA Handbooks, 2000). In such a course, mathematical 
content is divided into 3 parts that are axiomatics, logic and set theory. In axiomatics, 
students can be taught to construct theorems based on some given axioms and try to 
prove the truth of these theorems, so that is compatible with deductive-axiomatic 
structure in mathematics. To understand the result of implementation of the problem 
posing task, I conducted research which explored the students’ ability after they are 
trained using that task and the difficulties which are experienced by students. The 
result of that research (Siswono, 2004) pointed out that students encountered some 
difficulties, such as (a) to determine a number of lines which are constructed, (b) to 
understand a definition, (c) to understand axioms (stimulus situation/information), (d) 
to implement a constructed sketch or distinguish between their concepts and sketches, 
(e) to prove or describe their own theorems and (f) to set up the language of 
theorems.  

I also interviewed some students to grasp their thinking strategy when they were 
posing a theorem. Thinking is a process by which a new mental representation is 
formed through the transformation of information with complex interaction of mental 
attributes of judging, abstracting, reasoning, imagining and problem solving (Solso, 
1995). When students face a problem posing task, they are encouraged to think aloud 
to propose a theorem. They use their skill of judging, abstracting, reasoning, 
imagining and solving the task as a problem. Occasionally, students use different 
strategies to transform or interpret information. Krutetskii (1976) explained the term 
“mathematical cast of mind” which refers to a tendency to interpret the world 
mathematically. He identified three basic types of mathematical cast of mind: the 
analytic type (who tends to think in verbal-logical terms), the geometric type (who 
tends to think in visual-pictorial terms) and the harmonic type (who combines 
characteristic of the other two). These types can be used as a basis to look at students’ 
thinking strategy. Students’ thinking strategy in this research is defined as a process 
or stage when they are constructing a theorem; how they are understanding the axiom 
system and what their considerations are to decide on a theorem. To identify their 
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strategies clearly, I focused on three students group: a high, modest, and low group. 
This classification is based on the score of the pre-test. 

METHOD 
Subject of this research is 34 mathematics students at The Department of 
Mathematics, Faculty of Mathematics and Natural Sciences, the Surabaya State 
University in academic year 2003-2004. This is a descriptive research which tries to 
describe students’ strategies in constructing theorems when they finished the problem 
posing task. Procedures of this research are as the following:  

1. Teaching students to construct theorems based on the presented axiom system. The 
axioms are about Finite Geometry, known as Four-Point Geometry (Wallace and 
West, 1992). Because this system has not been taught to them, their ability is 
authentic.  

2. Presenting a problem posing task to students. This task is to understand and 
identify students’ ability in constructing theorems and their difficulties.  

3. Analysing the students’ problem posing task with the descriptive-qualitative 
method. Choose some students to be interviewed about their thinking strategy in 
constructing theorems from high, modest, and low group.  

4. Writing the research report 

 Instruments of this research are a task of problem posing and the interview 
guidelines. The task of problem posing is as described below.  

Consider this axiom system below.  

1. There exist exactly four points and no three points in one line.  

2. Any two distinct points have exactly one line on both of them.  

3. Construct at least two theorems by deriving from the axiom system above. You 
can determine a definition first about a particular concept.  

RESULT 
I determined to interview in depth two students of the high group, three students of 
the modest group and three students of the low group. All groups said that they never 
have done the task in other mathematics course. However, the task of proving 
theorems frequently is given by lecturers. Therefore, it is a new model of 
mathematical activity.  

All of the subjects just posed theorems about a number of lines and a number of 
paired parallel lines. Almost all students just made two theorems. There are 14 
students producing true theorems without making a mistake, ten students making one 
mistake and ten students making two mistakes. Examples of true theorems are the 
following. 
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Example 1 
Through 4 distinct points, just 6 straight lines exactly can be constructed.  
Proof:  
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Example 2 
Definition: Two straight lines are parallel if they don’t have a common point whatever 
they are extended.  

 
AB//CD, AD//BC, AC//BD.  
Thus there are only 3 pairs of parallel lines.  

 
 
 
An example of a mistaken theorem is the following. 
Example 3 

If there exist exactly four points and no three points in one line and any two distinct 
points have exactly one line on both of them, there are just 4 straight lines.   
Proof: 
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That mistake may be caused by difficulties in drawing a sketch or understanding their 
sketch. Another possibility is that they can create a sketch although they didn’t trust 
the number of lines shown by a sketch. They believe more in analytical procedures 
actually, but they don’t understand the combinatorial concept (4K3).  

The high group referred to a sketch to bridge them in deriving the theorem. They 
initiated the process of constructing theorems by identifying and understanding 
axioms, making a visual diagram (sketch) or making a conjecture and constructing 
the “new” theorem. When they thought they were making a mistake or a wrong 
theorem or the statement is not suitable with their sketch, they examined and kept 
some attention to the theorem and revised or regenerated it without changing a visual 
diagram. While they constructed a theorem, they never thought about a definition 

A B 

C D 
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because the task just asked them to construct a theorem. Another student gave the 
reason that her theorem didn’t need a definition. They realized the important role of a 
definition although they did not write it down. They prefer a task to find a solution of 
problem or prove a theorem rather than construct theorems because it is difficult to 
understand axioms. The part of the interview of Iva is the following. 

Interviewer: So what did you think when you constructed a theorem? 
Iva: Well, Firstly I examined two axioms. Then I tried to draw a sketch by 

connecting some points and counting a number of straight lines. 
Interviewer: When your conjecture was wrong, what did you do then? 
Iva: I identify my theorem [conjecture] again and revise it. 
Interviewer: Do you not change your sketch? 
Iva: No I don’t. 
Interviewer: Why? 
Iva: Because a sketch can be of many different forms, but actually they 

represent just one structure. 

The modest group began by understanding information (making a definition), 
drawing diagrams and calculating the number of lines and parallel lines, then 
constructing theorems. When they thought they were making a mistake or a wrong 
theorem or the statement was not compatible with their sketch, they examine a visual 
diagram (a sketch) and they changed a diagram, then revised the theorem or 
regenerated a new one. While they were constructing a theorem, they never thought 
about a definition because the task just asked them to construct a theorem. A 
definition comes from axioms. They prefer a task to find a solution of problem rather 
than to prove a theorem or construct theorems. However, there were some students 
who thought that constructing theorems is easier than proving theorems. Sonie is one 
of those students.  

Interviewer:  When your conjecture is wrong, what do you do then? 
Sonie: Change the diagram and see again all the axioms, and make a new 

theorem.  
Interviewer:  Do you prove it? 
Sonie:  No I don’t. If it’s wrong, I change the sketch.  
Interviewer:  Do you make a definition? What for? 
Sonie:  A definition is needed and a sketch is to help in constructing a theorem. 
Interviewer:  How do you make a definition? 
Sonie: Based on two axioms, I combined some words and change with other 

word. A definition can be based on a sketch but a theorem not.  
The low group initiated the process of constructing theorems by identifying and 
understanding axioms, making a visual diagram (sketch) or making a conjecture and 
constructing the “new” theorem. The stages seem similar with the high group. 
Actually, the quality of each step was different. They tried to understand the 
information even though sometimes they experienced difficulties. When they thought 
they were making a mistake or a wrong theorem or the statement was not in 
agreement with their sketch, some students used a different strategy. One student 
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directly revised or constructed a theorem without changing the visual sketch. Some 
students did not change theorems but they changed the visual diagram in order to 
make it agree with the theorem statement. While constructing a theorem, they never 
thought about a definition because they didn’t understand the role of a definition. 
They prefer a task to find a solution of problem to the task of constructing theorems 
or proving theorems because it was difficult to understand axioms. This can be seen 
in a part of the transcribed interview of Bayu (the low group): 

Interviewer: When your theorem was wrong, what did you do then? 
Bayu: Changed and revised a diagram; the theorem is not changed.  
Interviewer: What do you think about a definition?  
Bayu: A definition is needed by a theorem.  
Interviewer: But, you don’t make it? 
Bayu: Yes.  
Interviewer: Well. What would you do to formulate a definition?  
Bayu: I make a statement from terms of some axioms which is the meaning 

unclear.  

DISCUSSION 
This activity actually pointed out student representations of understanding a theorem 
and learning how to prove theorems. There are different strategies in the three 
groups, although they can be classified as the visual strategy or geometric type. The 
high group tends to think systematically. They did not explicitly say that they wrote 
down a definition before constructing theorems, but they realized the importance of 
the role of definition. Based on the theorems which were posed, we saw that they 
used the definitions of Euclidean Geometry about parallel lines, intersections and 
triangles. The modest group also tends to work systematically, even mentioning 
about the stage of making a definition. However, they never write down the 
definition. The actual difference with the high group, is that they sometimes change a 
sketch to match with the original theorem when they are not sure or are in doubt. This 
situation causes the possibility of mistakes.  

The low group also followed similar stages to other groups. They do not make 
definitions because they don’t understand the role of definitions. When they make a 
mistake, they frequently change the statement of the theorems or the sketch. These 
situations created very high potential for them to make other mistakes.  

The classification of the students does not show their abilities in constructing 
theorems. The high group still makes some mistakes, such as formulating a sentence 
for a theorem. The low group also has some mistakes, basically caused by the 
weakness of their abstracting or understanding ability.  

In terms of the thinking strategy, students tend to use the geometry type. This 
happened because the task directed them towards this type. However, if we look back 
at their proving theorems in determining a number of lines, there were two students 
from the high group using different strategies. One student used analytic type 
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thinking with the combinatorial concept. Another student determined it by calculating 
the number of lines based on a sketch or diagram, so she used geometric type. The 
modest groups contain two students using geometric and one student using analytic 
thinking. All students of the low group apply geometric thinking. To prove parallel 
lines, all students implement geometric thinking.  

According to the students, this task was more difficult than proving theorems or 
finding a solution of a problem. The reasons are: it needs higher order thinking skill 
and requires understanding of information and axiom system. However, the problem 
posing task can still be used as an alternative to teaching thinking mathematically and 
creative thinking. As noted by Dunlop (2001), problem posing is a valid tool for 
teaching of mathematically thinking and it can foster a creative thinking.  

SUMMARY 
Students in the three groups have different strategies for constructing theorems. The 
difference will impact on their mistakes. Their thinking process leads to the following 
steps: identifying and understanding axioms, making a visual diagram or making a 
conjecture and constructing the “new” theorem.  

This research has not been understood effectively in the teaching and learning 
process yet, so it needs further research. The task of problem posing should not only 
be the straight to geometry type, but also analytic type and harmonic type.  
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A COMPARISON OF HOW TEXTBOOKS TEACH 
MULTIPLICATION OF FRACTIONS AND DIVISION OF 

FRACTIONS IN KOREA AND IN THE U.S. 
Ji-won Son 

Michigan State University 

To illuminate the cross-national similarities and differences in ways of teaching 
multiplication of fractions and division of fractions, this study compared the lessons 
on fractions in Korean mathematics textbooks and accompanying teacher’s manuals 
with the corresponding lessons on fractions in one U.S. reform mathematics textbook 
series and accompanying teachers’ manuals [Everyday Mathematics]. This study 
found that there is a gap between learning goal [intended curriculum] and problems 
presented in textbooks [potentially intended curriculum].  

INTRODUCTION 
It is well known that across country, students’ learning is highly correlated with 
curricular treatment of related topics (Ball & Cohen, 1996; Garner, 1992; McKnight 
et al., 1987; Olson, 1997; Schmidt, McKnight, & Raizen, 1996; Schmidt et al, 2002). 
A lot of cross-national comparisons of mathematics textbooks including the TIMSS 
study have reported that U.S textbooks constitute a de facto national curriculum, 
which has been characterized as superficial, underachieving, and diffuse in content 
coverage (Fuson, Stigler, and Bartch, 1988; Schmidt, McKnight, Cogan, Jakwerth, 
and Houang, 1999; Mayer, Sims, & Tajika, 1995; National Council of Teachers of 
Mathematics, 1989; Schmidt, Houang, and Cogan, 2002). 

About the time the TIMSS study was underway, three reform curricula were 
developed with support from the National Science Foundation: Everyday 
Mathematics, Investigations, and Trailblazers. Among them, it has been often 
reported that Everyday Mathematics is used most widely in America. It is reported 
that Everyday Mathematics increases both the depth and the breath of the 
mathematics taught, focuses on students’ mathematical solutions and the examination 
of alternative strategies, and encouraging students to develop, use, and discuss their 
own methods for solving problems (Carroll, 1998).  

It is well known that many students and adults have difficulty with understanding 
multiplication of fractions and division of fractions. Algorithms for multiplication of 
fractions and division of fractions are deceptively easy for teachers to teach and for 
children to use, but their meanings are elusive (Kennedy & Tipps, 1997). However, 
students should learn mathematics with understanding (NCTM, 2001). “Instructional 
programs should enable all students to understand meanings of operations” [with 
fractions] and how they relate to one another; compute fluently and make reasonable 
estimates (NCTM, 2001, p. 214).  
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This study examined how multiplication of fractions and division of fractions are 
taught in the reform curriculum presently being used in Korea and Everyday 
Mathematics.  

In the TIMSS study, Korean students showed high achievement, ranking number two. 
Yet, there is little research of how Korean students learn mathematics. Recently, 
Grow-Maienza and Beal (2003) studied Korean mathematics curriculum. Yet, they 
focused on the traditional 6th mathematics curriculum. Korean mathematics has been 
recently changed. There is little research addressing on how the Korean reform 
curriculum 7th mathematics teaches mathematics and on how problems in 
mathematics are presented in textbooks.  

The purpose of this study is to illuminate the cross-national similarities and 
differences in ways of conceptualizing and presenting multiplication and division of 
fractions in Korean reform textbooks with the corresponding lessons on fractions in 
Everyday Mathematics. According to previous researches, a lot of studies on 
textbook analysis have focused on either content analysis or problem analysis. They 
recommend that combining two types of analysis--content analysis and problem 
analysis--provide richer promises for revealing potential effects of textbooks on 
students’ mathematics achievement. This study focused on two aspects of textbook 
analysis: content analysis and problem analysis. This study has three research 
questions: 

(a) What are the learning goals related to multiplication of fractions and division 
of fractions in each curriculum? 

(b) When and how are multiplication of fraction and division of fractions 
introduced and developed in each curriculum?  

(c) How many and what types of problems in multiplication of fractions and 
division of fractions are presented in each curriculum?  

METHODOLOGY  
This study conducted content analysis and problem analysis. Content analysis is 
focused on two research questions. Problem analysis is conducted focusing on 
problems presented in the textbooks.  

Textbooks and the Mathematical Problems analysed  
EM provides three textbooks (Student Journal 1, 2, and Student reference book) and 
Korean mathematics provides four textbook (Student Mathematics Ga, Na, and 
Mathematics workbook (1Ga, Na). All textbooks in 5th and 6th are analyzed.  

Analysis Plan 
Content analysis is conducted focusing on two research questions (a) and (b). In 
content analysis, both teacher’s manuals and student’s book were used. First, this 
study referred to teacher’ manuals in order to identify learning goals of multiplication 
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of fractions and division of fractions. Based on the learning goals stated in the 
teacher’s manual, this study explored their emphasis on learning about multiplication 
of fractions and division of fractions. Second, this study examined when and how 
multiplication of fractions and division of fractions are introduced and developed in 
the each textbook series.  

Problem analysis is conducted focusing on problems presented in the textbooks. In 
this study, problem is identified as those mathematical problems or problem 
components that do not have accompanying solutions or answers presented. Previous 
studies identified three important dimensions for analyzing mathematical problems: 
mathematics feature, contextual feature, performance requirement (Li, 1998; Stigler 
et al., 1986; Tabachneck, Koedinger, & Nathan, 1995). Based on previous studies, by 
adding some other factors, three-dimensional frameworks were developed in this 
study. Table 1 shows the dimension of problems analysis: (a) mathematics feature; 
(b) contextual feature; (c) performance requirement.  

Dimensions of Problem Analysis  
1. Mathematics Feature Single step required (S) 

Multi-step required (M) 
2. Contextual Feature Purely mathematical context in numerical or 

word form (PM) 
Illustrative context such as visual representation 
(IC) 
 

3.Performance Requirement  
(1) Response type Numerical answer only (A) 

Numerical expression required (E) 
Explanation or solution required (ES) 

(2) Cognitive requirement Conceptual understanding (CU) 
Procedural knowledge (P) 
Mathematical Reasoning (MR) 
Representation (R) 
Problem solving (PS) 

Table 1. Conceptual Framework for problem analysis  

Each problem in all textbooks was coded in terms of the three dimensions stated 
above. In order to avoid the researcher’s subjectivity, a second independent rater who 
is literate in both English and Korean languages coded problems in textbooks. The 
interrater agreement was 98 %. 
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RESULTS  
Research Question 1: What are the learning goals related to multiplication of 
fractions and division of fractions in EM and KM  
While EM emphasizes understanding the meaning of multiplication of fractions and 
division of fractions more than the algorithms for them, KM emphasizes both 
conceptual understanding and mathematical fluency. EM first provides folding the 
paper and area model to address multiplication of fractions and then introduces the 
algorithm of multiplication of fractions. In division of fractions, EM expects students 
to understand a common denominator method for division of fractions and an 
algorithm for the division of fractions. In contrast, through the whole learning goals, 
KM emphasizes both understanding and using algorithms effectively. In addition, 
KM expects students to understand and formulate various type of multiplication of 
fractions and division of fractions.  

Research Question 2: When and how are multiplication of fractions and division 
of fractions introduced and developed? 
Content organization 
First, while EM introduces and develops multiplication of fractions and division of 
fractions at the same time, KM introduces multiplication of fractions and division of 
fractions separately. KM first introduces multiplication of fractions and develops it 
intensively in one unit. Then, it introduces division of fractions and develops it 
intensively in two units across two grades.  

In addition, in EM, several topics are covered in one unit. Almost each lesson has 
different topics. For instance, 5th graders learn multiplication of fractions and division 
of fraction with comparing fractions, addition and subtraction of fractions, and 
percent. In contrast, Korean mathematics curriculum is much more sequentially 
organized, with almost no repetition. Different topics are taught in different grads. 
While the sixth grade text in Korea does not duplicate fifth grade topics, the typical 
EM often duplicates most of the content.  

Third, KM devotes more time to developing multiplication of fractions and division 
of fractions for students to master it. KM devote as twice time as EM does to develop 
multiplication of fractions and division of fractions. While EM covers multiplication 
of fractions and division of fractions in a total of 9 lessons, KM covers them in a total 
of 17 lessons. In addition, there is different intensity of multiplication of fractions and 
division of fractions.  

Content Presentation 
First, EM emphasizes understanding first and then algorithm. In particular, EM does 
not emphasize the algorithm of multiplication of fractions until 6th grade. EM first 
introduces “many of” and “part of “as indicators of multiplication. Before introducing 
the algorithm for multiplication of fractions, EM give concrete meaning to finding a 
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fractional part of a fraction part by providing the paper-folding exercise and area-
model diagram. However, KM emphasizes understanding and algorithm of 
multiplication of fractions at the same time. Different lessons teach different types of 
multiplication. KM, through whole lesson, introduces three activities; understanding 
the multiplication of fractions, knowing the algorithm of multiplication of fractions in 
different types, and practice.  

Second, EM and KM introduce the algorithm of multiplication of fractions with two 
same two strategies. However, in the problems of (whole number) ×  (fractions) or 
(fractions) ×  (whole number), EM uses common denominator strategies, which KM 
does not use. EM asks students to rewrite each fraction in the form.  

In division of fractions, both curricula introduce division of fractions from whole 
number division. However, while EM introduces two strategies of division of 
fractions—common denominator and invert and multiply method, KM only relies on 
invert and multiply method. 

Research Question 3: How many and what types of problems in multiplication 
of fractions and division of fractions are presented?  
It was found that EM provides more problems in multiplication of fractions than KM 
in terms of the total number (EM: 251, KM: 190). However, KM provided more 
problems in division of fractions than EM (EM: 58, KM: 400). Because problem 
analysis results of division of fractions are similar to those of multiplication of 
fractions, this study reports the results of multiplication of fractions.  

Mathematical Feature 
Table 2 and figure 1 show mathematical feature in fractions multiplication.  

 Simple computation Multiple computation Total 
Everyday Math 246 (98%) 5 (2%) 251 
Korean 7th Math 158 (83%) 32 (17%) 190 
 403 38  

Table 8. Distribution of problem in KM and EM by mathematical feature 

Mathematical Feature in Fraction Multiplication
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 Figure 1. Distribution of problem in KM and EM by mathematical feature 
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In terms of the number of steps required in the solutions to multiplication of fractions 
problems, this study revealed that problems in the KM are more challenging than 
those in EM. It was found that 17 % of the problems in KM needed multi-step to 
solve, whereas such problems in the EM were around 2%. The less frequent exposure 
to multiple-step problems for U.S. students might be one reason why they performed 
not so well on this type of problems, as found in many studies (Carpenter et al., 
1980).  
Contextual Feature 
Table 3 and figure 2 show contextual feature in fractions multiplication.  

 Purely Math context Illustrative context Total 

Everyday Math 175 (70%) 76 (30%) 251 
Korean 7th Math 136 (71%) 54 (29%) 190 
 311 130  

Table 3. Distribution of problems in KM and EM by different representation forms 
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Figure 2. Distribution of problems in KM and EM by different representation forms 
It was found that contexts of problems in both Korea and EM textbook were all most 
same. The majority of problems in all the books were presented in symbolic forms, 
including mathematical expressions, written words, or a combination of the above 
two forms (Korea: 71 %, US: 70%).  
Performance Requirement 
A. Response Type 
Table 4 and Figure 3 show the results. 

 Numerical answer Explanation required Total 

Everyday Math 179 (71%) 30 (12%) 251 
Korean 7th Math 119 (63%) 27 (14%) 190 
 298 57  

Table 4. Distribution of problems in KM and EM by response type 
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Figure 3. Distribution of problems in KM and EM by response type 

It was found that a lot of problems in both Korea and EM textbook were required 
numerical answer only, numerical expression, and explanation or solution required in 
order. The distribution of problems-response type in the KM textbooks is more 
balanced than that in the EM. Clearly, the majority of problems from both textbooks 
were found to require a numerical answer. However, fewer problems in KM required 
a numerical answer only (EM: 71%, KM 63%) and more problems required 
numerical expressions, or explanations or solutions (EM: 29%, KM: 37%).  

Cognitive Requirement 
Table 5 and figure 4 show the results. 

 Conc. 
Know. 

Proc. Fluen. Math. 
Reas. 

Repre. Prob. 
Solving. 

EM 1  198 (79%) 6 (2%) 22 (9%) 24 (10%) 

KM 1 (1%) 151 (79%) 13 (7%) 7 (4%) 18 (9%) 

Table 5. Distribution of problems in KM and EM by cognitive requirement 
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Figure 4. Distribution of problems in KM and EM by cognitive requirement 



Son 

 

4-208 PME29 — 2005 

This study found that procedural knowledge is the most frequent type of knowledge 
required in the problems about fractions multiplication both curricula. Conceptual 
knowledge is the least frequent type of knowledge. This result shows that even 
though both curricula intend to improve conceptual understanding, mathematical 
reasoning, problem solving, the problems presented in the textbooks ask almost 
exclusively for procedural knowledge. While more problems in EM require 
representation and problem solving than KM, more problems in KM require 
mathematical reasoning.  

DISCUSSION  
This study examined both Korean 7th mathematics and Everyday Mathematics at 5th 
and 6th grade. One of important finding in this study is the gap between what is 
intended and what is presented in textbooks. Both curricula intend to improve 
students’ conceptual understanding of multiplication of fractions and division of 
fractions. Everyday Mathematics seems to provide more opportunities to developing 
concepts behind algorithms. However, it was revealed that problems in both 
textbooks are presented in purely mathematical contexts and that a large portion of 
problems is required single-computational steps and procedural knowledge only. 
Based on this result, it is not difficult to assume that there is understandably some gap 
between what described in the textbooks and what actually happen in classrooms. 
This study has implications to curriculum developers, teachers, and researchers.  
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MATHEMATICAL KNOWLEDGE OF PRE-SERVICE PRIMARY 
TEACHERS 

Beth Southwell    Marina Penglase 
University of Western Sydney 

Seventy eight primary pre-service teachers participated in a survey of arithmetical 
content knowledge at the conclusion of an elective mathematical content course 
designed for those with a poor background in mathematics. Not only was the aim of 
this first stage of a research project to ascertain current knowledge but also to adjust 
current courses to better suit the students in teacher preparation courses. Analysis of 
the results of this survey indicate weaknesses in understanding in particular areas 
including place value, operations with common fractions, multiplication of decimal 
fractions, percentages and measurement. These areas are related to the curriculum 
the pre-service teachers will be expected to teach on their graduation.  

INTRODUCTION  
Several recent reports and movements have emphasized the need to enhance the 
mathematical content knowledge of students. The NCTM Principles and Standards 
for School Mathematics (2000) states that ‘Teachers need different kinds of 
mathematical knowledge – knowledge about the whole domain; deep, flexible 
knowledge about curriculum goals and about the important ideas that are central to 
their grade level …’ (p. 17). The AAMT Standards for Excellence in Teaching 
Mathematics in Australian Schools is one of the most recent documents to say that 
‘excellent teachers of mathematics have a sound, coherent knowledge of the 
mathematics appropriate to the student level they teach’ (2002). If teachers are not 
confident in their mathematical knowledge, they may find it difficult to ensure that 
their students gain confidence and competence. 
Then, too, the reports arising from the Third International Study of Mathematics and 
Science (Lokan, Ford & Greenwood, 1996, 1997) indicate that there were 
deficiencies as well as strengths in student achievement and understanding in 
mathematical content knowledge. Several researchers (Morris, 2001; Chick, 2002; 
Amarto & Watson, 2003) have found that pre-service teachers do not always possess 
the conceptual understanding of the mathematics content they will be expected to 
teach. 
In 2002, the Board of Studies, NSW, released the new Mathematics K-6 Syllabus that 
became mandatory in NSW primary schools from 2004. This Syllabus has many 
differences from the 1989 Mathematics K-6 Syllabus that has been in use in these 
schools. Included among these differences are many involving different concepts or 
new approaches to mathematics. Primary teacher education students currently 
undertaking their teacher preparation courses will be expected to implement the new 
syllabus when they graduate. Many of them did not complete mathematics courses in 
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their senior high school years, often because they had not been successful in their 
junior years. As a consequence of all of this, it is possible that primary teacher 
education students start their teacher preparation courses without key mathematical 
knowledge and with some negative attitudes towards the teaching and learning of the 
subject.  
Over several decades there has been a change in the way mathematics has been 
taught and in the curriculum that has been followed. Constructivism heralded in a 
different emphasis on the process of teaching and learning. Unfortunately, many 
teachers saw it as a way of ignoring their own lack in mathematical content 
knowledge and concentrated on what they perceived to be the process required in a 
constructivist based classroom. Von Glasersfeld (1994), however, reminded 
educators of the possibility of enhancing mathematics achievement and 
understanding through a constructivist approach. In relation to the learning and 
teaching of arithmetic he stated: 

… if we really want to teach arithmetic, we have to pay a great deal of attention to the 
mental operations of our students. Teaching has to be concerned with understanding 
rather than performance … (von Glasersfeld, 1994, p. 7) 

It is important to note that the outcome of learning implied in this statement is 
understanding and conceptual development.  
The aim of this stage of the project is to ascertain the mathematical knowledge of 
primary teacher education students in a NSW university teacher preparation course at 
a particular stage in their courses. This will enable the researchers to tailor courses to 
help fill any gaps that may be found. It will also provide an ongoing measure against 
which students and university staff can judge the students’ learning and the courses 
being undertaken.  
METHODOLOGY 
Sample��������The 78 participants at a NSW university included both undergraduates in a 
four year program from second, third or fourth year of their course and students in a 
one year graduate entry program. They were doing this subject either because they 
lacked a sound mathematical background or because they had a particular interest in 
mathematics.  
Procedure. The survey was administered during class time at the conclusion of a 
special elective mathematics content course. A survey methodology was considered 
most appropriate for this study. McMillan (2004, p. 195) describes surveys as popular 
because of their ‘versatility, efficiency and generalizability’. Their versatility lies in 
their ability to ‘address a wide range of problems or questions, especially when the 
purpose is to describe the attitudes, perspectives and beliefs of the respondents’. 
Their limitation, according to Mertler and Charles (2005), is that they do not allow 
the researcher to probe further as would be possible in an interview. In this current 
study, the 20 questions used in the survey were designed to ascertain whether the 
participants had the necessary mathematical knowledge on topics they were expected 
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to teach and any further probing was considered possible if necessary after the initial 
responses were analysed. The project was approved by the University Ethics 
Committee. 
Analysis��������Data were analysed using descriptive statistics only for the first part of 
this research on the mathematical competence of pre-service teachers. Surveys of 
attitudes and beliefs will be considered at a later stage. Because the first and the last 
items had 3 and 2 parts respectively, these were treated in the analysis as separate 
items, thus making 23 items. 
RESULTS AND DISCUSSION 
At this stage of the research, there are two main areas that need to be reported. They 
are the item analysis for the 23 items and the relative difficulty of areas of arithmetic 
as indicated by responses.  
Item Analysis. Table I presents the former of these for items of greatest interest 
indicated by the difficulties observed. 
Table 1. Number and Percentage of Correct Responses and Most Common Incorrect 
Responses 
Item No. 

correct 
Percentage 

correct 
Most common incorrect responses 

3  0 0 11 participants did not answer, one saying he/she could not 
understand the item. Other responses ranged from 0 to 38 with 
7 giving alternatives such as ‘9 or 18’. 

7 1 1.3 19 responses as 46 092 340. 23 did not attempt. 6 gave correct 
response except for units digit, 2 listed each power but did not 
join them with +. Three wrote expansions but not expressed as 
powers of 10. 

11 34 43.6 9 did not attempt. 
13 48 61.5 19 wrote fractions largest to smallest. See comments below. 
14 54 69.2  15 subtracted numerators and denominators respectively. 6 did 

not attempt. One used addition. 
15 45 57.7       8 did not attempt. 12 added numerators and denominators 

respectively. One added denominators only. 
17 45 57.7 13 gave 17/100 as their answer. 3 wrote both 0.17 and 17/100 

and 4 gave 17/100 0.17. 
19 21 26.9 30 gave correct digits but with decimal point placed the first 2 

digits of their answer. 10 did not attempt or crossed out work. 
20 58 74.4 11 had each of the algorithms within the brackets correct but 

gave the wrong answer. 8 had 1 algorithm incorrect but all 
other working correct. One removed the last bracket, writing 
the last sign as a minus. 

21 48 61.5 6 did not attempt. 10 gave 16 as answer. 14 were completely 
incorrect though 5 at least started to work a division algorithm. 

22 59 75.6 10 gave 623 as response. 4 gave 6023. 
23 62 79.5 5 did not attempt. 3 gave 598.7, 3 gave 598700 as response. 
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Comments on Specific Items  
Item 3. No of pairs of numbers that sum to 19. The poor response to this item raises 
the question of language and its relationship to mathematics. The item was not 
expressed as clearly as most participants needed. The inclusion of the word ‘whole’, 
for instance, may have made the item more specific though this particular difficulty 
had not arisen in previously given similar questions. It could be that this cohort of 
students had been introduced to inclusive sets of numbers in such a way as to not 
question the item further and hence the number of non-attempts and the cry “I don’t 
understand this”. Unfortunately this view is not borne out by the types of responses 
given as they all refer to whole numbers anyway. It would appear, then, that these 
participants have been confused with the other wording in the item or are fairly rigid 
in their arithmetical thinking. ‘Different numbers’ in the item statement could be 
interpreted as meaning that 0 and 19 are the same numbers regardless of the order. In 
that case the correct answer would not be the same as it would be if they are 
considered different. This could explain the number of participants who gave 
alternative responses, e.g. 9 or 18. 

Item 7. Expand 4 609 234 using powers of 10. As this item requires understanding 
fundamental to the decimal place value system and since numeration was a topic in 
the course participants followed, it is surprising that this item was so poorly 
completed. One can understand the omission of the index for the unit figure but 
again, perhaps the language used was not as familiar as expected. One participant 
actually wrote that he/she did not understand the word ‘expand’ and this possibly was 
the case for many others. The response 46 092 340 seems to indicate that participants 
did not know what was meant by ‘expand’ and thought that by multiplying by ten 
they were using a power of ten.  

Item 11. Calculate 47 x 25 using a different method (N.B. previous question was 
Calculate 47 x 25) A ‘different method’ caused several problems for participants. 
Many used the commutative property and did not acknowledge that multiplying 47 
by 25 used the same method as multiplying 25 by 47. Only 3 students made use of 
the distributive law and added each partial product. Several made use of the 
distributive property but only in part. Only two participants took advantage of the fact 
that the multiplier was 25 and is therefore one quarter of 100. The picture painted by 
the responses to this item indicates a fairly inflexible idea of multiplication with the 
emphasis on the standard algorithm. The NSW Syllabus K-6 Mathematics (1989, 
2002) recommends that teachers encourage students to use their own natural methods 
to complete computations and to explore different ways in which this can be done. In 
the particular course this group of students has completed is the opportunity for many 
approaches to algorithms. Only one student used the lattice method and one 
attempted but was not able to complete the duplation or doubling method. Number 
sense and flexibility of arithmetical understanding are worthwhile aims at any level 
and pre-service teachers have the responsibility and opportunity to acquaint 
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themselves with methods of an historical nature as well as being able to accept 
unorthodox methods created by their students. 

Item 17. Convert 17% to a decimal fraction. Participants indicated some degree of 
uncertainty in their responses to this item. Perhaps there exists some confusion as to 
the difference between a decimal fraction and a common fraction since so many (13) 
gave their responses in the common fraction form. This confusion may have arisen 
from the common (sometimes incorrect) practice of referring to ’fractions' for 
common fractions and ‘decimals’ for decimal fractions. This practice overlooks the 
fact that all our numbers are decimal numbers since they are based on ten in the same 
way as binary numbers are based on two. Decimal fractions are fractions or rational 
numbers expressed with a decimal point. The difficulty may also have arisen because 
the method of changing a percentage to a decimal fraction was unfamiliar to the 
participants. Several knew that 17% meant 17/100 but then became uncertain as to 
the place value represented by the fraction. Those who put both 0.17 and 17/100 or 
its reverse may have been ‘hedging their bets’ hoping that one of their responses 
would be counted correct. Taplin (1998) reported that on medium difficulty items 
approximately half of the participants in her study with an incorrect answer to a 
question asking them to find 12% of $68 did not know that 12% meant 12/100.  

Item 21. Solve: 1023 students, 63 per bus. How many buses needed? The responses to 
this item indicated that for some participants there was no need to consider the 
context of the problem. The answer 16.23 was arithmetically correct but was not a 
sensible answer to the question. Two participants did realise that they would need a 
whole number of buses but opted for 16 instead of 17 qualifying their responses by 
saying some students would stand or be left behind. As the item said that the students 
were to ‘fit in’ the buses, not necessarily be seated, the responses of 16 were not 
considered correct. The question of context in word problems - indeed problems of 
any kind – is one that needs to be considered as a vital aspect of problem solving. 
Contreras and Martinez-Cruz (2001) report that only 28% of their sample of pre-
service teachers were able to give a realistic response to a problem using the same 
context as this one and only 6 % were able to give an explanation of their answer.  

Items 14, 15. Find 5/8 - 2/5. Find 4/5 + 2/3. The error recorded by a number of 
participants is a recognised common one and indicates not only a faulty algorithm for 
common fractions but also a lack of flexibility of arithmetical thinking, as a simple 
check of the reasonableness of the answer would alert the participant to the error. 
Rational numbers, particularly in the common fraction form, have been recognised 
for some time as an area of great difficulty for all students. Skemp (1986) claimed 
that this is partially because students have to apply a process of accommodation when 
they meet rational numbers and this is different to the assimilation process that has 
been possible with all the previous work they have experienced in mathematics. 
Taplin (1995) found that pre-service primary teachers found difficulty in fractions 
concepts including operations. One interesting aspect of these items is that a few 
students were able to complete one of these two items correctly but followed the 
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common error for the other. This seems to indicate an unstable concept of operations 
with common fractions. 

Item 19. Calculate 14.83 x 0.06. Taplin (1995) also identified difficulties in the 
multiplication of decimal fractions. This same difficulty arose in this study because 
of the participants’ placement of the decimal point. 

Items 22, 23. Convert 6.23km to m. Convert 5.987L to ml. These two items seem to 
indicate a general weakness in measurement which could be linked to a place value 
deficiency or to a lack of understanding of the metric system of measurement. As the 
metric system is usually considered an application of the place value system, and is 
used in that way, it is disturbing that the numbers correct in these items are as low as 
they are, unless the fact that they are the last items caused participants to think less 
about them than other items. Morris (2001) also reports a similar deficiency in 
converting metric measures between units.  

Item 13. Put 5/6, 2/3, 4/5 in order. Although responses in the wrong order were 
accepted as correct with Item 5, they were not in Item 13, mainly because of the 
possibility that participants do not understand that the magnitude of common 
fractions is different to that of whole numbers. This point is supported by Leinhardt 
and Smith (1985, p. 269). 

Analysis of Content Areas. The second area of reporting for this stage of this project 
is in relation to the particular topic that participants found difficult. For this purpose, 
the 23 items have been linked in groups and each group considered separately. Table 
2 shows the items in groups and the relevant statistics related to each group. 

Table 2. Number and Percentages of Correct Responses for each Category of Items. 
Category No. of items in 

each category 
No. correct 
responses 

Percentage correct 
responses 

Basic concepts, numeration 3 (5,6,7) 155 65.8 (*98.7) 
Basic facts 3 (1,2,3) 154  66.2 (*98.7) 
Four operations 5 (8-12) 389 83.1 
Order of common fractions 1 (13)  48 61.3 
Operations with common 
fractions 

2 (14,15) 99 63.5 

Decimal fractions 1 (19)  21 26.9 
Percentages 3 (16,17,18) 156 66.7 
Measurement 2 (22,23) 121 76.6 
Order of operations 1 (20) 58 74.4 
Word problems 1 (21)  48 61.5 
*  Percentage of non-responses to items 3 and 7 are not included. 

Surprisingly, the area requiring greatest attention is decimal fractions. Place value 
concepts seem to have caused most problems. This outcome could be the result of 
only having one item on decimal fractions, though the other related item on changing 
percentages to decimal fractions was not well done either. This seems to lend support 
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to the premise that more time needs to be spent on work with decimal fractions. It 
could be that because the link is so obvious to teachers, they do not spend the 
necessary time to allow students to construct effective processes of understanding 
and using decimal fractions. 
Language in mathematics is another area that needs more attention. Because 
mathematics is sometimes spoken about as the universal language, the assumption is 
made that no matter what language they speak every day, students will be able to 
understand all aspects of mathematics, including terminology and syntax of 
problems. This is not necessarily so as Bell and Ho Woo (1998) have found. 

CONCLUSION  
The study has caused certain possible future research topics to emerge. The 
concentration of research on specific topics in mathematics is necessary if pre-service 
teachers are to become properly equipped for their daunting task as teachers. This test 
needs to be extended to geometry and probability and further testing carried out. 
This study reminds teachers and teacher educators in particular, that understanding 
the way in which learners construct their arithmetical knowledge is of prime 
importance in all mathematics courses. Much more can be done to analyse thought 
processes and develop approaches in the classroom that will assist students in their 
mathematical constructions. Leinhardt and Smith (1985), in a study with elementary 
teachers, concluded that the 'skills associated with lesson structure and subject matter 
knowledge are obviously intertwined (p. 247)'. This is a reminder that without sound 
mathematical knowledge many pedagogical processes are of little benefit. This 
current study also alerts teacher educators, particularly in New South Wales, to the 
need to assist pre-service teachers with specific topics as each requires. This can only 
be done in the time available in pre-service courses by a screening test to identify 
possible specific areas of weakness and the design of appropriate programs for them. 
It is anticipated that this study will lead to such a process. 
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ANALYSING LONGITUDINAL DATA ON STUDENTS’ DECIMAL 
UNDERSTANDING USING RELATIVE RISK AND ODDS RATIOS  

Vicki Steinle and Kaye Stacey 

University of Melbourne 

The purpose of this paper is to demonstrate the use of the statistics of relative risk 
and odds ratios in mathematics education. These statistics are widely used in other 
fields (especially medical research) and offer a useful but currently under-utilised 
alternative for education. The demonstration uses data from a longitudinal study of 
students’ understanding of decimal notation. We investigate the statistical 
significance of results related to the persistence of misconceptions and the hierarchy 
between misconceptions. Relative risk and odds ratio techniques provide confidence 
intervals, which give a measure of effect size missing from simple hypothesis testing, 
and enable differences between phenomena to be assessed and reported with impact.  

This paper demonstrates some possibilities for analysing educational data, which 
draw upon methods that are widely used in reporting results of medical, 
environmental and epidemiological research. We believe that these measures provide 
very useful techniques for testing for statistical significance and reporting confidence 
intervals, which will enhance mathematics education research. Capraro (2004) draws 
attention to important recent policy changes within the American Psychological 
Association, evident in their publication manual, that stress the importance of 
researchers supplementing statistical significance testing with measures of effect size 
and confidence intervals, with many journals making them mandatory. 

For those worried about deep vein thrombosis (DVT) after long flights, BUPA’s 
website (Newcombe, 2003) cites Farrol Kahn as saying that “Several studies have 
shown [wearing flight socks] to be of benefit and it reduces the risk by up to 90 per 
cent.” However, we can be cheered that “The researchers discovered the risk of 
developing DVT after a long-haul flight seemed to be low - at about 1 per cent of all 
long-haul passengers.” Some of us can be further comforted by the observation of 
Runners’ World (Reynolds) that “Being athletic accounts for ten times more victims 
than any other risk factor.” 

These reports in the popular press, along with reports in research literature, are 
mostly describing the results in terms of relative rather than absolute risk. So, for 
example, instead of commenting that DVT developed in only about 0.10% (10% of 
1%) of passengers wearing flight socks, the website reports that the risk is reduced by 
up to 90%. This puts what might be seen as a tiny reduction in risk (just 90% of 1%) 
into perspective and shows its importance. 

In this paper, we will show how these ideas of relative risk can be applied to 
educational data and discuss the benefits and issues arising. We illustrate the methods 
and challenges by some reanalyses of longitudinal data on students’ understanding of 
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decimals. This was a cohort study, which tracked the developing understanding of 
over 3000 students in Years 4 – 10 at 12 schools for up to 4 years, testing them with 
the same test at intervals of approximately 6 months. Details of the sampling, the test 
and its method of analysis and many results have been described elsewhere; for 
example, Steinle and Stacey (2003), and Steinle (2004). For the purpose of this paper, 
it is sufficient to know that students are classified into 4 coarse codes, (A, L, S and 
U) on the basis of their answers to one section of this Decimal Comparison Test. In 
general terms, students in coarse code A are generally able to compare decimals; 
students in coarse code L generally treat longer decimals as larger numbers (for a 
variety of reasons); students in coarse code S generally treat shorter decimals as 
larger numbers (again for a variety of reasons); and coarse code U contains all 
remaining students. Answers to the other items in the test refine these coarse codes 
into 12 fine codes, which represent expertise (A1, which is a subset of A), various 
particular misconceptions, or students who cannot be classified. The longitudinal 
study traced student’s understanding in terms of the coarse and fine codes and used 
this to examine questions such as which misconceptions are prevalent at different 
ages, whether some misconceptions are better to have than others, how often students 
appear to lose expertise, and whether students tend to move between misconceptions 
in predictable ways.  

AN EXAMPLE USING RELATIVE RISK AND ODDS RATIOS  
The main ideas in this paper will be illustrated by considering the question of whether 
it is better for a student to be in code L or S, i.e. from which of these groups are 
students more likely to become experts (i.e., move to code A1) on their next test? 
Table 1 summarises the data. Looking over the whole sample1, there were 847 
occasions where a student completed a test coded as S and then completed another 
test. On this subsequent test, 230 of the S students became experts and 617 did not, 
giving a 27% (230/847) chance of an S student becoming an expert and a 73% 
chance of an S student not becoming an expert. Similarly, from Table 1, there were 
1257 occasions where a student completed an L test and was followed to their next 
test. The L students had 20% (251/1257) chance of becoming an expert. It seems that 
it is better to be an S student2. 

Conditions 
Outcome1 

(A1 on next test) 
Outcome2 

(not A1 on next test) 
Total 

Condition1 (S) n11 = 230 n12 = 617 n1 = 847 
Condition2 (L) n21 = 251 n22 = 1006 n2 = 1257 

Table 1: Numbers of A1 and non-A1 tests following S and L tests 
                                              

1 More careful analysis, as in Steinle (2004), would define the samples to reduce the effect of 
confounding variables such as age.  The purpose here is to illustrate the procedures; the results 
here broadly match the refined analysis.  
2 This result is consistent with responses to individual items reported by large-scale studies 
around the world since the 1980s. See, for example, Foxman et al. (1985).  
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There are several ways in which this result can be tested statistically. A chi-squared 
test rejects the null hypothesis that the proportions of L and S students becoming 
expert are the same ( 2 14.82χ = , d.f.=1, p=0.0001). However, the chi-squared test 
simply indicates the degree of evidence for association and does not give other 
information such as a confidence interval.  

Analysing absolute differences in proportions becoming experts 
A second method is to test whether the proportions of students going to A1 (moving 
to expertise) from S and L are the same. Assuming the counts for S and L are 
independent binomial samples, the difference of the proportions from Table 1 is 
distributed approximately normally with mean (0.27 – 0.20) and standard error 0.019 
(Agresti, 1996). Hence a 95% confidence interval for the true difference in 
probabilities is 0.07 ± 1.96 × 0.019, i.e. the interval (0.03, 0.11). This confidence 
interval provides more information than the chi-squared test. The interpretation of 
this confidence interval is in terms of absolute differences in the chance of moving to 
A1 from S and L. With 95% confidence, the percentage of S students becoming 
expert is between 3 and 11 more than for L students. In other words, if we have 100 L 
and 100 S students, and if 20 L students become experts on the next test, we can be 
confident that between 23 and 31 S students will become experts.  

Analysing relative risk of becoming an expert 
Another approach to testing whether two proportions are the same is to consider the 
relative, rather than the absolute difference in the proportions as above. This is 
especially useful when the proportions are small, as the absolute differences will also 
be small, although their ratios may be large. Because of its origins in epidemiological 
studies, the proportions of interest are classically labelled risk, but in our 
circumstance (where becoming an expert is a benefit rather than a harm) chance 
seems a more appropriate label. To answer the question of whether it is better to be S 
or L, the relative risk (chance) of becoming an expert on the next test is calculated as 
the ratio of the chances of S to A1 and L to A1. Figure 1, where the steps involved 
are demonstrated and given to two decimal places, shows that the relative chance of 
becoming an expert (from S and L in that order) is 0.27/0.20 = 1.36. This number 
indicates that an S student is 36% more likely to become an expert on the next test 
than is an L student.  

Is this a significant difference? As indicted in Figure 1, the natural logarithm of this 
relative chance (i.e. relative risk) is normally distributed (Agresti, 1996; Bulmer, 
2005), and the 95% confidence interval for the relative chance of becoming an expert 
is (1.16, 1.59). As 1.00 is not inside this interval, we are 95% confident that an S 
student is more likely to become an expert than an L student. In fact it is reasonable 
to say that an S student has at least a 16% greater chance of becoming an expert and 
possibly up to 59% more chance, compared with an L student. The best estimate is 
36% more chance since the relative chance is 1.36. This is an intuitive way of 
presenting the results, with some impact. 
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Ln 1.49 = 0.40 

SE = 0.10 

95% confidence interval 
for Ln(RR1) is 
Ln(p1,1/p1,2)±1.96×SE  

0.31±1.96×0.08 

=  (0.15, 0.46) 

95% confidence 
interval for Ln(OR1) is 
Ln(o1/o2)±1.96×SE 

0.40±1.96×0.10 

= (0.20, 0.61) 

Conclusion based on 
whether 1 is included in 
the 95% confidence 
interval for 1RR  (which 
is the antilog of above). 

95% CI for 1RR  
is (e0.15, e0.46) = 
(1.16, 1.59) 
which does not 
include 1.00 

Conclusion based on 
whether 1 is included in 
the 95% confidence 
interval for 1OR (which 
is the antilog of above). 

95% CI for 1OR  
is (e0.20, e0.61) = 
(1.22, 1.83) 
which does not 
include 1.00 

Figure 1: Calculations of Relative Risk and Odds Ratio from Table 1 

Analysing the odds ratio for becoming an expert 
The right-hand side of Figure 1 also provides an explanation of a related measure of 
association called the odds ratio. The odds of an S student becoming an expert on the 
next test are 230:617 = 0.37 and the odds for an L student are 251:1006 = 0.25. The 
odds ratio is therefore 0.37/0.25 = 1.49. The calculation of the 95% confidence 
interval for the odds ratio is (1.22, 1.83) (Agresti, 1996; Bulmer, 2005). As 1.00 is 
not inside this interval, we can be 95% confident that there is a true difference 
between the odds for an S and an L student becoming an expert on the next test.  

The odds ratio is harder to interpret than the relative risk considered above, but it is 
widely used because it can be applied to a wider range of research designs than 
relative risk, and has strong mathematical properties giving it a role in other statistical 
testing. Moreover, when the risks of the event under both conditions are low (e.g. less 
than 10%), the odds ratio is a good approximation to the relative risk and can be 
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interpreted as such. SPSS performs odds ratio calculations under the Crosstabs menu, 
as the Mantel-Haenszel common odds ratio estimate. 

Features of Relative Risk and Odds Ratio Analyses 
In using both relative risks and odds ratios, it is important to think carefully about 
what is a good comparison to demonstrate an effect. If we had carried out the odds 
ratio analysis for L compared to S (i.e. swapping conditions in Table 1) then the odds 
ratio would have been the reciprocal i.e. 1/ 1.49 (i.e. 0.67). Similarly, the relative risk 
of moving to expertise of L compared to S is the reciprocal of 0.20/0.27, i.e. 74%. 
When the relative risk is less than one, it is common to use relative risk reduction to 
present the results. Instead of saying that an L student has only 74% of the chance 
(risk) of becoming an expert that an S student has, it is common to talk about a 26% 
reduction in the chance of becoming an expert, as was done in the DVT example in 
the introduction. This again is an intuitive way of presenting the results with impact. 

If the odds ratio test gives a significant result for S compared to L, will the test also 
be significant for L compared to S?  The answer is yes: the only disadvantage is that 
the point estimates less than 100% are harder to describe in words, as indicated 
above. The formulas in Figure 1 show that the confidence interval would have been 
obtained from the reciprocals (1/1.83, 1/1.22) = (0.55, 0.82). So, if one of these 
confidence intervals includes 1.00 (so that the null hypothesis is accepted), then the 
other will automatically. The same situation applies for relative risk: if S compared to 
L is significant, then L compared to S will be significant. The choice of whether to 
discuss condition1 to condition2 or vice versa is therefore a choice between 
interpreting ratios greater or less than one.  

Another important question is: if a test of the relative risk (or odds ratio) shows a 
significant difference in the chances that an event E happens, would these tests show 
significant differences in the chances that the event not-E happens? In our example, 
both the relative risk and odds ratios show S students have more chance of becoming 
expert than L students. Is it also the case that there is a significant difference in the 
chance of S students, compared with L students, not becoming an expert on their next 
test? Note that in this case, risk is a good term because not becoming an expert is a 
perceived harm. For the odds ratio, this result is true – a significant result for event E 
implies a significant result for event non-E. This is an advantage of the odds ratio 
analysis. This situation, however, does not automatically follow for relative risk 
analysis. For example, the relative difference between risks of 1% and 2% for event E 
is much larger than the relative difference for risks of 99% and 98% for event non-E. 

ESTIMATES OF RISK IN THE LONGITUDINAL DATA 
In this section, we apply the techniques described above to questions of hierarchy 
(which misconceptions are better to have), and persistence (are some misconceptions 
likely to trap students more than others), and consider some of these questions by 
comparing students in primary school (Years 4 – 6) with secondary school students 
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(Years 7 – 10). As noted above, Steinle (2004) presents an analysis where 
confounding variables related to the sampling are treated carefully. The results 
presented here are in agreement with those from more careful analyses and therefore 
summarise some of the major results of the refined data analysis.  

Hierarchy: which misconceptions are best to have? 
The preceding analysis demonstrated that a student in code S is more likely to 
become an expert (A1) by the next test than a student in code L. The 95% confidence 
intervals of both relative risks (RR) and odds ratios (OR) determined in Figure 1 are 
provided graphically in Figure 2 (see the lowest two rows). Confidence intervals 
which are larger than 1.00 indicate a significant difference with the condition first 
listed having the larger result. So, it is clear being in L is worse than being in S, but 
which is the best code to have: S or U or A?  

The intermediate rows of Figure 2 show the confidence intervals for both measures 
(RR and OR) for a comparison of code U with code S. The RR indicates that a U 
student is between 1.2 and 1.6 times more likely than an S student to be an expert on 
the next test. (Typically, students who answer the test inconsistently and hence are 
not classified by the test, belong to the group U). The top two rows in Figure 2 show 
that in turn, students in code A are more likely than those in code U to be experts on 
the next test. This is to be expected, since the numerically largest group in code A is 
in fact the experts (A1). Note that the confidence interval for OR in row 2 is off the 
graph to the right (it is between 7.8 and 10.9).  

Together these results show that the hierarchy of these four codes is (highest to 
lowest) A, U, S, then L. It is best to be an expert or near expert (i.e. in A), then it is 
best to be undecided (U), then to have a shorter-is-larger (S) misconception and worst 
to have a longer-is-larger (L) misconception. 

0.00 0.50 1.00 1.50 2.00 2.50 3.00

OR to A1 (S,L)
RR to A1 (S,L)

OR to A1 (U,S)
RR to A1 (U,S)

OR to A1 (A,U)
RR to A1 (A,U)

 

Figure 2: Confidence intervals for RR and OR analyses of the movement to expertise 
from various codes. (Note. Row 2 is off the scale to the right, so not shown)  
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Persistence: do some misconceptions keep students longer than others?  
Steinle (2004) examined various measures of persistence – how often students retest 
in the same code on their next test. The basic finding was that 89% of A1 students 
retest as A1 at the next test (i.e., persist in A1), compared to 44% of L students 
persisting in L, 38% of S students persisting in S and 29% of U students persisting in 
U. Note that persisting in A1 is desirable, while persisting in other codes is not. 
Closer analysis showed interesting variations between older and younger students, 
some of which are summarised graphically in Figure 3. 

The top two rows of Figure 3 show that, as both confidence intervals include 1.00, 
there is not a significant difference in the persistence in A1 by students in Secondary 
school compared with students in primary school. The next two rows are to the left of 
1.00 indicating that there is a significant difference and it is the younger L students 
who have higher levels of persistence than the older L students. Rows 5 and 6 
indicate that the opposite result holds true for the S students. In particular, row 5 
indicates that older S students are approximately 1.5 times more likely to persist in S 
than the younger S students. The last two rows indicate that there is no significant 
difference between older and younger U students in their persistence in U. 

0.00 0.50 1.00 1.50 2.00 2.50
OR stay U(Sec,Prim)
RR stay U(Sec,Prim)

OR stay S(Sec,Prim)
RR stay S(Sec,Prim)

OR stay L(Sec,Prim)
RR stay L(Sec,Prim)

OR stay A1(Sec,Prim)
RR stay A1 (Sec,Prim)

 

Figure 3: Confidence intervals for RR and OR analyses of the persistence in various 
codes between students in Secondary and Primary schools 

CONCLUSION 
The main aim of this paper has been to explore the application of techniques of 
relative risk and odds ratio analysis to our educational data. Reporting relative risk 
(or reduced relative risk) is very common in the popular press as well as in the 
scientific literature in other fields, and so it seems worthwhile investigating it for our 
context. There are several advantages, which relate to the ease of interpreting the 
change in risk and the way in which it provides an alternative presentation of results 
in possibly a more memorable form.  Contrast these two statements: An S student has 
an extra 30% to 40% chance of becoming an expert, compared with an L student, 
with, The rate that S students become experts (27%) is 7% more than the rate of L 
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students becoming experts (20%). The difficulty of describing the last absolute, rather 
than relative, result highlights the inadequacy of ordinary language in distinguishing 
absolute and relative change, especially when it is a change in rate or percentage that 
is being discussed. Analysing relative risk approach has advantages here, along with 
providing confidence intervals.  

We expect that some members of the mathematics education community will be 
uncomfortable when we draw upon the medical context for research methods, even to 
analyse results. It is inherent in applying these concepts, to take an undesirable 
outcome (such as a disease or even death) as an implied metaphor for mathematical 
error or misunderstanding. When using any metaphor, different aspects of the 
metaphor will be carried across to the target situation by different people. Our 
position is that we can focus on the positives, as mathematical error as something to 
be overcome by joint effort of student and teacher. Other people may feel some 
discomfort in the use of techniques from medical research because of concerns about 
the way in which medical research has been simplistically held up as the “gold 
standard” for educational research in debates on funding principles in the USA 
(NCTM Research Advisory Committee, 2003). We contend that choice of 
methodology or data analysis techniques should not be judged by political or social 
associations, but by scientific reasoning. On the other hand, terminology needs to be 
chosen with sensitivity to the social needs in the area of application. Analysis of odds 
ratio and relative risk seems to have much to offer, although the language with which 
they are expressed needs modification.  

References 
Agresti, A. (1996). An introduction to categorical data analysis. John Wiley: New York. 
Bulmer, M. (2005). A Portable Introduction to Data Analysis. 3rd edition. The University of 

Queensland Printery.  
Capraro, R. M. (2004). Statistical significance, effect size reporting, and confidence 

intervals: Best reporting strategies. Journal for Research in Mathematics Education, 
35(1), 57 – 62.  

Foxman, D., Ruddock, G., Joffe, L., Mason, K., Mitchell, P & Sexton, B. (1985). A Review 
of Monitoring in Mathematics 1978 to 1982. (Vol. 1). London: Dept of Ed.& Science. 

Newcombe, R. (2003). DVT plane risk may be lower than thought. BUPA Health news.  
http://www.bupa.co.uk/health_information/html/health_news/ Accessed 11 Jan 2005. 

NCTM Research Advisory Committee. (2003). Educational research in the No Child Left 
Behind environment. Journal for Research in Mathematics Education, 34(3), 185-190. 

Reynolds, M. (n.d.) Air Travel: Runners at Risk? Accessed 11 Jan 2005, from 
http://www.runnersworld.com/article/0,5033,s6-188-0-0-1392,00.html  

Steinle, V., & Stacey, K. (2003). Grade-related trends in the prevalence and persistence of 
decimal misconceptions. In N.A. Pateman, B.J. Dougherty & J. Zilliox (Eds.), 
Proceedings of the 27th Conference of the International Group for the Psychology of 
Mathematics Education (Vol. 4, pp. 259 – 266). Honolulu: PME. 

Steinle, V. (2004). Changes with Age in Students’ Misconceptions of Decimal Numbers. 
Unpublished PhD, University of Melbourne, Melbourne. 



 

 

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 225-232. Melbourne: PME.  4-225 
 

GIRLS JOURNEY TOWARDS PROPORTIONAL REASONING  
Olof Bjorg Steinthorsdottir 

University of North Carolina-Chapel Hill 

This study focused on 26 girls’ development of proportional reasoning in two fifth-
grade classrooms in Iceland. The students were used to instructional practices that 
encouraged them to devise their own solutions to mathematical problems. The results 
supported four levels of proportional reasoning. Level 1, girls showed limited ratio 
knowledge. Level 2, they perceived the given ratio as an indivisible unit. Level 3, 
students conceived of the given ratio as a reducible unit. And at Level 4 students no 
longer thought of ratios exclusively as unit quantities, but understood the proportion 
in terms of multiplicative relations. The results suggest that students can reach level 
3 reasoning with less struggle than it takes to achieve level 4, which suggests that the 
knowledge needed to operate on level 3 was within their reach. 

OBJECTIVES 
This study investigates the developmental of proportional reasoning of girls in two 
fifth-grade classes in Iceland. The purposes of this study was to further investigate 
four levels of proportional reasoning identified in a pilot study that the author 
conducted in collaboration prior to the study reported here (Carpenter et al. 1999). In 
particular, do the four levels describe the pathway of a population of Icelandic girls 
before, during, and after they have engaged in a unit focused on proportional 
reasoning? Secondly, what evidence is there for the existence of Level 2, Level 3, 
and Level 4 ways of reasoning in students’ verbal protocols? And finally how does 
instruction that is focused on students’ reasoning help students make the transition 
from level to level? 

BACKGROUND AND THEORETICAL ORIENTATION 
Proportional reasoning represents a cornerstone in the development of children’s 
mathematical thinking (Inhelder & Piaget, 1958; Resnick & Singer, 1993). Ratio and 
proportion are critical ideas for students to understand; however, although young 
children demonstrate foundations for proportional reasoning, students are slow to 
attain mastery of these concepts.  
Many studies on children’s proportional reasoning provide evidence of various 
influences on students’ thinking about proportion. Among these influential factors are 
the problem numerical structures1. The number structure refers to the multiplicative 
relationship within and between ratios in a proportional setting. A “within” 

                                              
1 Another term commonly used is “numerical structure”. I will use the term “number structure” or 
“numerical relationship” when talking about the multiplicative relationship that is presented in 
the problem. 
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relationship is the multiplicative relationship between elements in the same ratio2 
whereas a “between” relationship is the multiplicative relationship between the 
corresponding parts of the two ratios. 
The multiplicative relationship can be integer or noninteger. For example, the 
problem x

12
4
2 =  has integer multiples both within the given ratio (2 × 2 = 4) and 

between ratios (2 × 6 =12). In a noninteger ratio, on the other hand, occur when at least 
one of the multiplicative relationships (within the given ratio or between the two 
ratios) is not an integer (Freudenthal, 1983; Karplus, Pulos, & Stage, 1983). For 
example, the problem x

48
5
8 =  has an integer multiple between the two ratios 

( 4868 =× ) but the within-ratio relationship is noninteger ( 58 8
5 =×  or 815 5

3 =× ) 
(Abromowitz, 1975; Freudenthal, 1983; Karplus et al., 1983; Tourniaire & Pulos, 
1985). 
From Qualitative to Multiplicative Reasoning 
Researchers have hypothesized that students’ learning of proportional reasoning can 
be described as a learning trajectory3 (Carpenter et al., 1999; Inhelder & Piaget, 1958; 
Karplus et al., 1983). The literature on proportional reasoning reveals a broad 
consensus that proportional reasoning develops from qualitative thinking to 
multiplicative reasoning ( Abromowitz, 1975; Behr, Harel, Post, & Lesh, 1992; 
Confrey, 1995; Inhelder, & Piaget, 1958; Kaput & West, 1994; Karplus et al., 1983; 
Kieren, 1993; Noelting, 1980a, 1980b; Resnick & Singer, 1993; Vergnaud, 1983).  
Studies of individual cognition and the development of proportional reasoning have 
identified three categories of strategies that students use in reasoning about 
proportional relationships: qualitative, additive, and multiplicative (Behr, Harel, Post, 
& Lesh, 1992; Inhelder & Piaget, 1958; Karplus et al., 1983; Kieren, 1993; Resnick 
& Singer, 1993). These strategies represent different levels of sophistication in 
thinking about proportions.  
Research with preadolescent students indicates that their representation of situations 
that involve ratio and proportion occurs on an informal basis long before they are 
capable of treating the topic quantitatively. A qualitative reasoning strategy is based 
on an informal or intuitive knowledge of relationships without numerical 
quantification (Kieren, 1993). Next is additive reasoning, which requires 
quantification of the ratio relationships. The process of additive reasoning is often 
referred to as a buildup strategy. For example, consider the following problem: 

                                              
2 Here I define ratio as the relationship between two quantities that have two different measure 
units. 
3 By learning trajectory, I am referring to the path that student reasoning travels as students’ 
understanding of proportion develops. As students reasoning develops, so too does student ability 
to solve increasingly complex problems. Corresponding to their increasing ability to solve 
difficult problems, students’ strategies for solving problems also get more complex and more 
mathematically sophisticated. 
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It is lunchtime at the Humane Society. The staff has found that 8 cats eat 5 large cans 
of cat food. How many large cans of cat food would the staff members need to feed 
48 cats? (In an algebraic equation, x

48
5
8 = .) 

A student might use a buildup strategy to arrive at the solution of 30 cans (Figure 1). 
Cats 8 16 24 32 40 48 
Cans 5 10 15 20 25 30 

Figure 1. Buildup strategy in the form of a ratio table for the problem x
48

5
8 =  

Buildup strategies are often observed during childhood and adolescence and appear 
to be the dominant strategy for many students these ages (Kaput & West, 1994; 
Tourniaire & Pulos, 1985). Although the buildup strategy can be used successfully in 
many cases, developing more sophisticated reasoning is crucial for solving more 
complex problems and understanding the complexity of the multiplicative 
relationship (Tourniaire & Pulos, 1985). Proportional reasoning is multiplicative and 
therefore the transition from buildup strategies to multiplicative strategies is 
considered to be a benchmark of development (Inhelder & Piaget, 1958; Karplus et 
al., 1983; Noelting, 1980a, 1980b).  
When solving simple proportion problems, two types of multiplicative strategies have 
been identified: “within ratio” and “between ratios” (Karplus et al., 1983; Noelting, 
1980a; Vergnaud, 1983). The within-ratio strategy is based on applying the 
multiplicative relationship within one ratio to the second ratio to produce equal ratios. 
The between-ratio strategy is based on determining the multiplicative relationship 
between corresponding parts of the two ratios to create equal ratios. For example, 
consider the following problem: 
A hiking group is organizing a field trip, and they estimate that it will take 3 hours to 
walk 9 km. How long will it take the group to walk 33 km? (In an algebraic equation, 
3
9 = x

33 .) 
Either ratio strategy—within or between—can be used to find the answer. A student 
using the within-ratio strategy would notice that the distance is 3 times the hours 
( 3× 3 = 9) and therefore the same should apply to the target ratio, which would result 
in 11 hours (11× 3 = 33). A student using the between-ratios strategy would look for 
the multiplicative relationship between 9 km and 33 km, realize that 33 = 9 × 3 2

3 , and 
multiply 3× 3 2

3 =11 to get the answer.  
While earlier research on students’ reasoning relied on within-ratio and between-
ratios strategies to analyze students’ thinking (Abramowitz, 1975; Karplus et al., 
1983; Vergnaud, 1983), Lamon (1993; 1994; 1995) offered a different lens through 
which to understand students’ development of proportional reasoning. Lamon 
proposed two processes, unitizing and norming, as central to the development of 
proportional reasoning. Unitizing involves the construction of a reference unit from a 
given ratio relationship. Norming refers to the reinterpretation of another ratio in 
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terms of that reference unit (Lamon, 1994; 1995). For example, consider the previous 
problem about the Humane Society (in an algebraic equation, x

48
5
8 = ). 

Using norming and unitizing, a student might interpret the target ratio as a multiple of 
the given ratio 5

8 . Therefore, she needs six groups of the 8-to-5 ratio unit in order to 
get an answer for 48 cats. For their calculations, students might use methods such as 
buildup strategies or direct multiplication. A student using a between strategy, on the 
other hand, would consider a single quantity in the given ratio and operate on that 
quantity, recognizing that the same operation must apply to the second quantity. 
Referring to the same equation, x

48
5
8 = , the student multiplies 8 × 6 to get 48 then 

multiplies 5 × 6 to get the answer, 30. When unitizing and norming, the student thinks 
of the ratio as a complex unit. The student can operate on the unit 5

8  by adding, 
multiplying, or reducing—but each operation is interpreted as creating a new unit that 
preserves the relationship within the given ratio. In other words, when unitizing or 
norming, the operation is performed on the ratio as a unit instead of individual terms 
in the ratio. 
Using Lamon’s (1994; 1995) operation of unitizing and norming, the author and team 
of colleagues identified 4 levels of reasoning in a pilot study conducted in the US in 
one classroom over a 2 weeks period (Carpenter, et. al. 1999). At Level 1, students 
showed limited ratio knowledge. The most common strategy was finding the additive 
differences within and between the ratios. Level 2 is characterized by the perception 
of the ratio as an indivisible unit. Students at this level are able to combine the ratio 
units together by repeated addition of the same ratio to itself or by multiplying that 
ratio by a whole number, but they cannot solve proportion problems in which the 
given ratio has to be partitioned such as, problems in which the target ratio is a 
noninteger multiple of the given ratio (e.g., x

42
12
8 =  or x

2
3
8 = ). At Level 3, the given 

ratio is thought of as a reducible unit. Therefore, students at Level 3 can scale the 
ratio by nonintegers. An example of a Level 3 strategy combines the reduction of the 
given ratio with a buildup strategy by using either addition or multiplication. Students 
at Level 4 think of ratios as mere than just as unit quantities. They recognize the 
relation within the terms of each ratio and between the corresponding terms of the 
ratios.  

METHOD AND ANALYSIS  
The subjects of this study are the 26 fifth-grade4 girls in two classrooms at one of 
Reykjavik’s public schools. I observed every math class throughout the course of the 
study, taking on the role of “participant observer”. During data collection, students 
worked on 24 problems that were created during 10 weeks of instruction. Each set of 
problems was composed of three problems with the same contextual structure but 
with different multiplicative relationships in the proportion. The numbers were 
chosen to further students’ understanding of proportion and to aid their recognition of 
                                              

4 Fifth grade in Iceland refers to children that turn 10 years old in the year they start 5th grade. 
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the multiplicative relationships in the two ratios in the proportion. By varying the 
multiplicative relationship in the problems, sets of problems were created to 
distinguish between Level 2 and Level 3 students and between Level 3 and Level 4 
students 
The pretest and the posttest were created using the same criteria as the instructional 
problems in regard to the number structure of the problems. The pretest comprised of 
18 problems in three sets with different multiplicative relationships. The posttest 
comprised 12 problems. Students’ problems solutions strategies were collected. 
During instructions students worked both individually and in groups on their 
problems. All the written work the students produced and artifacts from their work 
were collected. Also all whole-classroom discussions were videotaped and 
transcribed.  
The criteria for determining what each student’s level of reasoning was based on 
upon which problems she could solve and which problem she could not. Level 1 
students use incorrect strategies. The most common strategy is to find the additive 
difference within the given ratio or between the ratios and apply that difference to the 
target ratio. 
At Level 2 students perceive the given ratio as an indivisible unit and interpret it as a 
unit whole. They are able to solve only problems that have an integer relationship 
between the ratios, such as 366

2 x= . The numbers in the target ratio have to be bigger 
than the numbers in the given ratio. At Level 3 students perceive the given ratio as a 
divisible unit. The given ratio is interpreted as a unit whole. Level 3 students are able 
to solve problems that involve both an integer and a noninteger relationship, such as 

x
15

12
6 = . Finally at Level 4 students no longer think of ratios exclusively as unit 

quantities. They can take into account both the within and between relationships and 
choose the one relationship that is easier to calculate. They are not limited to building 
up or partitioning the given unit.  

RESULTS 
Question 1. The four-level model of proportional reasoning identified in the pilot 
study proved to be a beneficial tool to analyze their work. Analyzing the pretest the 
classification of students’ solutions resulted in the creation of a transitional level 
“emerging Level 3”. On both pre- and posttest the results show a perfect fit; students 
on Level 2 were not able to solve any of more complex problems that emerging Level 
3 students were able to solve successfully, nor were the emerging Level 3 students 
able to solve any of the most complex problems that Level 3 students were able to 
solve with success.  
The problems were structured to discriminate between students at different levels of 
reasoning. Problems that could be solved by students reasoning on Level 2 had an 
integer relationship between the ratios and involved enlarging (e.g., 248

2 x= ). Students 
reasoning on Level 3 could solve problems that were previously mentioned as well as 
problems that have a noninteger relationship between the ratios ( 216

5 x= , x
6

10
15 = ). 
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Problems that proved to be transition problems from Level 2 to Level 3 were the 
problems that had a scale-down number structure such as x

2
24
8 = . The difference 

between Level 2 and Level 3 reasoning is the need to scale down the given ratio. 
During the emerging Level 3 stage, students are able to scale down by whole 
numbers but they cannot use their knowledge of scaling down within other number 
structures. Strategies that students used to solve the problem distinguished between 
Level 3 and Lev el 4 reasoning.  
On the pretest, 35 percent of the girls displayed Level 1 reasoning. Around 40 percent 
exhibited Level 2 reasoning. Twenty-three percent of the girls were emerging Level 
3. One girl showed Level 3 reasoning on her pretest. On the posttest only 3 girls 
reached Level 4 thinking, whereas more than 80 percent reached Level 3 thinking. 
Therefore, it is evident that reaching Level 4 thinking involves a very complex 
thinking that most of the girls had not yet adopted.  
Question 2. Throughout the course of the study, girls were thinking about the given 
unit as a single entity that they then operated on to reach their target number. The 
buildup strategy, the most common strategy, provides clear evidence of the ways in 
which students understand the given ratio as a single unit that they can then build up 
or build down. Common explanations from the girls were related to the idea that 
everything they did had to apply to both terms of the ratio.  
Following is an example of a Level 2 girl’s explanation of her strategy for the 
following problem to support that argument: It is lunch hour at the humane society. 
The staff members have found out that 8 cats need 5 large cans of cat food. How 
many large cans of cat food would they have to have if they were to feed 48 cats? 
Student: I did it—like, here is 8 and then 5 cans of food, and then again—then there is 

8 and 16 cans of food until I…reached 48 cats, and then the answer is 30 
cans of cat food. 

Teacher: How did you know that you should have 8 groups? 
Student: Well, I did not know that because I did 8:5 and 8:5 and 8:5 and added the 8s 

together until I had 48. 
She explained her strategy in terms of the unit as an entity. She operated on the unit 
of 8:5 until she reached her target number of 48. She did not think in advance about 
the number of groups she had to use; rather, as she is building her units, she is adding 
on until she know where to stop. 
Question 3. Nina represents close to 30 percent of the students. She was a typical 
Level 1 student at the time of her pretest. In the beginning of the unit, Nina needed a 
little scaffolding to help her move away from her additive thinking. She quickly 
solved her first problem ( 366

2 x= ) by finding the additive difference between the ratios. 
Her first answer was 32. After only a few questions, she was able to get on the right 
track.  
Teacher: What if you had 4 cans of food, how many cats could you feed? 
Nina: 8 cats. 
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Teacher: We know that 2 cans of cat food can feed 6 cats. We get 2 more cans, and 
can they only feed 2 more cats? 

Nina: No, 2 cans can feed 6 cats, not 2. 
Teacher: What does that mean, then? 
Nina: Well, it is like if 2 cans can feed 6 cats, then another 2 cans can feed another 

6 cats. 
Teacher: Think about that more and how you can solve your problem differently. I 

will come back to you. 
The teacher left Nina to grapple with her new ideas about the problem. When it came 
to sharing time, Nina had not yet figured out how to go about solving the problem 
with her newfound knowledge. A couple of the strategies that were shared were 
buildup strategies in which students took the given unit 6

2  and built it up unit-by-unit 
to reach the target number. Nina really liked that strategy and utilized it with success. 
When the teacher got to Nina, she had solved the problem by using a buildup 
strategy. When the teacher asked her to explain what she had done, it became clear 
that she understood clearly what the numbers in the buildup strategy stood for.  
Nina: First there were 2 cans and 6 cats, then next there would be 4 cans for 12 

cats and— 
Teacher: And why is that? 
Nina: It’s like first there were 2 cans and 6 cats, then there were 2 more cans 

and 6 more cats would eat that, and that is like having 4 cans and 12 cats. 
When Nina started working on the second problem, she paused a little bit and thought 
hard before solving the problem with a buildup strategy. The scaffold from the 
teachers and from the discussion of different strategies provided a basis for girls to 
attain more advanced levels of proportional reasoning. The case of Nina shows how a 
student was afforded the opportunity to learn from her teacher and from other 
students using more advanced thinking. This example also illustrates how less 
advanced students may learn from listening to other students explain more efficient 
strategies than they commonly use and how a class may build on ideas that are 
distributed among members of the class. 
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UNIVERSITY STUDENT PERCEPTIONS OF CAS USE IN 
MATHEMATICS LEARNING 

Sepideh Stewart and Michael O. J. Thomas 
The University of Auckland 

While research has shown many potential benefits of computer algebra system (CAS) 
calculators in the learning of mathematics, it has also identified a number of 
obstacles to attaining them. Most research has been conducted with secondary school 
students, but this study considered the manner in which beginning university students 
perceive the benefits and difficulties associated with CAS use. The results describe a 
number of obstacles to such use and the ways students employed them in their study.  

BACKGROUND 
One of the technologies that has been of special interest over the past decade is the 
implementation of CAS on calculators. There has been enthusiasm in many quarters 
for the possibilities that this technology presents, but some research has shown that 
the potential is not always realised. For example, Hong, Thomas, and Kiernan (2000) 
have shown there is a problem when students come to rely on CAS since it can then 
undermine their learning, preventing them from learning important concepts and 
procedures. Another important area, and one addressed in this study, is the negative 
reaction of certain students to the use of CAS, as recorded by Bergsten (1996). While 
for some this attitude stems from their background in mathematics (where, as Artigue 
(2002) explains, by-hand techniques may have an elevated status), for others it is 
learned. It may originate in the challenge of the mathematical interface difficulties 
(particularly in terms of input and output formats), and the ‘black box’ syndrome, 
where students are unable to attach meaning to processes carried out within the CAS. 
While the release of the CAS potentiality depends on both instrumentalisation and 
instrumentation of the CAS tool (Rabardel & Samurcay, 2001), or how one adapts to 
the tool and how one adapts the tool to one’s mathematical needs, how these 
processes should proceed is still unclear, as neither of the steps is inherently simple.  

A common idea is that because mathematically experienced users can see wide-
ranging benefits to CAS use in learning that students will also gain from these. For 
example Thomas, Monaghan and Pierce (2004) record perceived benefits including 
the multi-representational nature of CAS, the idea that CAS can reduce user time on 
procedures freeing them to concentrate more on learning concepts, a propensity for 
experimentation and generalisation, and a strong focus on algebraic insight, functions 
and parameters. However, there are obstacles in the path of students engaging in 
instrumentalisation and instrumentation of CAS in order to get to the point where 
they can access the benefits of the instrument. Some of the obstacles to use are 
associated with the tool itself, such as the constraints of the input and the difficulty in 
translating output to mathematical notation (Drijvers, 2002) and the influence of the 
social environment (teacher and peers) on student choices.  
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Describing various categories of student CAS use they found, Thomas and Hong 
(2004) mention direct, straightforward procedures, direct complex procedures, 
checking procedural by-hand work, procedures within a complex process, and 
investigating conceptual ideas. However, they report finding little of the last kind of 
activity, and a lot of the first three, supporting the idea that instrumentalisation and 
instrumentation of CAS, where students incorporate CAS into their mathematical 
thinking, can be a slow process. It takes time and teacher direction for students to 
learn to decide what CAS is useful for, and what might be better done by hand, and 
how to integrate the two. Thomas and Hong (ibid) maintain that teachers using CAS 
in the classroom have to be both aware of the possibilities provided by the 
technology, and be confident in the roles they decide to implement. They should 
engage students in a discussion of the meaning of the CAS techniques and the 
conceptions that are being developed (Drijvers, 2002). While most CAS research has 
concentrated on the secondary school classroom, the nature of the didactic contract 
(Brousseau, 1997) in the lecture theatre and tutorial room is often quite different from 
the school situation, and hence instrumentalisation and instrumentation of CAS may 
proceed differently. In this study we were interested in university students’ 
perceptions of the factors influencing their use or non-use of CAS in a first year 
mathematics course, the CAS instrumentation, and the attitudes towards it. 
METHOD  
This research took place in June 2004 and comprised an initial case study of first year 
Maths 108 mathematics and science students from The University of Auckland. 
Maths 108 covers both calculus and elementary linear algebra and TI-89 CAS 
calculators were recently been introduced as an optional component of the course. 
For the first time in 2004, the department included detailed instructions about use of 
CAS TI-89 calculators as part of the Maths 108 coursebook. At the end of the last 
tutorial of the course each student was given a questionnaire, and of the 1014 
students, mostly 19-22 years old, enrolled in the paper 167 students (16.5%), from 
among those attending tutorials, agreed to take part in the study. Of these, 24 (5 
females, 18 males, 1 unknown) had been using the TI-89 during the course, while the 
others had not. This mirrored the total CAS take-up for the course of around 15% of 
the students. None of the students had ever used a CAS calculator before this course. 
The questionnaire (see Figure 1—format changed) was divided into two sections (A 
& B) for those using and those not using the CAS. It comprised both 3-point Likert 
scale and open questions and addressed student attitudes toward the use of the CAS 
calculator, the value of the CAS, when they decided to use it and how, and their 
possible reliance upon it. For those without a calculator we wanted to know why they 
had decided not to purchase one, and their perspective on its potential value in 
learning mathematics. Since the input from teachers is a crucial variable in attitudes 
to technology use we also asked the lecturers from the six streams of the course for 
observations on the student use of the CAS. 
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Section A: For each statement below please circle the number which most closely corresponds to your own 
view. (For TI-89 users only) 

1. The TI-89 CAS calculators do not improve my understanding of mathematics. 
2. I waste a lot of time trying to get the TI-89 CAS calculator going. 
3. I am glad that I can use the TI-89 CAS calculator during the exam. 
4. TI-89 CAS calculators help me to visualise the problems. 
5. I can solve problems using TI-89 CAS calculators even though I don’t understand the theory. 
6. My answers are usually different from the answers that the TI-89 CAS calculator gives me. 
7. I think the TI-89 manual at the back of my book is very helpful. 
8. I often check my answers using the TI-89 CAS calculator 
9. I would like to learn more about the TI-89 CAS calculators, so I can use them fully. 
10. I believe technology is the way to go to learn mathematics. 
11. I hope to use my TI-89 CAS calculator in other courses when applicable 
12. My lecturers are very supportive and encouraging in using the TI-89 CAS calculators. 
13. I explore the TI-89 by myself. 
14. I find it difficult to decide when to use the TI-89 in maths problems. 
15. Since I have been using the TI-89 CAS calculator, I have forgotten how to do the basic skills. 
16. I like to use both TI-89 CAS calculator and pen and paper when working on maths problems. 
17. I only use TI-89 CAS calculator when I am stuck using pen and paper for mathematics problems. 
18. I bought a calculator at the beginning of the year but never used it, so I think I wasted my money. 
19. I find all the TI-89 menus and key presses too difficult to remember. 
20. TI-89 CAS calculators make mathematics fun. 
21. There is not enough support outside lecture time for using the TI-89 calculator. 
22. I believe the TI-89 gives me an unfair advantage in learning mathematics.                     

Open Questions (For TI-89 users only) 
• What do you like using the TI-89 calculator for? (Why?) 
• How do you feel about using the TI-89 calculators this year? 
• Should the TI-89 calculators be used in the mathematics lectures? If so, how? 
• How do you decide when to use the TI-89 calculator? 
• Has the TI-89 calculator helped you learn any mathematics? If so, what? 
• How much do you feel you rely on your TI-89 calculator? For example, could you still do the 

problems without having one?   
• Do you just try to apply the applications of the TI-89 calculators in the course manual or do you 

explore for yourself? 
• Did you buy the TI-89 calculator at the beginning of the year but never used it? (If yes, why?) 
• Why did you buy a TI-89 calculator?  
• When did you find out there were notes at the back of your course book (notes on the CD for 150 

students) on TI-89 calculators? 
Section B: For each statement below please circle the number which most closely corresponds to your own 
view. (For those who don’t use the TI-89). 

1. I can do everything without a TI-89.  In other words I don’t need one. 
2. The TI-89 CAS calculators are far too expensive. 
3. The lecturers are not using them so why should I bother. 
4. I would have liked to have one if they were more affordable. 
5. I really don’t know if they are good or not until I have tried one. 
6. I believe students shouldn’t be allowed to use them in test and examinations, because it is not fair on 

those of us who can’t afford one. 
7. If someone showed me how useful they can be I might consider buying one. 
8. I wish I had a TI-89 that I could use. 

Please write below any other comments you would like to make. 

Figure 1: The Questionnaire  
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RESULTS 
The student results that follow need to be set in the context of the lecturers’ attitude 
to the introduction of the CAS. Lecturing style and approach are not yet prescribed in 
the department, and in 2004 none of the lecturers used the CAS, probably due to their 
inexperience with them. This is a crucial point, since as Kendal and Stacey (1999) 
found, teachers’ privileging of approaches can differentially affect student learning. It 
was clear that the Maths 108 lecturers were strongly privileging by-hand work, and 
so students could be expected to favour this approach. In addition, the majority of 
tutors on the course were also not familiar with the CAS calculators. However, the 
first named researcher was a tutor for Maths 108 and was available 4 hours a week in 
an assistance room to help with the CAS calculators. From the 6 lecturers involved in 
teaching this course, only 2 (lecturers A and B ) replied to our questionnaire. Both 
said they had encouraged students to consider the calculator, using “written 
recommendations in study guide, announcements on Cecil [the course management 
system]” (A) or “No sales pitches here, but reference to manual and encouragement 
to learn using the beast” (B). Here lecturer B’s language clearly shows a stance not 
entirely in favour of the CAS, although he had encouraged students to look at specific 
topics and pages in the manual, with announcments such as “learn to use your 
graphics calculator to find the inverse of a matrix (cf. pp. 284-285)”. Both of them 
claimed, not surprisingly, to have noticed few, if any, examples of students using the 
TI-89, either in lectures or in small group tutorials. Hence they were not aware of any 
positive aspects or problems with CAS use. Lecturer A noticed that his students were 
affected by the price factor (described in more detail below), writing that “Several 
students have other types of graphics calculator (either from high school or bought 
elsewhere at half the price). At the start of the semester I promoted the private TI-89 
tutorials vigorously, but no student enrolled. I am sure cost is a factor in all this.” Put 
in terms of the didactic contract, Brousseau (1997) explains that, while there are 
reciprocal obligations, the teacher is the prime mover in the development of the 
contract. Since the lecturers demonstrated little expectation of CAS use, and some 
may even have been opposed to its use, this would become part of their contract. 
Obstacles to use 
A second strong factor to be considered in the development of CAS use is the attitude 
of the majority of those taking the course, since this forms the social environment in 
which the use of CAS is situated. The most common reason by far for those not using 
CAS was the cost. The mean response to the statement “The TI-89 CAS calculators 
are far too expensive.” was a score of 2.78 out of 3. Of the 143 students not using the 
CAS, 72 wrote something in the open response section, and 22 of these mentioned 
the high cost as a significant barrier to use. Typical comments included “the price is 
too high and I can’t afford it”, “Far too expensive!!!”, and “it is very hard for your 
regular student to shell out hundreds of dollars for a calculator”. It appears that a 
significant number would have liked one had they been cheaper, with a mean 
response of 2.53 to the statement “I would have liked one if they were more 
affordable” and 2.21 for “I wish I had a TI-89 that I could use”. 
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Other factors preventing non-users from using the CAS included the view that they 
are of limited value, especially in terms of helping with understanding of the 
mathematics, although this may have emanated from the lecturers. The questionnaire 
statement “I can do everything without a TI-89. In other words I don’t need one.” 
elicited a mean agreement score of 2.28, and 12 wrote similar reasons stating that: 

• If I can pass the course without one then I don’t see the point. 
• It is certainly not necessary. Therefore I don’t need one. 
• I don’t think the calculator is very useful because we’re familiar with exams 

without any calculator and we can do nearly all questions without using this. 
• If you can use your brain to think and solve the problem, why you have to 

use calculator. 
Another factor was the perceived limited ‘shelf life’ of the calculator. Students did 
not want to invest in something that they thought would not be used in future courses: 
“If I can use TI-89 in all the maths course (not only 108 and 150) exam. I may 
consider to buy one.”, “Not useful after course’s finished.”, and “It is far too 
expensive and not worth to be purchased if we only use it for one semester.” 
Interestingly, in contrast to the view that CAS was not useful, there was even stronger 
agreement with the statement that “I believe students shouldn’t be allowed to use 
them in test and examinations, because it is not fair on those of us who can’t afford 
one.” (Mean 2.41). This seems to indicate a clear perception that the CAS was useful, 
and hence unfair. This was confirmed by 13 of the open responses, including: 

• Students should not be encouraged to use TI-89 calculators in exams and 
tests…It is unfair for those who do not have calculators. 

• I really believe that students shouldn’t be allowed to use them in test and 
examinations. It is unfair for us who do not got one.  

• I think that these TI-89s should be forbidden to use in tests and exams 
because with this calculator you basically don’t need to know how to do 
differentiation, integrations, matrices etc. and still do well. Which means the 
other students will have quite an advantage. 

Although, as one person noted, there was also the factor of a perceived time gain: 
“People without it are at a slight disadvantage in terms of time spent in the exam 
calculating manually. We’d have less time to do the rest of the test/exam. Few extra 
mins could be the difference between passing/failing for some people”, and another 
mentioned the ability to check answers “It is kind of unfair, with the advantage of 
others to be able to check their answers during exams.” 
A fourth reason, given by 8 of the students, was that they saw the CAS as too 
complicated to use (maybe they had looked at those belonging to friends or had read 
the coursebook), and hence too much effort was required to learn its use.  

• It’s very complicated to use and takes quite a lot of time. 
• It takes a long time to learn how to use TI-89 calculators. 
• Not easy to use sometimes may make me confused! 
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• I’ve got one, but don’t know how to use it. Too much time and effort to 
learn how. 

In the light of the lack of compulsion, or privileging of the CAS by the lecturers 
(described above), it was interesting to note that 5 students picked up on this and 
interpreted it as meaning that the CAS was not really necessary for the course.  

• It is not widely used, and not required, therefore I see no need in getting it. 
• If they are good for the course then they should be made compulsory. 
• If the lecturers force us to use, I’d like to buy one, otherwise, I prefer 

thinking by myself. 
• It would better that lecturers teach us how to use TI-89, and using in the 

lecture, that I will think about to buy one. 
Positive use of the CAS 
In an environment where they were left more or less to their own devices, guided 
only by the coursebook notes, the 24 students who used the CAS seem to believe that 
they have got some benefits from it. Table 1 gives their levels of agreement with each 
of the 22 questionnaire statements (see Figure 1). 

Statement 1 2 3 4 5 6 7 8 9 10 11 
Mean 1.88 2.00 2.83 2.65 2.21 1.67 2.37 2.50 2.96 2.46 2.92 
Statement 12 13 14 15 16 17 18 19 20 21 22 
Mean 2.29 2.54 1.83 1.37 2.92 1.78 1.74 1.92 2.17 2.50 1.67 

Table 1: Mean level of agreement with the questionnaire statements 

Statements 1, 3, 4, 10, 11, 20 and 22 form a subset addressing the value of the CAS. 
While a few felt that the CAS did not improve their understanding of mathematics 
(1), and they were unwilling to admit to any unfair advantage (22), they were very 
glad they could use CAS in the examination (3), believe in the CAS (10) and strongly 
asserted that they want to use it in future mathematics courses (11). However, 
statements 9 and 21 give evidence that they want to learn more about the CAS in 
order to use them more fully. When asked ‘How do you feel about using the TI-89 
calculators this year?’ 11 responded positively, 2 somewhat negatively, 3 were 
ambivalent because it was “still a learning curve”, they lacked confidence or needed 
more assistance, and 2 claimed to be neutral or “a little dubious”. 

Considering the picture of the types of use made of CAS given by statements 5, 13, 
14, 15, 16 and 17, we find that they agree they can sometimes do the questions 
without understanding the theory (5), but do not believe that they have lost basic 
skills by using the CAS (15). It may be that since this course is largely skills-based, 
and the theory is emphasised less, that the students find this harder. With or without 
CAS this may well be the case. Statements 13, 14, 16 and 17 consider 
instrumentation of the CAS, especially in terms of integration with their by-hand 
working. They agreed that they explore the TI-89 by themselves (13), an essential 
part of instrumentation, and strongly affirmed that they use both the CAS and pen 
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and paper when working on mathematics problems (16). When doing so they don’t 
have a problem deciding when to use the CAS (14), neither do they just turn to the 
CAS when by-hand methods fail (17). The responses to the open questions reveal that 
9 of the 17 responding found the CAS helpful. However, 8 of the 24 students 
primarily used the CAS for checking their by-hand working, “Checking answers, 
because I often make mistakes with signs, and the TI-89 makes it easy to check.” 
Several stated that they used the CAS when the by-hand calculation was too difficult, 
for “confirmations and when it is hard done with pen” or “basically doing tough 
calculations” or “I could do most problems, but it’s helpful when it comes to nasty 
algebra simplification”. Both of these categories of use confirm the findings of 
Thomas and Hong (2004). In addition, 7 of the students valued the CAS for drawing 
graphs or for “visualising the graph of a function” because “visualisation makes 
solving problems easier”. When asked how they decided to use the CAS, 2 of the 
students provided interesting insight into the process of instrumentation. They replied 
“If I’m stuck I’ll try to get the answer and from there work backwards.” and “Yes, 
from the answers to guess the way.” It seems that these students had found a way of 
working that involved using the direct answer from the CAS to try to work out the 
by-hand method of solution. In answer to another question, the first of these gave 
further insight into what he does, saying CAS had helped him “With differentiation, I 
have been able to recognise the patterns.” So he was assisted with the structure of the 
differentiation results by considering a number of examples on the CAS.  

Attending to statements 2, 6, 7, 12 and 19, which examine possible obstacles to CAS 
use, there is some slight agreement that the complexity of the CAS, including the 
menus and key presses is a problem, but it is not the major issue that others (Hong, 
Thomas, & Kiernan, 2000) have found with younger students (2 and 19), and they 
did not find the format of the CAS output a problem (6). One comment on this was 
that “It’s kind of hard to use because you really need to use and put the brackets, 
braces at [the] right place.” In the open responses 50% said that they explored the 
CAS by themselves as well as using the coursebook notes, since “both are necessary 
as the course book manual often lacks details”. There is agreement that the CAS 
manual at the back of the coursebook is very helpful (7), and, surprisingly in view of 
the above discussion, they thought that the lecturers had been very supportive and 
encouraging in their use of CAS (12). One student though made the telling comment 
on the existence of the CAS notes in the back of the coursebook, that “no one told us 
not even the lecturers, I don’t think they even knew about, he was like “oh” when he 
saw them last week.” 
In conclusion, we found in this study that the majority of students did not use the 
CAS because it was too expensive to buy, they saw it as of limited value in doing or 
understanding the mathematics, the effort to learn it was too great and their was little 
support in place, and the lecturing staff did not support or promote its use. In spite of 
this very negative social environment a few positive aspects of CAS use emerged 
from the small group using them. Even here though most students only employed the 
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CAS procedurally, using it to check answers, to perform complex but direct 
calculations, as well as visualise 2-D and 3-D graphs. However, two were able to 
progress beyond these basic functions to consider conceptually the structure of 
problem solutions. The students used the CAS alongside their by-hand methods and 
were making some attempts to integrate it into their learning, although there was an 
element of resorting to the CAS only when by-hand work was too difficult. Although 
there are many similarities with results from studies in schools, our results show that 
university students may be old enough and independent enough for some CAS use to 
take root even in an adverse social environment. While some obstacles to increased 
use are currently beyond control (eg price), others, such as the steep functional 
learning curve, turned out to be less of a problem than non-users anticipated. There 
would no doubt have been a greater take up of the CAS, improved instrumentation, 
and hence more prospect of beneficial outcomes, if the department had analysed its 
support mechanisms and provisions better and put in place systems to coordinate 
them and foster CAS use. We learn that a piecemeal approach to CAS use, not 
unexpectedly, produces fragmented results. 
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This paper investigates prospective elementary and secondary school teachers’ 
understanding of proof in a case where the truth set of an open sentence is broader 
than the set covered by a valid proof by mathematical induction. This case breaks the 
boundaries of students’ usual experience with proving tasks. The most important 
finding is that a significant number of students from both groups who recognized 
correctly the validity of the purported proof thought that it was not possible for the 
truth set of the open sentence to include any number outside its domain of discourse 
covered by the proof. The discussion of student difficulties provides insights into the 
development of instructional practices in teacher preparation programs aiming to 
uncover these aspects of students’ knowledge fragility and address them accordingly.  

Proof is a defining feature of mathematics and, in current school reform 
recommendations in various countries, is considered a fundamental aspect of 
instructional programs in all grade levels. However, to have success in the goal to 
make proof central to all students’ mathematical experiences, prospective teachers 
need to have solid understanding of this mathematical concept. If teacher preparation 
programs are to develop effective instructional practices that will help prospective 
teachers cultivate proof in their classrooms, it is essential that these practices be 
informed by research that illuminates prospective teachers’ understanding of proof. 
Despite the importance of this kind of research, only few studies have investigated in-
service or preservice teachers’ knowledge of proof (Knuth, 2002; Martin & Harel, 
1989; Movshovitz-Hadar, 1993; Simon & Blume, 1996; Stylianides, Stylianides, & 
Philippou, 2004). Also, these studies have focused more on the logical components of 
different proof methods than on other important features of the proving process, such 
as the relationship among the domain of discourse D and truth set U of an open 
sentence, and a proof that purports to show that the sentence is true in D.  

This paper contributes to this research area, focusing on the proof method of 
mathematical induction. Specifically, we examine what might be some common 
difficulties that prospective teachers have in dealing with a proof by mathematical 
induction that is not as encompassing as it could be (D is a proper subset of U). Based 
on anecdotal evidence that students’ normal experience is of being given 
opportunities to engage in ‘universal’ proofs (D = U), this study aims to advance the 
field’s understanding of possible issues of knowledge fragility by exposing 
prospective teachers to a case that falls outside the boundaries of what appears to 
constitute ‘standard practice’ for them. 
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METHOD 
The data for this report are derived from a larger study that aimed to examine the 
understandings of proof held by the undergraduate seniors of the departments of 
Education and Mathematics at the University of Cyprus. The participants were 70 
education majors (EMs) and 25 mathematics majors (MMs). The EMs, prospective 
elementary teachers, constituted the 50% of the seniors of the Department of 
Education during the academic year 2000-01. All of them were taking one particular 
class to which they were allocated randomly. The MMs, prospective secondary 
school mathematics teachers, were all the seniors of the Department of Mathematics. 

Consider the following statement: 
For every natural number n ≥ 5 the following is true: 1 • 2 • ... • (n – 1) • n > 2n (*) 
Study carefully the following proof for the above statement and answer the 
questions. 
Proof: 
I check whether (*) is true for n = 5:   
1 • 2 • 3 • 4 • 5 = 120 > 25 = 32.                                           True. 

I assume that (*) is true for n = k:   1 • 2 • ... • (k – 1) • k > 2k      (**) 

I check whether (*) is true for n = k + 1: 

1 • 2 • ... • (k – 1) • k • (k + 1) > 2k
  • (k + 1)                         (using (**)) 

                                                > 2k  • 2                                  (since k + 1 > 2) 

                                                = 2k+1                                     True.     

Therefore (*) is true for every n ≥ 5.         

(A) Choose the best response for the above proof:  

1. The proof is invalid. 
2. The proof shows that the statement is always true. 
3. The proof shows that the statement is true in some cases. 
4. I have no opinion. 

(B) Use the space below to explain your thinking. 
………………………………………………………………………………………………………
……………………………………………………………………………………………………… 
(C) State what happens in the special cases where: 
n = 3                      A. The inequality is true.              B. The inequality is not true.   
n = 4                      A. The inequality is true.              B. The inequality is not true. 
n = 6                      A. The inequality is true.              B. The inequality is not true. 
n = 10                    A. The inequality is true.              B. The inequality is not true. 

Figure 1: The test item. 
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The program of study at the Department of Education includes several mathematics 
courses that emphasize logical thinking. These courses provide EMs with a fair 
amount of mathematical knowledge about different types of proof including proof by 
mathematical induction. The preparation of the MMs focuses primarily on 
mathematical content and abstract thinking. 

All 95 participants responded to a specially designed test that included items on 
different methods of proof: empirical/inductive proof, proof by counterexample, 
proof by contradiction, proof by contraposition, proof by the use of computer, and 
proof by mathematical induction. The data from the test were supplemented by semi-
structured interviews with a purposeful sample (Patton, 1990) of 11 subjects (eight 
EMs and three MMs). The interviews were used to investigate further students’ 
thinking and illuminate patterns that arose from the analysis of the tests. 

In this paper we focus only on the test item that appears in Figure 1. This item 
included a statement and a proposed proof for that statement, and was asking the 
participants to evaluate the validity of the proof and explain their thinking. The 
subjects were additionally asked to state whether the sentence (inequality marked 
with *) in the statement to be proved is true or false in four particular cases: n = 3, 4, 
6, and 10. The purported proof is valid; the best response to Part A is choice ‘2.’ The 
truth set U of the inequality is {nn ∈ N, n�4}), but the domain of discourse is taken 
as D = {nn ∈ N, n�5} that does not include n=4. This set up of the test item created 
a rich context within which we were able to advance our primary goals.  

RESULTS 
Table 1 summarizes the student responses to Part A of the item. The values represent 
percentages (rounded to the nearest integer) within major. The vast majority of MMs 
(92%) said that the proof showed that the statement is always true, while the rest 
(8%) noted that the proof is invalid. Unfortunately, the students who selected the 
latter option did not explain their thinking; therefore, we cannot examine further their 
reasoning. Regarding the responses of the EMs to the same question, approximately 
half of them (54%) said that the proof showed that the statement is always true, 
almost one out of three (29%) noted that the proof showed that the statement is true 
in some cases, 13% considered the proof as invalid, and 4% expressed no opinion. 

Of particular interest is the way in which the students justified their responses. Some 
EMs who supported the validity of the proof faced difficulties in formulating a 
mathematically accurate explanation. The responses of the students EM24 and EM50 
illustrate these difficulties and in addition raise the issue of whether the students’ 
belief about the validity of the proof was well grounded on reason or not. 

EM24:  The proof shows that the statement is always true. Most of the possible cases 
have been checked and, therefore, we can conclude that the statement is true in 
general. 
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EM50:  The statement holds. However, the way mathematical induction is applied is not 
the best possible, because it has not proved that the statement is also true for n=6 
(since 6 is greater than 5) before proceeding with n=k. 

On the other hand, the majority of MMs could justify their choice, even though their 
arguments were mostly limited to saying that the proposed proof followed correctly 
the steps of the induction method. The argument of the student MM10 is indicative. 

Response Option Education Mathematic
s 

The proof is invalid 

The proof shows that the statement is always true 

The proof shows that the statement is true in some cases 
I have no opinion 

13 
54 

29 
4 

8 
92 

0 
0 

Total 100 100 

Table 1: Percentages for each response option in Part A of the test item by major. 
MM10:  You used the method of mathematical induction. You checked all the steps of 

the method and you concluded that they are applied correctly. Therefore, we can 
conclude that the statement always holds. By saying ‘always’ we mean ‘always’ 
as it is indicated in the context of the statement, that is, for n�5. 

The last comment of MM10 about the interpretation of the word ‘always’ with 
respect to the domain of discourse of the statement in the test item lies at the heart of 
the concept we wanted to investigate and marks a point that caused considerable 
trouble to students. Specifically, the data suggest that many EMs considered that the 
proposed proof showed the statement to be true in some cases, because they thought 
that when we say that a statement is ‘always’ true we mean that (a) the sentence in 
the statement is true for all natural numbers (the most commonly met case in high 
school and even college mathematics), or (b) the sentence is true for all natural 
numbers that belong to its truth set (in this particular case, {nn ∈ N, n�4}). 

EM51:  The proof shows that the statement is true in some cases, because if we check 
some other numbers, e.g., 3, the statement is false. 

EM9:  The proof shows that the statement is true in some cases. The statement is 
always true for n�5. I don’t know whether it is true for n<5. 

The same thinking that led some students to conclude that the proposed proof showed 
that the statement is true in some cases, led others to consider the proof as invalid.  

EM20:  The proof is invalid. The testing of cases should begin from the first natural 
numbers: 1, 2, 3, 4. The statement is also true for n=4. 

EM49:  The proof is invalid because the statement is true for n�4. 

EM52:  The proof is invalid because the statement is false for n=4. 

The student EM20 seems to believe that the validity of a proof by mathematical 
induction depends on whether or not the proof establishes the truth of the 
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mathematical relationship under consideration on the entire set of natural numbers 
rather than on the specific set to which the relationship refers. The students EM49 
and EM52 rejected the validity of the proposed proof based on opposite reasons. 
EM49 rejected the proof because he found a value for n (=4) outside the domain of 
discourse for which the inequality was satisfied. He seemed to believe that the proof 
was invalid because it was not as encompassing as it could be, that is, it did not cover 
the largest subset of natural numbers for which the inequality was true. EM52 failed 
to see that the inequality was satisfied for n=4 and considered that this violated the 
assertion ‘the proof shows that the statement is always true.’ He therefore appears to 
think that a valid proof would show the truth of the inequality over a broader set than 
its domain of discourse, possibly the set of all natural numbers. 

 n = 3 n = 4 n = 6 n = 10 
Education 83 56 87 91 
Mathematics 96 64 100 96 

Table 2: Percentages of correct responses to Part C of the test item by major. 

Part C of the test item helps investigate further students’ understanding of the relation 
between the domain of discourse of the statement to be proved and the truth set of the 
inequality. Table 2 summarizes the percentages of correct responses to each of the 
special cases in the test item by student major (the values are rounded to the nearest 
integer). The highlight of the table is the failure of many students from both majors to 
realize that the inequality is true for n=4; the percentages of success were 56% and 
64% for EMs and MMs, respectively. Given the simplicity of the calculations 
required to check the inequality for n=4, it is plausible to assume that the students 
reached this conclusion based on an erroneous reasoning. This reasoning was most 
probably associated with the fact that number 4 was not included in the domain of 
discourse of the statement. The difference in the percentages of success between the 
first two special cases, n=3 and n=4, may be attributed to the fact that the latter 
belongs to the truth set of the inequality whereas the former does not. A student who 
believed that the inequality could not hold for values outside the domain of discourse 
of the proved statement would accidentally get the first right and the second wrong. 
The higher percentages of success for the other special cases, n=6 and n=10, were 
expected given that many students accepted the validity of the proposed proof and 
these cases belonged to the domain of discourse of the proved statement. Also, the 
calculations were not difficult for the students who chose to carry them out. 

Table 3 presents a detailed analysis of the results obtained from parts A and C of the 
test item. In particular, the table provides five response types, each of which 
corresponds to a different combination of student responses to the two parts.  

A significant number of students from both majors, 38 EMs and 23 MMs, recognized 
the validity of the purported proof, thus responding correctly to Part A of the test 
item. From these students, only 15 EMs and 13 MMs responded correctly to all four 
special cases of Part C (Response Type 0). From the same group of students, three 
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EMs and one MM said that the inequality is true for all special cases (Response Type 
1). This response suggests that the students believed that the proof showed the truth 
of the inequality for values outside its domain of discourse (possibly all natural 
numbers). Almost all other students who responded correctly to Part A of the test 
item (18 EMs and eight MMs) said that the inequality is false for n=3 and n=4, and 
true for the other two special cases (Response Type 2). This response type is most 
likely associated with the misconception that the truth set of the inequality cannot 
include natural numbers outside its domain of discourse in the proved statement.  

Description of Response Types and Frequencies by Major Response 
Type Part A of the test itema Part C of the test itemb 

0 The proof shows that the statement 
is always true. (38, 23) 

The inequality is false for n = 3, and 
true for n = 4, 6, and 10. (15, 13) 

1 The proof shows that the statement 
is always true. (38, 23) 

The inequality is true for all special 
cases. (3, 1) 

2 The proof shows that the statement 
is always true. (38, 23) 

The inequality is false for n = 3 and 4, 
and true for n = 6 and 10. (18, 8) 

3 The proof is invalid. (9, 2) The inequality is false for all special 
cases. (2, 0) 

4 The proof shows that the statement 
is true in some cases. (20, 0) 

The inequality is false for n=3, and 
true for n = 4, 6, and 10. (8, 0) 

Table 3: Frequencies of selected student responses to parts A and C of the test item. 
a The first number in each parenthesis in this column represents the number of EMs who responded 
the specified way in Part A, and the second represents the corresponding number of MMs. 
b The numbers in each parenthesis in this column represent the numbers of students who responded 
the specified way in parts A and C of the item that appear in the same row of the table. The first 
represents the number of EMs and the second the number of MMs. 

The remaining two response types are associated only with EMs. Specifically, from 
the nine EMs who considered the purported proof as invalid, two said that the 
inequality is false for all four special cases (Response Type 3). These students most 
likely believed that, because the proof ‘failed’ to prove the statement, the truth set of 
the inequality is the empty set. Finally, from the 20 EMs who said that the purported 
proof shows that the statement is true in some cases, eight said that the inequality is 
false for n=3 and true for the other three special cases (Response Type 4). These 
students most likely thought that the domain of discourse of the inequality in the 
statement to be proved should be the same with its truth set. 

Some of the interviews shed further light on students’ thinking regarding the 
investigation of the special cases. For example, student EM38, whose response in the 
test belonged to Response Type 0, had difficulty understanding the ‘mismatch’ 
between the domain of discourse of the statement to be proved in the test item and the 
truth set of the inequality. However, after some probing from the interviewers (the 
first two authors), EM38 appeared to have grasped the relation between these two 
sets in the context of the given proof (‘I’ denotes the interviewers). 



Stylianides, Stylianides & Philippou 

 

PME29 — 2005 4-247 

I:  Do you find problematic the fact that the statement says that the inequality holds 
for all n�5, but you said here [pointing to his test] that the inequality also holds 
for n=4? 

EM38:  Oh… Perhaps we have indeed… Seeing what happens for n=4 together with the 
fact that I considered the statement to be true, I believe that there is a problem 
here. Perhaps the source of the problem is that the proof doesn’t specify the value 
of k. I assumed that k is greater than or equal to 5 and this might be the reason I 
said the statement is always true. 

I:  Now that you have the opportunity to think about this problem again, which of 
the multiple-choice options [referring to Part A of the test item] would you 
choose? 

EM38:  I wouldn’t choose this option [he refers to choice ‘1’ of Part A] because the 
statement holds for n�5. The issue here is whether the statement also holds for 
some values smaller than 5. 

I:  Do you mean to say that proving the inequality for n�5 excludes the possibility 
of the inequality to also hold for smaller values of n? 

EM38:  Oh… yes. The statement doesn’t say ‘only for n�5’! Therefore, it leaves open the 
possibility for other values. Consequently the statement is true. 

The student EM38 constantly refers to the correctness or not of the statement rather 
than to the validity of the purported proof as asked in Part A of the test item. The 
student seems to believe that there is a strong link between the truth of the statement 
and the validity of the proof, namely, that the two go together.  

DISCUSSION 
In this study, we examined prospective teachers’ understanding of proof in a case 
where the truth set of the open sentence in the statement that was to be proved by 
mathematical induction was broader than the set covered by a valid proof. The 
analysis of student responses in the test item suggests that a significant number of 
students of both majors who recognized the validity of the purported proof thought 
that it was not possible for the truth set U of the inequality to include any number 
outside its domain of discourse D. These students incorrectly considered the 
inequality to be false for n=4, and said that the inequality was true only for the two 
values that belonged to D (n=6 and n=10). The response of a considerable number of 
EMs that the purported proof shows that the statement is true in some cases seemed 
to have been influenced by the belief that the domain of discourse of the sentence in 
the statement to be proved should always coincide with its truth set. These students’ 
observation that the inequality was true for n=4 (i.e., 4∈U), coupled with their 
knowledge of the fact that 4∉D, seemed to have interfered with their ability to 
evaluate appropriately the validity of the purported proof. 

The results of our analysis highlight difficulties that prospective teachers seem to 
have in dealing with a proof that is not as encompassing as it could be, thereby 
uncovering possible aspects of knowledge fragility. The investigation of what might 
have caused this fragile knowledge requires further research. One possibility is that 
knowledge fragility has its roots in didactic contracts that possibly prevail in high 
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school and even college mathematics and that promote inappropriately the conception 
that proofs are always as encompassing as possible.  

A related important direction for future research concerns how mathematics teacher 
educators can organize instruction so that prospective teachers’ difficulties in proof 
surface and become the objects of reflection. Movshovitz-Hadar (1993) suggests one 
possible way to help prospective teachers reconsider their knowledge, see its 
problematic aspects, and realize the need for developing a deeper understanding: 

[A]ctivities designed for student teachers should be aimed at accelerating the process of 
crystallization of their knowledge of particular mathematics notions, such as 
mathematical induction, by putting them in problem-solving situations which will make 
them confront their present knowledge and examine it carefully through social interaction 
with their peers. This process is supposed to reduce the fragility of knowledge. (p. 266) 

The test item used in this study has the potential to support the development of 
learning opportunities that can facilitate the crystallization of prospective teachers’ 
knowledge, as it sets up a situation that breaks the boundaries of what seems to 
constitute students’ normal experience. For example, mathematics teacher educators 
can use this test item to engage prospective teachers in thinking about whether it is 
necessary for a valid proof to cover the truth set of an open sentence in its entirety. 
To manage successfully discussions around issues of this kind, mathematics teacher 
educators need to be able to anticipate prospective teachers’ common conceptual 
difficulties. A research-based knowledge about these difficulties can support the 
design of instructional practices aiming to help prospective teachers improve their 
understanding of proof. Prospective teachers’ written and oral responses discussed in 
this paper can contribute toward this direction.  
Author Note 
This paper is based on the senior thesis of the first two authors conducted at the University 
of Cyprus, under the supervision of the third author; the order of authorship of the first two 
authors is alphabetical. 
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PLANNING AND TEACHING MATHEMATICS LESSONS AS A 
DYNAMIC, INTERACTIVE PROCESS 

  Peter Sullivan      Robyn Zevenbergen  Judy Mousley 

La Trobe University       Charles Sturt University  Deakin University 

We are researching actions that teachers can take to improve mathematics learning 
for all students, with particular attention to specific groups of students who might 
experience difficulty. After identifying possible barriers to learning, we offered 
teachers mathematics lessons structured in a particular way. Teachers’ use of the 
model outlined in this paper seemed productive and their resulting planning and 
teaching proved to be dynamic and interactive. This paper uses excerpts from a 
conversation between two teachers to illustrate specific aspects of the model. 

MEASURE CUT MEASURE CUT MEASURE CUT 
Many English language sayings urge the listener to plan carefully. “Measure twice, 
cut once”, for example, appeals to dressmakers, carpenters, and everyone else to plan 
ahead and prepare carefully for their tasks. Our research into inclusive mathematics 
lessons suggests that, despite the emphasis on linear structures for lesson planning in 
many pre-service teacher education courses, the process of constructing inclusive and 
engaging mathematics lessons needs to be more dynamic: more like “measure, cut, 
measure, cut, measure, cut”. The need for dynamic reaction in teaching was 
addressed early by Brophy (1983), in discussion of ways to overcome self-fulfilling 
prophecy effects. Brophy urged teachers to be reactive rather than proactive, listening 
to students and shaping teaching in directions suggested by their responses. In our 
model of inclusive mathematics teaching we use the terms dynamic interaction to 
describe this reactive process.  

This article reports data from a discussion between two of the teachers who were part 
of a 3-year project investigating ways to structure lessons in order to include students 
who are at different stages of readiness. It illustrates ways that the teachers involved 
adapted our recommended model in their own lesson preparation and illustrates how 
their planning and teaching could be described as dynamic and interactive. 

A MODEL FOR PLANNING AND TEACHING 
The framework for our model of planning and teaching inclusive mathematics 
lessons is based on the work of Cobb and his colleagues (e.g., Cobb & McClain, 
2001), who used the terms mathematical norms and socio-mathematical norms to 
describe different dimensions of classroom action. We have extended the second of 
these and use the phrase mathematical community norms to encompass not only 
“classroom actions and interactions that are specifically mathematical” (p. 219) but 
also norms of practice and other factors that affect learning in mathematics 
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classrooms. In particular, our conceptualisation includes elements such as culture, 
social group, language use and comprehension, and modes of classroom organisation.  

Some mathematical norms of the model 
While we have found that the model can be applied to most task types, we focus on 
open-ended mathematics tasks since they are likely to create opportunities for 
students’ personal constructive activity. The open-endedness allows a focus on key 
mathematical ideas and can be used to encourage students to investigate, make 
decisions, generalise, seek patterns and connections, communicate, and identify 
alternatives (Sullivan, 1999). They also generally contribute to teachers’ appreciation 
of students’ mathematical and social learning (Stephens & Sullivan, 1997).  

Our model for planning and teaching takes mathematical norms to be the principles, 
generalisations, processes, mathematical tasks and sub-tasks, and work products that 
form the basis of the curriculum. There are three specific aspects of our model of 
planning and teaching that direct teachers’ attention to these mathematical 
dimensions: mathematical tasks and their sequencing; enabling prompts; and 
extending prompts (see also Sullivan, Mousley, & Zevenbergen, 2004). 

The tasks and their sequence. In building sets of learning experiences, an important 
aspect of the model is the creation of a notional sequence of tasks that Simon (1995) 
described as a learning trajectory, made up of three components: a goal determining 
the desired direction of teaching and learning; the activities to be undertaken; and a 
hypothetical cognitive process, “a prediction of how the students’ thinking and 
understanding will evolve in the context of the learning activities” (p. 136).  

Enabling prompts. We argue that it is preferable to encourage students experiencing 
difficulty to engage in sub-tasks related to the goal task, rather than requiring them to 
listen to additional explanations or to pursue goals substantially different from the 
rest of the class. Enabling prompts temporarily divert students to lower-demand sub-
tasks that allow them subsequently to re-join the class learning trajectory. We note 
that, even though they previously offering contrary advice, the English Department of 
Education and Skills (2004) now recommends task differentiation that is centred 
around work common to all pupils in a class, with targeted support for those who 
have difficulties keeping up with their peers. 

Extending prompts. Students who complete planned tasks quickly can be posed 
supplementary activities, to extend their thinking on those tasks. A characteristic of 
open-ended tasks is that they create opportunities for extension of mathematical 
thinking, since students can explore a range of options as well as consider forms of 
generalised response. The challenge for teachers is to pose prompts that extend 
students’ thinking in ways that do not make them feel that they are getting more of 
the same or being punished for completing earlier work.  

Some mathematical community norms of the model 
Our model focuses on two characteristics of mathematical community norms:  
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Normative interactions. These are the common practices, organisational routines, and 
communication modes that impact on approaches to learning, types of responses 
valued, views about legitimacy of knowledge produced, and responsibilities of 
individual learners. Through the overt and the hidden curricula of schools, students 
receive diverse messages (Bernstein, 1996). Sullivan, Zevenbergen, and Mousley 
(2002) listed a range of strategies that teachers can use to make implicit pedagogies 
more explicit and so address aspects of possible disadvantage of particular groups. 
Making these aspects explicit is a feature of our model of inclusive teaching. 

Mathematical community norms. These conveys the idea that all students can 
participate and progress as part of the classroom community, including making 
individual decisions as well as contributing to class discussions and lesson reviews, at 
the same time developing a shared knowledge base for subsequent learning. We 
agree with Wood (2002) who proposed that all students benefit from participation in 
core mathematical and social experiences, and that rich social interactions with others 
contribute substantially to children’s opportunities for learning mathematics.  

MAXIMISING SUCCESS FOR ALL STUDENTS 
The overall project, of which the illustrative data below are a part, seeks to identify 
strategies for teaching mathematics to heterogeneous groups. Initially we identified 
and described aspects of classroom teaching that may act as barriers to mathematics 
learning for some students. Next we described strategies for overcoming such barriers 
(see Sullivan et al., 2002), including creating some scripted experiences, that were 
taught by participating teachers (see Sullivan et al., 2004). Analysis of these 
experiences allowed reconsideration of the emphasis and priority of respective 
teaching elements. It was found that it is possible to create sets of learning 
experiences that include all students in rich, challenging mathematical learning.  

For the most recent stage of the research, we sought to examine whether teachers 
themselves could use the model to create effective sets of mathematical learning 
experiences, and have considered ways that specific aspects of the model contribute 
to the goal of inclusive experience. Our research approach was based in the action 
research paradigm, with its spirals of planning, acting, monitoring, and reflection 
(Kemmis & McTaggart, 1988) and emphasis on autonomous decision-making by 
participants. Essentially this stage involved 20 teachers developing, planning, and 
teaching sets of experiences of their own design and choice, while considering the 
aspects of both sets of norms outlined above.  

The following illustration of these aspects uses as data a discussion between two 
female teachers from the same school who planned together and taught various sets 
of mathematical lessons as part of the project. This report refers to just one of those 
sets of experiences, planned formally using the model proposed. Their school serves 
a predominantly lower socio-economic community, and the teachers joined the 
project because of what they identified as a lack of engagement of their students in 
learning mathematics. The discussion between the two teachers was moderated by 
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one of the researchers, recorded, transcribed and then analysed by identifying key 
issues. The discussion below draws mainly on the words on one teacher, Zeta, but 
refers to the second teacher, Delta, where appropriate. It reports aspects of their 
planning, their mathematical intent, the goals and sequence of tasks, their emphasis 
on engagement, and their use of prompts to support students experiencing difficulty 
as well as those who finished quickly. 

Knowing where you are going 
The two teachers, planning collaboratively, had chosen the topic of capacity, volume, 
and surface area. Zeta described the two goal tasks as follows: “Let’s get them to 
think about how big is 360 cm cubed and what do the dimensions of these shapes … 
really look like”, and “If a shape has a surface area of 1000 square cm, what could 
(the dimensions) be?” Both of these tasks are open-ended and address significant 
mathematical content; the latter task being well above the normal expectation for a 
class at the level they were teaching (age 13). The teachers also considered the 
trajectory of experiences necessary for the students to be able to respond to the goals. 

Zeta: I actually think that we knew … that we were both headed towards what could the 
dimensions of an object be with the volume of whatever. … We just had to work out 
what would the teaching be along the way. And so that is what this first [stage of the 
written plan] was about: empowering them to be able to answer that question.   
(It) talks about volume, capacity, millimetres, millilitres, litres, megalitres—all that 
stuff—and just gets them to think … about volume. [We said] “Let’s start with water, I 
just want you to start thinking about all the different sizes we can buy water in” , and … 
got them to list … you can buy it in bottles, what about dams, what about tanks? And so 
they started to think about water from about this big to however big … to just get them 
all to the same spot where they are thinking about it. 

It is possible to see evidence here of a focus on the mathematical content goals, a 
sequence of experiences, and the building of community understanding. They were 
also drawing on student experiences, as the school is in inland Australia where 
available drinking water in catchments is a community issue, thus facilitating access 
to the content and allowing key terminology to arise naturally.  

Delta: I don’t remember actually saying the word volume. I think the kids came back 
with the word volume. 

Zeta: Well what word did you say? 

Delta: I said, “In what size can water be purchased?” Exactly like that … but they came 
back with the word volume and then … I think capacity came from them too. … and I 
remember writing this down: volume was the stuff inside a container or a dam or 
whatever, and capacity was when it was filled to the top and we left it hang like that.  

Zeta: I said, “Can you think of …” and obviously I had an answer in my head, but “Can 
you think of a place or a time where they talk about water capacity?” And I think kids 
talked about our water storage. “Does anyone know what it is at the moment?” “27%” 
And I said “Well what does that mean, 27% capacity?” So we talked about it in that way. 
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These teachers seemed to see teaching as dynamically interactive, responding to 
children’s knowledge of the relevant mathematics. 

Engaging with the mathematics 
To follow this introductory class discussion, the two teachers had planned a task that 
required their students to arrange common containers in order of their capacity. In 
earlier observations we had identified an additional aspect of the model that we are 
tentatively terming a “hook task” that is interesting to the students and which can be 
used to engage the students with the mathematical content. Characteristics of such a 
hook include that it should be within the experiences of the students, that it should be 
in the form of a problem, and that students should all anticipate success. These 
characteristics were evident in this first task for the class.  

Zeta: Then we talked about the volume of a container and I pulled out a whole lot of 
containers. There must have been 30 or 40 containers in the room and I just chose about 
10 of them and put them on the table, then asked them to rank them from smallest to 
largest. We actually did it as a class, because some of them were a little obvious. There 
were a few times where kids couldn’t agree on a shape, and so I sat them on top of each 
other and I said, “When I get you to list them in an order, I want you to list them in your 
own order. You can decide then”. So I got them to write them down in order and we kind 
of agreed on some names so that we were all talking the same language. And then I asked 
them to guess what the volume [of each container] was. 

This is an example of actions that explicitly address some mathematical community 
norms: contributing to a shared knowledge base for subsequent learning. The other 
teacher also commented on the way that this hook engaged the students. She 
illustrated how the teachers were alert to a range of students’ engagement in the task. 

Delta: I have got all the containers up the front, and kids … coming closer and closer and 
pushing up to the front of the room; and I became superfluous too, and I ended up saying 
to these two boys “Well, I’ll step out”, and stepped back, and they just took over. … and 
one of them, … can be disruptive and really aggressive at times, about work and about 
anything, and he was up there … not taking over . … There wasn’t any “No, you’re 
wrong” either, which I thought would come up.  

There was also clear intention that the students experienced the mathematics that the 
teachers had in mind, and this was particularly evident in the way the teachers were 
explicit about the focus of the learning. 

Zeta: I alluded to the fact that I had an ulterior motive. “So what if I told you that there is 
a mathematical way to calculate the volume of everything?” and “Yes, we can check 
using water, but I would like to teach you how to calculate it mathematically and then 
you can check your answer”. … So we talked about volume and then I think I picked a 
box that I hadn’t put on the table and we looked at how we calculated the volume of that, 
and they all did it, and so then they were set the task of calculating the volume of one of 
the shapes. So in their small groups they each had to choose a shape and go off and 
calculate the volume of it, bring it back to the table, pick another shape. I think I wanted 
them all to do 3 or 4, to not calculate all of them … some of them did 5, and others did 1.  
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While this task was not open-ended in that there was not a range of possible answers 
for any one object, it did allow variety of activity and the students were able to make 
individual decisions, a key aspect of the teaching model’s mathematical community 
norms. Also important for the model is the way that the teachers respond to 
individual students. 

Zeta: But it was interesting, one kid chose the hexagonal vase because he liked the way it 
looked. But then when it came down to working out the volume he had no idea of how to 
calculate the area of the hexagon; and I suggested he could break it up into some other 
shapes. “What shapes could you break it up into?” No idea. He talked about what area 
was and we talked about area in terms of being centimetres squared or millimetres 
squared, so he traced around the shapes and he decided to break it up into half centimetre 
squares, because centimetres squared would be too big for the shape.  

This teacher had provided support for an individual student, based on her specific 
needs. This differential support for students working on common tasks is a vital 
component of out model. It forms the basis of whole-class shared experience and 
hence the building of a mathematical community, and also enables learning from 
whole-class discussion about experience.  

Zeta: Then I had to have a discussion. “Well this is our ranking. How are we going to 
check them?” Some said “Maybe if you looked at the height, and kind of the width and 
the length of the shapes, maybe you could work it out”. “Say it again: length, by width, 
by height”. And I mean it was just absolutely classic, … and then we went on to a 
discussion about regular prisms.  

Again the focus on the mathematics and dynamic interactivity are evident, although 
the teacher’s agenda is also apparent. These preliminary tasks were leading toward 
the first of the open-ended goal tasks that allowed the students to calculate volumes, 
and particularly to recognise that there can be many shapes with the same volume. 

Zeta: I posed this question of the volume being 360 cm cubed, and probably half the class 
just went for it and just knew what to do, and used the question I had up on the board and 
just changed the numbers, and so on.  

Of course, not all students could readily engage in the task, and the teacher prompted 
them by posing variations to the initial task with a reduced cognitive demand. 

Zeta: I said, “Well, we know the volume has something to do with the area, it has to do 
with the area at the base. Where is the base on this picture?” [They were looking at a 
rectangular prism.] They pointed to it, and I said, “Well, if the volume of the whole thing 
has to be 360, what could the area of the base be?” And they chose a number. And I said 
“Well okay, if the area of that base is whatever they chose, … what would the height of 
that shape be if the base is this and the body is that?”  

There were also students who completed the basic task readily. We have noted in 
many lessons that an important challenge is to engage such students, but we have 
found consistently that this is much easier said than done. 
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Zeta: And there were obviously kids I suggested doing the triangular base, or a cylinder. 
The cylinder was interesting … The only problem with it probably was that there were 
some kids that did a couple and then thought “Well I can do any shape now and I don’t 
need to do this any more.” 

The teachers then followed a similar sequence of interactions and tasks for the second 
of the goal tasks, that of describing a box with a surface area of 1000 cm2. There was 
an initial exploration with class discussion, some calculations using actual objects, 
and the open-ended task with provision of both enabling and extending prompts. 
Again, the emphasis on engagement, the focus on the mathematics, the interactive 
pedagogy, the dynamic nature of the teachers’ planning, and the differentiation of the 
task were all evident. 

SUMMARY 
Basically our model for planning and teaching mathematics includes (a) 
mathematical norms, including tasks facilitating student engagement in meaningful 
mathematics, the sequence of the tasks, enabling prompts, and extending prompts; 
and (b) mathematical community norms, including making normative interactions 
more explicit and focusing on the development of a mathematical learning 
community. 

We have worked with a number of teachers on a variety of sets of learning 
experiences, with the above being an example of the type of planning and teaching 
that have resulted. The above data, along with the other experiences observed, 
suggest that teachers are able to use the model. Interviews with all of the teachers 
involved indicate that the model does allow them to focus on the challenge of 
engaging all students in productive mathematical explorations and provides key 
principles and strategies for doing this.  

In terms of the mathematical norms, the teachers were able to create open-ended 
tasks that addressed important aspects of mathematics, they considered the trajectory 
of tasks for the class, and they offered suitable variations of the tasks for those 
experiencing difficulty and those who completed the tasks quickly. (The latter proved 
the more difficult so the next phase of the research will address this issue.) The 
mathematical community norms were also explicitly addressed by the teachers, not 
only in the instructions about ways of approaching the tasks and formulating 
responses, but also in the building of community, by working on common tasks and 
through the interactive responses and discussions. These particular teachers focused 
on the engagement of the students in their learning, considering this in their planning 
and celebrating it in reflection on the experience, just as other participating teachers 
did. 

Two aspects emerged from these data, and indeed observations of other project 
teachers. The first was the interactivity of the teachers with each other in their 
planning, and with the students during their teaching. They were clearly willing to 
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observe and listen to the students and to respond accordingly. The second was the 
dynamic nature of this interaction. Rather than feeling constrained by any preparation 
or the hypothetical learning trajectory, they were willing to adjust the tasks, the 
emphases, the timing, and the supports offered. The metaphor is measure, cut, see if 
it fits, measure, cut, see if it fits, … . We suspect that the model gives teachers a 
structure that allows them freedom for a dynamic, interactive approach to teaching.  
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Graphic calculators (GC) have been widely used in teaching for at least 15 years, 
and yet many teachers still appear to be unaware of their potential for learning 
mathematics. This research describes a study addressing aspects of the teacher’s role 
in integrating GC technology into their pedagogical approach. It considers issues of 
didactic contract, pedagogical technology knowledge, procedural and conceptual 
knowledge in GC integration of 7 secondary teachers. The results describe a number 
of factors that identify teacher progress toward pedagogical integration of the GC.  

BACKGROUND 
Brousseau (1997) has described the mutual recognition of the parts that the student 
and teacher play in the classroom learning process as a didactic contract. This term 
recognises, through the tacit acceptance of each party, that there are reciprocal 
obligations in the relationship. Not least among these is the expectation by students 
that they will be taught, and by the teacher that the students will want to learn. Of 
course this social contract is a dynamic entity, changing and adapting to new 
circumstances that arise in the classroom milieu. Factors influencing a teacher’s 
didactic contract include affective variables (beliefs and attitudes), perceptions of the 
nature of mathematical knowledge and how it should be learned, mathematical 
content knowledge, and pedagogical content knowledge (Shulman, 1986). One may 
assume that if a teacher possesses a limited knowledge of a concept and its related 
subconcepts (Chinnappan & Thomas, 2003) then they will find it more difficult to 
provide the kind of environment and experiences that will assist students in the 
construction of rich conceptual thinking. Instead they may regress to a process-
oriented approach (Thomas, 1994), presenting students with a toolbox selection of 
procedures that may be applied to each problem that arises. While such procedures 
and skills are important, mathematical thinking is clearly much wider than this, and 
requires procedural and conceptual interactions with the various representational 
forms of mathematics (Thomas & Hong, 2001). However, teaching is not mediated 
simply by the mathematical understanding of the teacher (Cooney, 1999), but it is 
also influenced by the teacher’s pedagogical content knowledge. This refers to 
understanding the mathematical ideas involved in a particular topic and how these 
relate to the principles and techniques required to teach and learn it, including 
appropriate structuring of content and relevant classroom discourse and activities 
(Shulman, 1986; Simon, 1995; Cooney, 1999; Chinnappan and Thomas, 2003).  



Thomas & Hong 

 

4-258 PME29 — 2005 

The introduction of new technology into the classroom has been shown to be capable 
of a subversive effect (Thomas, Tyrrell, & Bullock, 1996) radically altering the 
didactic contract. Thomas, Tyrrell, and Bullock (ibid. p. 49) suggest that the 
introduction of technology requires a new mindset on the part of teachers, a ‘shift of 
mathematical focus’, to a broader perspective of the implications of the technology 
for the learning of the mathematics. It has become clearer working with teachers in 
the years since this study that the technology knowledge aspect of instrumentation 
(Rabardel, 1995), namely how to control the functioning of the tool, is insufficient for 
a successful mathematics outcome. In addition teachers need to develop what we now 
call pedagogical technology knowledge (PTK), knowing how to teach mathematics 
with the technology. This arises as they progress through the stages of 
instrumentalisation and instrumentation of the tool (Rabardel, 1995), gaining a 
personal appreciation of its role in learning mathematics, and importantly, of ways in 
which students may be assisted through various teaching approaches to emulate their 
instrumentalisation and instrumentation of the technological tool. 

As instrumentation of the technological tool proceeds teacher beliefs and attitudes are 
shaped changing their teaching emphasis, and didactic contract, to give increased 
emphasis to the instrument. In turn, student preferences have been shown to mirror 
this teacher privileging (Kendal & Stacey, 2001). As teachers progress in their belief 
in the value of the technology in teaching mathematics they have to face the key issue 
of the level of integration of the technology in learning that they will espouse. This 
may range from using it at prescribed moments as a teacher-directed add-on, to an 
ever-present instrument that is an extension of cognition. The research described in 
this paper followed a group of seven teachers as they began, or continued, their 
instrumentation of the GC tool, thus extending their PTK. It attempted to understand 
teacher practice in relation to the congruency of content knowledge, pedagogical 
content knowledge, instrumentation, PTK and didactic contracts.  

METHOD 
During August 2004 a GC professional development workshop was arranged over 
three weeks (3 sessions of 2 hours each) for teachers from two Auckland schools. 
The course covered both content and pedagogy for algebra and calculus, using the 
TI–83Plus with several downloadable memory-based FlashApp[lication]s. The 
teachers who volunteered to attend the workshop had little experience of using the 
GC to teach mathematics, although two had previously used them. Four teachers 
attended the workshop from school A, and initially six from school B, but only three 
of these finished the course, including one trainee teacher. Apart from this trainee, all 
the teachers were experienced, with between 10 and 24 years teaching. Each teacher 
was given their own TI–83Plus GC and class sets during the workshop and they kept 
these for six months after the course. Once the teachers were familiar with the TI–
83Plus they asked questions relating to their teaching, and discussed ideas with one 
another. In the month following the workshop the teachers were given a brief 
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questionnaire on their perspective of the value of the TI–83Plus for teaching 
mathematics, and all four teachers from school A and two teachers from school B 
agreed to take part in the classroom-based phase of the research. During this phase 
we were able, over a three week period of teaching years 10–13 (age 15-18 years), to 
observe and video their classroom teaching with the GC. They also completed a diary 
of teaching with TI–83Plus detailing the mathematical content covered and their aims 
and objectives. The videotapes were transcribed for analysis along with the data from 
the questionnaire, the lessons and the diaries. Following discussion, the topics the 
teachers chose included families of curves, linear programming, limit, drawing 
graphs and derivatives.  

RESULTS AND DISCUSSION 
One of the first things that a teacher new to using CAS, or indeed any other 
technology, has to decide is how they will structure its role in their classroom. This is 
a basic feature of changes to their didactic contract. All the teachers in the study 
organised their classrooms in a similar manner. They chose to have the students sit in 
traditional rows and the teacher spent some time at the front of the class, 
demonstrating examples using a viewscreen while the students followed and copied 
their working onto their own calculator. This may have been in order to maintain 
control of the classroom situation. Afterwards the students spent the rest of the time 
working on problems and tackling exercises as a group, while the teachers circulated 
and assisted with any difficulties. In spite of this similarity in approach it was soon 
clear that the teachers were different in the pedagogical advances that they made with 
the technology. Three of them made good strides forward, while two proceeded more 
cautiously, and two made little advancement. An analysis follows of some of the 
differences we perceived between the groups in terms of the variables described 
above, based on one teacher exemplifying each of the three groupings. 

Little advancement 
A major factor here influencing the PTK of teacher E from school B, was his lack of 
confidence with the GC, springing from a lack of instrumentation. He had previously 
used a scientific calculator in his teaching, and saw value in the GCs, commenting 
that “Several topics are made ‘easier’ with a GC. But students need to have their 
own.” He particularly singled out content areas of “Linear programming, 
simultaneous equations (3 variables), graphing of level 2 graphs” and thought GCs 
“Very good with ongoing learning. Inequations helpful”. However, when asked if he 
had problems with the GCs he answered “Yes, lots—need to spend more time using 
them regularly.” and he found them “Time consuming to learn processes and to 
remember these processes.” He was conscious of still being in the early stages of 
instrumental genesis. In class he chose to use the GC to teach year 12 (age 17 years) 
students “graphing of parabolas, cubics, exponential function, hyperbola, graphing 
inequalities, linear programming, and solving simultaneous equations” in up to 3 
variables. Asked what problems his students faced he said “Same problems. I need to 
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be continually using them or I forget”, indicating that like him they often forgot the 
correct commands, and showing where his emphasis lay. This is a crucial aspect of 
the instrumental genesis of the GC tool and leads to a lack of confidence in teaching. 
Evidence of this was observed in the lessons he taught. We can see from statements 
during a lesson on linear programming, such as, “I think you just have to go 3 down, 
and push ENTER”, “Now what you probably need is… what I’ve done wrong here” 
and “I’m not sure what the calculator is going to do because we don’t have anything 
written here”, that he was not too confident in his handling of the GC commands, as 
he freely admitted after the lesson. This lack of familiarity with the operational facets 
of the GC means that a teacher such as this tends to be tied to the mechanics of 
operating the tool and due to this heavy cognitive load cannot free up enough 
thinking space to concentrate on the mathematics. This can often lead to a very 
procedural, button-pushing emphasis in the lesson, as we observe from the typical 
quote below. 

So, if you change it from ALPHA F3, we’ve got X=25, Y=50. I think now, it’s going to 
go around the vertices. We went ALPHA F3, and we were able to move around, and we 
went ALPHA F3 again, ALPHA F4 initially then ALPHA F3. By doing that we were 
able to go around.  

Cautious progress 
In contrast teacher F, a trainee teacher from school B, made cautious progress in her 
growth of PTK, using the GC in her teaching of mathematics. Teacher F expressed 
that she “Would like to use [the GC] in teaching” but the potential advantages were 
seen in a procedural light as “Seems easier in some ways to sketch graphs etc”, and 
when asked if she had problems using the GC she replied “Some difficulty”. She 
taught year 13 linear programming with the GC, but in her interview again focussed 
on procedural matters as a motivation stating that “I thought it would be a good idea 
to show different ways for calculating unknowns in linear programming.” When 
asked what she thought it was important for her students to learn she said “Different 
ways of obtaining the same answers.” And that she would introduce the ideas by “By 
providing examples and working through these.” Discussing why students might find 
the GC helpful she did not refer to mathematical ideas but thought it would be “By 
providing an interesting way to find solutions.” She explained that she believed 
students “Need a step-by-step explanation.” when using the GC, and that their main 
difficulty would be “Losing track of where they were.” So while she did not express a 
lack of confidence her teaching approach was firmly set in a step-by-step, process- 
and solution-oriented mode, focussed on the GC rather than the mathematics. This 
seems to be a feature of this transitional stage of progress in the acquisition of PTK. 
A second feature of this stage is the inability to take the mathematics and adapt the 
technology to focus on the content under study.  

Teacher F simply took the ideas that were presented in the workshop and tried to 
present these to her year 13 students. Her instrumental genesis was still very much in 
progress as shown when she was asked a question early in the lesson, during memory 
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clearance. A student asked ”How do you get rid of inequalities?” and the reply, 
indicating lack of knowledge, was “Oh, that’s what we are going to putting them on, 
so don’t worry.” However, she did not concentrate as much on button pushing as 
teacher E, and so was able to exhibit more occasions when mathematical ideas, even 
if basic, were encouraged to surface, such as graph intersections corresponding to 
equation solutions, and testing vertices to find a maximum. 

So, ok, so at the moment we got one that’s a bit we can’t see, so we want to have it 
shaded where the intersections the graphs are only. So next we will press ALPHA F1 and 
we want to press 1 for an equation intersection. Press 1 and wait and this could be 
shading out from the intersections. 

So now what we want to do is, we want to record all our intersections for the vertices, 
because we are working out the maximum, and we know that when we are working out 
the maximum we want to put all values of vertices into that expression, so you see this 
one here says POI-trace and that can trace the intersection point, so press ALPHA F3. 

However, there was no investigation or discussion of these, or any other, concepts, 
and, as we see below, the focus was clearly on obtaining the right answer to the 
problem and then proceeding to the next one. 

Did you get the maximum of 17?…Ok, so this is how we found the maximum so our 
answer is 17 which is when x=1 and y=5. So I’ll just give you an example to try yourself. 
That should say 1 and 5. Anyway I’ll give you an example today. So following the 
instructions and directions on the sheet try doing this question. 

Greater strides forward 
Teacher A will be used to exemplify the group that had made greater strides forward. 
She had over six years’ experience of using GCs in her teaching and had been 
involved in a previous research study with them. In spite of her experience, in the 
questionnaire she admitted “Sometimes it’s hard to see how to use it effectively so I 
don’t use it as continuously as I should.” Her motive was a rather pragmatic “We 
should move with the times” and she had a small reservation about the GC that “It is 
OK. By now expected better resolution though.” Due to her relative experience she 
appeared confident in her use of the GC and spoke at length in her interview, 
describing how “In the past I have also done some exploratory graphs lessons where 
students get more freedom to input functions and observe the plots.” Further, she 
explained that she was happy to loosen control of the students and let them explore 
the GC and help one another: “Students learn a lot by their own exploration…In past 
lessons I have never had a student get lost while using a graphics calculator. 
Sometimes friends around will assist someone” However, she acknowledged her 
need to progress in her types of GC use, “I would like to see them used more 
frequently and beneficially in class with structured lessons.” While she could 
perceive imaginative GC usage, part of her difficulty involved the pressure of day-to-
day teaching, since she admitted that “I was not relaxed enough with the term coming 
to an end and other aspects in this year’s teaching to be inspired to use the calculator 
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with imagination for the students.” Responding to what she wanted her students to 
learn she replied in terms of the challenge of the depth of mathematics, “The success 
for me as a teacher is when they want to learn more and students show a joy either in 
what they are doing or in challenging themselves and their teacher with more deeper 
or self posed mathematical problems.” She was convinced that the novel and 
challenging nature of the GC could motivate students—“The calculator puts a radiant 
light in the class… With a graphics calculator lesson no one notices the time and no 
one packed up.”—and that her perspective on learning mathematics influenced her 
PTK came out in the comment that “Today we find a lot of Maths does not need 
underlying understanding… I feel as teachers what we need to really be aware of is 
what the basics are that students must know manually… when we sit down to work 
with graphics calculators we need to consider carefully what still should be 
understood manually.” In this way she addressed an important factor of the 
integration of technology use into mathematics, namely learning what is better done 
by hand and what could be done better with the technology (Thomas, Monaghan, & 
Pierce, 2004).  

One of her lessons with the GC was with Year 12 students and she considered 
families of functions with the aim of exploring exponential and hyperbolic graphs 
and noting some of their features, “we’re going to utilise the calculator to show that 
main graph and then we’re going to go through families of y=2x”. She was 
comfortable enough to direct them to link a second representation “Another feature of 
the calculator I want you to be aware of..[pause] you’ve got also a list of x and y 
values already done for you in a table.” Teacher A had moved away from giving 
explicit key press instructions, instead declaring “I want you to put these functions in 
and graph them and see what’s going on.”, and “You can change the window if you 
want to see more detail, and if you want to see where it cuts the x-axis, you can use 
the “trace” function.” Figure 1 shows a copy of her whiteboard working. 
 

Figure 1: Teacher A’s whiteboard working: Viewscreen projection and overwriting. 
She was also able to move towards an investigative mode of teaching “if you’re not 
sure where the intercepts are, you can use the “trace” key, remember, and I want you 
to observe what is happening.”, encouraging students to use the GC in a predictive 
manner, to investigate a different family. 

We want to do some predictions… Looking at the screen try to predict where 3 × 2x will 
go then press “y =…” and see if it went where you expected it to go. You may get a 
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shock… Can you predict where “y = 4 × 2x” will be? Now you learned from that, so can 
you predict where it’ll lie. The gap between them gets smaller. If you’re interested put in 
“y = 100 × 2x”. Does it go where you expect? 

There was also some discussion of mathematical concepts and how this could help 
with interpretation of the GC graph. She linked 2×2x with 2x+1 and then during 
examination of the family of equations y=2x, y=2x+1, y=2x+2 said of y=2x+1 “We expect 
this to shift 1 unit to the left [compared with 2x]. Did it?” In this way she made a link 
with previous knowledge of translations of graphs parallel to the x-axis, and then 
reinforced this with the comment that “With this family, when you look at the graph 
can you see that the distance between them stays the same because it’s sliding along 
1 unit at a time. The whole graph shifts along 1 unit at a time.” In addition, there was 
a discussion of the relationship between the graphs in the family of y=2x + k, and the 
relative sizes of 2x and k. 

… as the exponential value gets larger, because we’re adding a constant term that is quite 
small, it lands up becoming almost negligible. So, when…all they’re differing by is the 
constant part, you’ll find that they appear to come together. Do they actually equal the 
same values ever? Do they ever meet at a point? No, because of the difference by a 
constant, but because of the scaling we have, they appear to merge. 

The discussion on the relative size of terms in the function continued with “How 
significant is “+1” or “+2”? We know that 25 is 32.” and again the use of prediction 
was evident “I want you to predict where y=2x + 3” would be.” 

In summary we may describe the differences in the progress of the teachers we have 
observed in terms of a number of variables that delineate two clearly different groups, 
with a third progressing between the two. The first group may be identified in terms 
of their instrumental genesis as teachers who are still coming to grips with basic 
operational aspects of the technology, such as key presses and menu operations. This 
leads to a low level of confidence in terms of teaching with the GC in the classroom. 
In terms of their PTK, this group is characterised by an over-emphasis on passing on 
to students operational matters, such as key presses and menu operations to the 
detriment of the mathematical ideas. Furthermore, the mathematics approached 
through the technology has an emphasis on technology, and work tends to be very 
process-oriented; based on procedures and calculating specific answers to standard 
problems. There is little or no freedom given to students to explore with the GC, and 
it tends to be seen as an add-on to the lesson rather than an integral part of it. These 
features then become part of the teacher-initiated expectations in the didactic 
contract. 

In contrast to this, the second group have advanced to the point where they are 
competent in basic instrumentation of the GC and are thus more able focus on other 
important aspects, including the linking of representations such as graphs, tables, and 
algebra, and to use other features of GCs. In turn, this better instrumentation of the 
GC produces a higher level of confidence in classroom use. Considering their PTK 
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they begin to see the GC in a wider way than simply as a calculator. They feel free to 
loosen control and encourage students to engage with conceptual ideas of 
mathematics through individual and group exploration of the CAS, investigation of 
mathematical ideas, and the use of prediction and test methodology. For these 
teachers the mathematics rather than the technology has again been thrust into the 
foreground, and the GC has been integrated into the lessons and forms part of the 
didactic contract. If we think that the approach of this second group is preferable, 
then we must ask how we assist teachers to progress towards it. One answer is by the 
provision of pedagogically focussed professional development, relevant classroom 
focussed resources and good lines of teacher-researcher communication. 
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Previous research showed students’ tendency to improperly apply the linear model 
when solving non-linear problems about the relation between lengths, area and 
volume of enlarged figures. Most of these studies, however, were conducted with 
collective tests containing traditional, “school-like” word problems. The current 
study shows that students’ problem-solving behavior strongly improves when the 
non-linear problem is embedded in a meaningful, authentic performance task. It is 
also found that this experience does not affect students’ performance on a posttest, 
where the non-linear problem is offered again as a word problem.  

INTRODUCTION 
Because of its wide applicability for understanding mathematical, scientific and 
everyday life problems, linearity (or proportionality) is a key concept throughout 
primary and secondary mathematics education. Inherent to the attention it receives, 
however, is the risk to develop an overreliance on the concept: “Linearity is such a 
suggestive property of relations that one readily yields to the seduction to deal with 
each numerical relation as if it were linear” (Freudenthal, 1983, p. 267). The 
tendency to overgeneralise the linear model is repeatedly mentioned in the 
mathematics education literature, and in recent years it has also been in the focus of 
systematic empirical research. For example, the phenomenon has been studied in 
elementary arithmetic (Van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 
2005), algebra and calculus (e.g., Esteley, Villareal, & Alagia, 2004) and probability 
(Van Dooren, De Bock, Depaepe, Janssens, & Verschaffel, 2003).  

The best-known (and extensively studied) case is situated in geometry: many students 
of different ages believe in a linear relation between the lengths, areas and volumes 
of similarly enlarged geometrical figures, thinking that if a figure is enlarged k times, 
the area and volume of that figure are enlarged k times as well (De Bock, 
Verschaffel, & Janssens, 1998, 2002b; De Bock, Van Dooren, Janssens, & 
Verschaffel, 2002a; Freudenthal, 1983; Modestou, Gagatsis, & Pitta-Pantazi, 2004). 
A series of studies has shown that even with considerable support (such as providing 
drawings, instructing to make drawings, or giving metacognitive hints), the large 
majority of 12- to 16-year old students failed to solve these problems due to an 
alarmingly strong tendency to apply linearity (De Bock et al., 1998, 2002b; Modestou 
et al., 2004). Further research showed that the tendency was due to a set of closely 
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related factors like the intuitiveness of the linear model, shortcomings in students’ 
geometrical knowledge, inadaptive attitudes and beliefs towards mathematical (word) 
problem solving and a poor use of heuristics (De Bock et al., 2002a).  

These last explanatory factors (namely: attitudes and beliefs towards word problem 
solving and a poor use of heuristics) led us to conduct the study presented in this 
paper. In most of the previous research the overreliance on linearity was observed in 
a classical scholastic context by means of collective tests with word problems, i.e. 
short written descriptions of a problem situation with the task to do some calculations 
and to write down a short numerical answer. It can be argued that the use of word 
problems may trigger in students a set of implicit rules and expectations established 
by the socio-mathematical norms of the classroom setting (Cobb, Yackel, & 
McClain, 2000; Verschaffel, Greer, & De Corte, 2000). Possibly, the students in our 
previous studies may not have invested sufficient mental effort in the solution of the 
problems – assuming that they were dealing with routine word problems –, or may 
have excluded a number of considerations and problem solving strategies (e.g., 
checking the viability of a solution by making a sketch of the situation) – assuming 
that they were not desirable, acceptable or valid in that context. Research evidence 
shows that students are more inclined to leave their routine word problem solving 
behavior and include real-world knowledge when the problems are disentangled from 
their scholastic chains and embedded in more meaningful, authentic “performance 
tasks” (e.g., DeFranco & Curcio, 1997; Nunes, Schliemann, & Carraher, 1993; 
Reusser & Stebler, 1997). The current study aimed at investigating whether this 
would also be effective to break students’ overreliance on linearity: Can this tendency 
be weakened or even eliminated by embedding non-linear problems in meaningful, 
authentic performance tasks instead of traditional, school-like word problems?  

METHODOLOGY 
The study was conducted in three steps. First, participants were selected using a 
pretest. Next, students who made a linear error on the pretest were involved in an 
individual interview. And third, a posttest was taken of all the interviewed 
participants. Each part is explained in more detail below. 

Selection of participants by pretest 
The first step was to select students who were prone to the error under consideration. 
93 sixth graders (i.e., five whole class groups in two different schools) solved a 
pretest that contained six word problems. Five of the word problems acted as buffer 
items (they were included to avoid revealing the focus of our study). One word 
problem in the test aimed at detecting whether students tended to give a linear answer 
to problems about the effect of an enlargement on the area of a square: 

John needs 15 minutes to paint a square ceiling with a side of 3 meters. How much time 
will he approximately need to paint a square ceiling with a side of 6 meters? 
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Altogether, 72 students gave a linear answer to this problem (e.g., “3 m × 2 = 6 m 
� 15 min × 2 = 30 min”). They were involved in the rest of the study.  

Interview procedure 
Two days after the pretest, these 72 students were taken individually out of the 
classroom for a semi-structured in-depth interview. During that interview, the 
students again were asked to solve a non-linear problem, this time about the effect of 
tripling the lengths of the sides of a square on the area of that square. This problem 
was offered in one of three different ways, depending on the interview condition that 
the student was assigned to. Assigning students to interview conditions happened by 
means of matching on the basis of school mathematics performances.  

Students in the S-condition (“Scholastic” condition, n = 24) received a sheet with the 
following traditional, scholastic word problem: 

Recently, I made a dollhouse for my sister. One of the rooms had a square floor with 
sides of 12 cm. I needed 4 square tiles to cover it. Another floor of the dollhouse was also 
a square, but with sides of 36 cm. How many of those square tiles did I need to cover it?   

The problem in the D-condition 
(“Drawing”-condition, n = 24) was the 
same as in the S-condition, but this time the 
sheet also contained a drawing of the small 
and large figure, as shown in Figure 1. 

In the P-condition (“Performance task”-
condition, n = 24), the problem was 
presented as a “performance task”: 
Students were involved in an authentic 
problem context with real materials (the 
small dollhouse floor, 4 tiles and a large 
dollhouse floor) and were asked to perform 
an authentic action. The interviewer presented the task as follows: 

I have a little sister, and currently I am making a dollhouse for her. Here, you can see the 
floor of one of the rooms. Can you tell me its shape? [The student tells that it is a square.] 
Let’s measure it. [Student observes that the sides are 12 cm long.] I have some tiles that 
we can use to cover that floor. Can you do that for me? [Student puts 4 tiles on the small 
floor.] Indeed, we need 4 tiles to cover this floor.  

I also brought another floor of the dollhouse. As you see, it is also square. Let’s measure 
it. [Student observes that the sides are 36 cm.] In a few moments, we will put tiles on this 
large floor as well. Now, think about how many tiles you will need to do that, and if you 
have decided, you can go and get exactly enough tiles from the table over there.  

The number of tiles brought was registered as the students’ final answer. At the end 
of the interview, students in the P-condition were allowed to put the tiles effectively 
on the large floor (and could get more tiles if necessary).  

     12 cm               36 cm 
Figure 1: Drawing offered with the 
word problem in the D-condition 
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Strictly spoken, for our research goal the design only would need to include a S-
condition and a P-condition, but nevertheless the D-condition was included, because 
students in the P-condition not only received the non-linear problem as an authentic 
performance task instead of a school-like word problem; the problem presentation in 
the P-condition involved also visual support, while this support was not present in the 
S-condition. Including a D-condition – which provided the same visual support as the 
P-condition, but the same scholastic presentation as the S-condition – allowed us to 
control for this visual support factor. 

All interviews were registered on videotape, and students were asked to think aloud 
while solving the problem. They were told that they could solve the problem in 
whatever way they wanted and use all materials available (pen, paper, ruler, pocket 
calculator and in the P-condition also the small and large floors and the 4 available 
tiles). When necessary, the interviewer asked some additional probing questions to 
clarify students’ thinking. At the end of the interview, the students were asked to 
indicate on a five-point scale how certain they were about the correctness of their 
answer (‘certainly wrong’, ‘probably wrong’, ‘no idea’, ‘probably correct’ and 
‘certainly correct’), and to justify this1.  

Posttest 
One or two days after their interview, students solved a posttest. Besides five buffer 
items, it again included a non-linear problem that referred to the same mathematical 
situation as the pretest item (the effect of doubling the sides of a square on its area): 

Carl needs 8 hours to manure a square piece of land with a side of 200 meters. How 
much time will he approximately need to manure a square piece of land with a side of 
400 meters?  

Because this problem situation only slightly differred from the one that students had 
in the interviews (where the sides of the square were tripled), it could be determined 
whether the experiences during the interview also had a learning effect. For example, 
manipulating the materials during the interview in the P-condition could be helpful 
for the student to solve the non-linear problem on the posttest correctly too.  

RESULTS 
Individual interviews 
Table 1 provides a summary of the answers and the solution time (i.e. the time 
needed to find an answer after the problem was introduced) of the students in the 
three interview conditions. The table shows that there was a strong impact of the 
interview condition on students’ answers (Fisher’s exact test p < .00015):  

                                              
1 Evidently, P-condition students had to answer the probing questions and the certainty question 
before they were allowed to put the tiles on the large floor to check their answer. 
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Nearly all students in the S-condition (i.e. 21 of 24 students) erroneously applied 
linearity to solve the word problem. This confirms – once again – students’ very 
strong tendency to stick to the linear model when solving problems about the area of 
enlarged figures, as observed in previous studies (De Bock et al., 1998, 2002a, 
2002b). Two students committed another error, and only one student found the 
correct solution (in contrast with the pretest, this student now made a drawing of the 
problem situation which led him to the correct solution). 

In the D-condition, the performance was considerably better. Here, 16 students found 
the correct answer during the interview. In fact, we had expected that the visual 
support as such would not be helpful for most students, since in previous studies with 
collective tests (see, e.g., De Bock et al., 1998, 2002b), the provision of ready-made 
drawings hardly had any effect on students’ performance, mainly because students 
simply neglected them. In the current study, however, many students did actually use 
the drawing – possibly an effect of being involved in an individual interview context 
where they felt more obliged to do so – and their solution process clearly benefited 
from it. Nevertheless, the provision of a drawing was not sufficient to eliminate all 
linear reasoning: 8 out of 24 students still gave a linear answer to the word problem. 

Although presenting a drawing was beneficial for many students, presenting the non-
linear problem as an authentic performance task had an even stronger impact on 
students’ reasoning (Fisher’s exact test yielded p = .0412 for a separate comparison 
of the D- and P-condition results). In the P-condition, 20 students gave the correct 
answer, and only 2 students reasoned linearly (and 2 students made another error).  

In sum, almost all students in the S-condition made the linear error, which is not 
surprising considering that they did the same on the non-linear word problem on the 
pretest. Providing drawings had a positive effect on students’ performance, but still 
one third of the D-condition students made a linear error. Offering the problem as a 
meaningful, authentic performance task was even more beneficial, since in the P-
condition linear errors were nearly absent.  

Interviews Answer on posttest 

Condition Answer Freq Solution time 
(seconds) Correct Linear    Other 

error 
S-condition Correct 1 120 1 0 0 

Linear 21 50 1 20 0 (n = 24) Other error 2 115 0 2 0 
D-condition Correct 16 139 0 16 0 

Linear 8 61 1 6 1 (n = 24) Other error 0 / / / / 
P-condition Correct 20 76 2 17 1 

Linear 2 29 1 1 0 (n = 24) Other error 2 131 0 0 2 

Table 1: Overview of answers and average solution times in each interview 
condition and of answers on the posttest 
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A closer look at students’ solution times (see Table 1) and procedures (as registered 
on videotape) was helpful in clarifying how students obtained their answers and in 
understanding the effect of the experimental manipulations.  
First of all, there seems to be a clear relationship between the duration of a solution 
process and its overall quality. As Table 1 shows, students who gave the linear 
answer required about one minute less than students who solved the problem 
correctly, and this difference was found in all three interview conditions. This is not 
surprising considering our previous research findings: the linear model is self-evident 
for many students and affects their thinking in an immediate and spontaneous way, 
whereas they experience the quadratic relation between lengths and area often 
experienced as counter-intuitive (De Bock et al., 2002a). A quick resposnse to a non-
linear problem is often an indication that a student is (mis)led by linear thinking. 
More importantly, the analysis of solution times and procedures revealed substantial 
differences between the interview conditions. Both in the D-condition and in the P-
condition, many students did find the correct answer, but the way in which this 
answer was achieved differed. In the D-condition, the 16 students who found the 
correct answer needed relatively much time (on average 139 seconds), and they had 
to rely extensively on the drawing. Often, the idea to work on the drawing came up 
rather late in the solution process. When students gave the correct answer, many of 
them were still not very convinced about its correctness. Often, they indicated that 
reading, interpretation or calculation errors might have occurred or that they might 
have been overlooking a critical aspect in the problem situation. As an example, we 
quote from the interview with Deborah (D-condition, solution time of 194 seconds): 

Deborah:  [Silence of about 60 seconds. Reads the problem several times again.] “So 
… I think I should see … [Measures sides of small and large square.] The 
small floor is 12 cm and the large 36 cm. So that’s 3 times. Eh … 3 times 
4 tiles is 12 tiles. No, it’s 3 times here and 3 times there, that’s 9 times. 
You need 9 tiles… Wait, let me read it again [Reads the problem and 
thinks for a long time.] I don’t know how I should calculate it. Maybe 
here … there’s 4 tiles, and … yes! [Draws 9 of the small floors in the 
large floor.] 9 times more, so I take 9 times those 4 tiles. 36, you need 36 
tiles.” 

Interviewer:  “36 is your answer. Can you tell me how certain you are that that is the 
correct answer?”  

Deborah:  [Chooses ‘Probably correct’] “I’m never sure about myself. I don’t trust it, 
maybe there’s something wrong with the drawing. It could be a tricky 
question.” 

Such a process contrasts with many solution procedures from the P-condition. Here, 
students needed on average only 76 seconds to respond correctly. In most cases, the 
students immediately and spontaneously started to manipulate the materials to find 
the solution (figuring out rather quickly that 6 × 6 tiles fit on the large floor, or that 
the small floor fits 3 × 3 times on the large one). Remarkably, three students in the P-
condition gave the correct answer almost immediately. Once the problem situation 
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was explained to them, they did not require any additional time for thinking or 
material manipulating at all. They just “saw” the correct solution at a glimpse. 
Generally, students in the P-condition were moreover very convinced about the 
correctness of their answer. Consider for example the following fragment from the 
interview with Marlies (P-condition, solution time of 34 seconds):  

Marlies:  [Takes the small floor and fits it several times on the large floor.] “It’s 9 
times this small one, which has 4 tiles, so 36 tiles.” [Goes immediately to 
fetch 36 tiles.] 

Interviewer:  “So you brought 36 tiles. Wait a moment before putting them on the floor. 
First, can you tell me how certain you are that that is the correct answer?”   

Marlies:  [Chooses ‘Certainly correct’] “It is correct. I just showed you that it’s 9 
times more. Why would I need to doubt about it? I am just sure” 

Posttest 
Table 1 also contains the results on the non-linear posttest item. It aimed at testing 
whether students who had solved the non-linear problem correctly during the 
interview would do this on the posttest as well (taken one or two days later). 
Apparently, this was not really the case. The S-condition student who found the 
correct solution solved the posttest problem correctly as well (again, by making a 
drawing). But in the other two conditions hardly any effect of the interview 
experience was found: While 16 of the 24 students in the D-condition interview 
profited from the drawings to find the correct answer, all of them again reasoned 
linearly on the posttest. And whereas 20 of the 24 students found the correct answer 
in the P-condition interview, only two of them solved the posttest item correctly (and 
all others, except one, again made a linear error).  
Finally, of the four students from the P-group who failed to solve the problem by 
themselves but who could act out and see the correct answer at the end of the 
interview task, only one student solved the non-linear posttest item correctly; the 
other three gave the same answer on the posttest as during the interview.  
CONCLUSIONS AND DISCUSSION 
In previous research, students’ overreliance on linearity was often observed by means 
of tests containing traditional, scholastic word problems. The current study has 
shown that this has an important impact on students’ solution behavior. When 
students who made a linear error on the pretest were involved in an interview with 
more meaningful, authentic performance tasks, they approached the problems very 
differently, and they were less tended to overgeneralise linear methods. As such, our 
results confirm those observed by other scholars and for other kinds of modelling 
problems (for an overview, see Verschaffel et al., 2000).  

More importantly, our study has additionally shown that offering meaningful, 
authentic performance tasks affected students’ problem solving behavior only at that 
moment itself. At a posttest (again with traditional word problems) taken shortly 
afterwards, nearly all students again gave a linear answer to the non-linear problem. 
By means of more fine-grained research, focusing on the differences in the 
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mathematical concepts, heuristic and metacognitive strategies, beliefs, assumptions, 
etc. that students activate when solving meaningful, authentic performance tasks 
versus traditional word problems, we hope to get deeper insight into the reasons why 
performance tasks have such a strong but at the same time such a context-specific 
impact on students’ performance.  
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A PROCESS OF ABSTRACTION BY REPRESENTATIONS OF 
CONCEPTS 

N.C.Verhoef & H.G.B. Broekman 

University of Twente, Utrecht University 

 

The purpose of this article is to describe the integration of epistemological 
principles, theories about levels of argumentation, and different worlds of abstraction 
to address secondary school students’ development of mathematical concepts. A pilot 
study concerning ‘volume and enlargements’ focuses on step-by-step solutions of 
classified problems to establish the progress of the process of abstraction. The 
analysis is based on different language use.  

INTRODUCTION 
Worldwide, but especially in the Netherlands, mathematical education illuminates 
only a few characteristics of a preparation for a scientific study at a university. In 
addition mathematical concepts are wrapped in a variety of contexts. Subsequently it 
is necessary to begin a process of abstraction by releasing these contexts. Otherwise 
students’ intellectual challenge decreases more and more. Casually the attention of 
(supposed) applications and applicable meanings dominate mathematical education 
too long. The development of a process of thinking unfastened of applications starts 
abruptly, without systematically foundation. Dutch textbooks demonstrate a mostly 
absence of definitions and development of a theory, and an elevation of illustrations 
and visualizations to mathematical concepts. Students and teachers alienate from 
their intuition by acquired tricks and bad methods of learning and teaching. 
Mathematical education, answering this characterization, lacks the intellectual 
challenge highlighted by a scientifically study in the future.  

THEORETICAL FRAMEWORK  
Teaching and learning with representations of objects  
From a cognitive psychological point of view the development of knowledge takes 
place by experiencing reality (Piaget, 1972). Experience results from the interaction 
with objects which on the one hand leads to the development of ideas about these 
objects and on the other hand by manipulation to the possibility to evaluate whether 
these ideas are correct or not. Experiences with objects in the real world can be 
divided into (a) direct experiences with the reality or (b) mediated experiences by the 
use of media. In the latter hand a medium is used to depict or to describe the reality 
or both. In education, mediated experience by using a representation of the reality is 
essential, as real objects are not always available or suitable to use. Besides it is 
possible to refer to an imaging reality.  
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The representing medium (the representation) is related to the represented object (the 
reality) through a set of mapping principles that maps elements of the reality to 
elements in the representation. Some representations are (almost) similar to the 
represented object, such as photographs or statues. These are called pictures. In these 
cases, every element in the represented object is represented by a unique element in 
the representing medium, so that there is a one-to-one mapping or isomorphism 
between the two. If a representation is an abstraction of the represented object in 
which the characteristics relevant to the situation emerge and in which the 
characteristics irrelevant to the situation are left out, this is called homomorphism 
between the representing medium and the represented object. In this case, two or 
more elements in the represented object are represented by only one element in the 
representing medium. An example of this is the figure of a man or a woman on a 
toilet door. In all cases in which a representation represents the represented object to 
some extent of similarity, the term icon is used. The relationship between an icon and 
the represented object depends on their ‘mode of correspondence’. There are also 
representations that have no similarity at all with their represented object. These are 
chosen arbitrarily by convention and are called symbols. Examples of these are the 
letters of the alphabet, or numerals.  

From instructional design basic ideas Seel and Winn (1997, p. 298) argued that 
‘people’s thinking consists of the use and manipulation of signs as media for the 
representations of ideas as well as objects’. Changes in the kind of representations 
will have a direct effect on learning processes. In this study about the development of 
mathematical concepts the reference point is the use of signs as: ‘pictures’ (a video or 
a photograph); ‘icons’ (a figure); and ‘symbols’ (a formula or a definition).  

Teaching and learning mathematics by reasoning and argumentation 
In mathematics there are frequently used signs at different levels of abstraction. For 
instance the representation of the concept ‘circle’ is a photograph of a cup of tea 
(picture), a round about on paper (icon), or a set of points (symbol).    

Particularly the Dutch researcher Pierre van Hiele (1986) was engaged in levels of 
mathematical thinking, especially in geometry. He introduced levels of reasoning or 
argumentation to indicate a process of abstraction: the zero-level (visual level) of 
sensorial perceiving of objects, the first level (description level) of properties of 
objects, and the second level (theoretical level) of sets, logical operators and formal 
proofs. There exist some variants with another third level. In that case the second 
level is called the informal deductive level and the third level is mentioned the 
deductive level. Later on this variant comes back in this article. Van Hiele 
characterised the zero-level, or called the ground level, as a lack of relationships. The 
basic ideas about mathematical concepts rest on intuition. Either at the first level the 
concepts are founded on the properties of mathematical concepts. At this level it is 
possible to manipulate concepts because of the understanding properties. By Van 
Hiele the transition from the zero-level to the first level exists of the determination of 
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sensorial descriptions. So relationships will be built as a net of relations based on 
knots of mathematical concepts with a pack of properties each. In accordance with 
Van Hiele it is possible to test the presence of a net of relations by the determination 
of the usage of language. Van Hiele supposed at the transition of the zero-level to the 
first level a developmental process of language use from everyday language to formal 
language. For example the judgment “the direction NNW (bisector) at this map lies 
exactly between the direction N and the direction NW” in everyday language and 
“each point at the bisector has the same distances to both sides of the angle” in formal 
language. The second level of Van Hiele distinguishes a total disconnection of real 
situations or schemes. The properties of mathematical concepts are logical ordered by 
which arises a formal relationship between the concepts. At this level it is possible to 
deduce formal properties from other properties. So proofs as well as the usability of 
symbols, definitions and formulas are necessary to describe mathematical concepts. 
By Van Hiele the transition from the first to the second level occurs in a process of 
analysis and objectivity by a development in language use from formal to symbol 
language.  

Teaching and learning mathematics by a journey through 3 worlds 
Also David Tall (2004) is intensively engaged in all about abstraction in mathematics 
education. He distinguishes explicitly the development of geometric and algebraic 
mathematical concepts. So he presumes three different worlds: the ‘embodied world’, 
the ‘symbolic world’, and the ‘formal world’.  

In the first embodied world the development of concepts is realized by a growing 
process that starts in the real world and consists of our thinking about things that will 
be perceived and sensed, not only in the physical world, but also in an individual 
mental world of meaning. By reflection and by the use of increasingly sophisticated 
language, it is possible to focus on aspects of sensory experiences that enables to 
envisage conceptions that no longer exist in the real world outside, such as a ‘point’ 
that has no thickness, no length and no width. This world mentions the ‘conceptual-
embodied world’ or ‘embodied world’ for short (Tall & Ramos, 2004). This includes 
not only mental perceptions of real-world objects, but also intentional conceptions 
that involve visuo-spatial imaginary. It applies not only the conceptual development 
of geometrical objects but also other mathematical concepts like algebraically (square 
root of number two), analytical (derivative) and statistical objects (median).   

The second world is the world of symbols that are necessary for calculation and for 
manipulation in arithmetic, algebra, calculus, statistics and so on. These begin with 
actions that are encapsulated as concepts by using symbols that allow an effortless 
switch from processes to do mathematics to concepts to think about. This second 
world is called ‘proceptual (the term procept is a contractation of the terms process 
and concept) - symbolic world’ or ‘symbolic world’ for short. In this world the 
central point of view consists of actions with objects. 
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The third world is the formal world based on properties, expressed in terms of formal 
definitions that are used as axioms to specify mathematical structures (such as 
‘group’, ‘field’, ‘set’). This third world is termed the ‘formal-axiomatic world’ or 
‘formal world’ for short. This world considers of mental activities. Properties are 
used to define mathematical structures in terms of special properties. New concepts 
can be defined to build a coherent logically deduced theory. 

Individual travellers through these three worlds take a unique route. Various 
obstacles occur on the way that requires earlier ideas to be reconsidered and 
reconstructed, so that the journey is not the same for each traveller. Either to attain 
the formal world it is recommended to start experiences in the embodied world, and 
to continue these experiences in the symbol world. Because of the development of 
geometrical concepts the journey to the formal world concerns only the embodied 
world by experiences and thought- experiences. This journey follows a natural 
growing process of sophistication via four Van Hiele levels of abstraction. The first 
step is the step of perceiving objects as whole gestalts. The second step is the step of 
description of properties with language growing more sophisticated. In a way that 
descriptions in the third step become definitions suitable for process and proof in the 
fourth step to the formal world. This journey provides a theoretical framework for the 
developmental process of learning geometry.   

THE PILOT STUDY TO DESCRIBE CLASSROOM PRACTICES 
In this pilot study the epistemological ideas (Seel & Winn, 1997), theories about 
levels of argumentation (Van Hiele, 1986) and different worlds of abstraction (Tall, 
2004) are combined with each other to design principles of teaching and learning 
mathematics. For instance the step-by-step developmental process of the geometrical 
concept ‘area of a triangle’ can be activated by the usage of signs in Tall’s embodied 
world. That means assignments with representations of this concept at different levels 
of abstraction. A transparent paper with squares covers a photograph of a flat 
triangular object. The number of the squares is a measure of the area. Little squares 
result in another measure than big squares do. At this level the representations are 
based on sensory perceptions. The arguments are formulated in everyday language 
use. This is the first step in the developmental process to attain abstraction. The 
animated joining of the triangle and the encircled rectangle supply a foresight 
(properties of) the relationship between the area of the triangle and the area of the 
encircled rectangle. The language use change over to formal language. This is the 
second step. Afterwards the representation by a drawing of a triangle with base and 
altitude is enough to understand this concept. The language use reconverts to symbol 
language use. This is the third step. At the highest level of abstraction even the 
drawing is not necessary. The representation of the area of a triangle by the formula 
is enough. This is the last step in the process of abstraction. Finally the representation 
of the area of a triangle consists of a relationship between variables in Tall’s formal 
world. This is strictly mental and therefore maximal manoeuvrable. In terms of Van 
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Hiele the argumentation in everyday language use is founded on representations 
(signs) at the zero-level like photos (pictures), at the first level in formal language use 
like figures (icons), and at the second level in symbol language use like formulas 
(symbols). 

Classified problems to structure the concept developmental process 
The concept developmental process would be activated and stimulated by problems 
related to each level of abstraction, or each representation (picture – icon – symbol).  

To structure the process of concept development the problems are classified in three 
different types: (1) categorisation problems, (2) declaration problems, and (3) design 
problems (Van Merriënboer & Dijkstra, 1997). In case of categorisation problems, 
mathematical objects must be assigned to unknown real or imagined situations. The 
strategy to solve categorisation problems underpins the use of a variety of visual and 
dynamic representations of mathematical objects. 

In case of declaration problems, the cognitive constructs or declarative knowledge are 
principles, as well as casual networks and explanatory theories. The strategy to solve 
declaration problems is based on the declaration of relationships between 
mathematical concepts, manipulations with mathematical concepts, and applications 
with mathematical concepts. In this strategy, the focus is based on students’ 
predictions concerning what will happen in specified situations, test predictions 
indicating whether it is confirmed or falsified, and, if relevant, specify the range of 
probabilities of occurrences of certain events. Explanatory theories predict changes of 
objects and relationships and lead to understanding of the casual mechanics involved. 
In the case of design problems, an artefact must be imagined and a plan has to be 
constructed to solve arising mathematical problems in the real world. The strategy to 
solve design problems concerns the construction of a model and the interpretations of 
models, or more models if necessary. For simplifying the reality and constructing a 
cognitive mathematical content, the label mathematical model is used. The 
mathematical model of the reality needs mathematical techniques (e.g. computer 
simulations) to be solved. Statements about the mathematical model will be 
retranslated in the modelling reality. 

Step by step solutions to establish any progress in the developmental process  
Problem solving skills are related to language use. To establish any progress in the 
concept developmental process the web-based problems were supplied to the - 12 or 
13 years old - students with empty formats to preserve digital answers. The format 
was, based on principles of problem solving skills in heuristic mathematics 
education, divided into five steps (Van Streun, 1989): (1) application of the concept 
in the reality, (2) to order data, (3) to describe the approach, (4) to execute the 
approach, and (5) to reflect at the solution and at the approach. So students’ notes 
could be sampled and compared step by step with everyday language use, formal 
language use, and symbol language use. For instance the following notes to 
assignment 14, paragraph (9.2): 
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Calculate the volume of a soup cup with the diameter 11,4 cm and the 
altitude 5,23 cm. Complete the answer at one decimal.  

(1) volume of a circle, (2) diameter (11,4 cm) and altitude (5,23 cm), (3) to decide the 
volume of a cylinder by using the area of the ground plane (circle with radius 5,7 cm) 
and altitude (5,23 cm), (4) volume (soup cup) = ( � * 5,7 2) * 5,23 � 530,8 cm3, (5) 
530,8 cm3 is a little bit more then half a litre can (reflection on the solution), the 
volume of a cylinder is like the area circle * altitude (reflection on the approach). 

The pilot study to students’ concept developmental processes  
Twelve groups of secondary school students – 12 or 13 years old- of about thirty 
students each were involved in a three-week period where they applied a website 
with problems. All the problems were classified as categorization problems. The 
dynamical geometrical environment Cinderella functioned as a workspace. The 
subject was all about ‘volumes and enlargements’. The paragraph was divided into 
sub-paragraphs: units of volume, volume of prisms and volume of cylinders, volume 
of pyramids, to enlarge and to reduce objects, area at enlargements, volume at 
enlargements, summary, mixed assignments, repetition, and extra, more creative 
assignments. All assignments were copied from an original, most common textbook, 
without any change. A picture illustrated each assignment. Ten participated teachers 
had the following instructions to support students’ concept developmental learning 
processes: (i) to switch zigzag with students to representations of concepts at 
different levels of abstraction, and (ii) to search for other representations of concepts 
at the same level of abstraction (Verhoef, 2003). The data consisted of: (i) electronic 
students’ step-by-step responses in the last (third) college time in the first week (pre-
test) and in the ended (twelfth) college time in the last week (posttest), and (ii) a 
written test, the same test and the same teacher as the previous year. The electronic 
responses were transcribed and categorised by two student assistants into catchwords 
in everyday language, formal language and symbol language. The data were analysed 
at the language use. The expectation was (i) less everyday language use in the 
posttest in relation to the pre-test, en (ii) higher results in the written test than the 
results at the same test in the previous year. 

The findings of this pilot study are related to epistemological principles as well as 
theories about teaching and learning in mathematics education.  

In the pre-test students were inclined to annotate all the five steps. The possibility to 
answer step-by-step was a new phenomenon for these students. The solution (step 4) 
was in de post-test correctly annotated in formal language use and symbol language 
use. Students didn’t use everyday language anymore. 

The results of the written test were higher than the test results of previous year in 
three groups. Teachers of these groups required only students’ step-by-step solutions. 
In the other groups the test results were averagely lesser. The low results were 
attributed to the incorrect use of symbol language use (formulas) without formal 
language use (descriptions). 
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DISCUSSION 
This pilot study involved analysis of secondary school students’ development of 
mathematical concepts by categorization problems and the possibility to answer step-
by-step. Firstly it is necessary to investigate types of different problems like 
categorization problems, but also declaration and design problems. Each problem 
type has original skills to solve these problems, prepared on different representations 
(picture – icon – symbol), different language use (everyday – formal- symbol), and 
different (thought-) experiments.  

Secondly, it seems advisable to answer step-by-step, because of higher results in 
written tests. Reflection (step 5) will be the most important step to attain a higher 
level of abstraction. Naturally students follow their intuition, they don’t reflect (De 
Bock, Van Dooren, Verschaffel, & Janssens, 2002). So teacher’s support focuses on 
the emphasis at the process of reflection highlighted by the use of representations. 
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ARGUMENTATION PROFILE CHARTS AS TOOLS FOR 
ANALYSING STUDENTS’ ARGUMENTATIONS 
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Traditional argument theories focus on how the structure of statements determines 
their contribution to an argument. Such theories are useful in analysing arguments as 
products, or for analysing the sub-arguments that are generated during an 
argumentation. This paper outlines a method for analysing an argumentation as a 
process, focusing on the social interactions between pairs of Year 8 students and the 
teacher-researcher in the context of geometric reasoning.  

CONJECTURING, JUSTIFYING AND ARGUMENTATION 
Over recent decades concern has been expressed that school mathematics focuses on 
product rather than process, with the result that many students are unable to justify or 
explain their reasoning. In 1991, for example, the Australian Education Council 
asserted that 

the systematic and formal way in which mathematics is often presented conveys an 
image of mathematics which is at odds with the way it actually develops. Mathematical 
discoveries, conjectures, generalisations, counter-examples, refutations and proofs are all 
part of what it means to do mathematics. School mathematics should show the intuitive 
and creative nature of the process, and also the false starts and blind alleys, the erroneous 
conceptions and errors of reasoning which tend to be a part of mathematics. (p. 14) 

Mathematics curriculum statements in many countries (see, for example, National 
Council of Teachers of Mathematics, 2000) are now emphasising the need for 
students to engage in conjecturing and to justify their reasoning.  

Argument and argumentation 
An argument may be defined as a sequence of mathematical statements that aims to 
convince, whereas argumentation may be regarded as a process in which a logically 
connected mathematical discourse is developed. Krummheuer (1995) views an 
argument as either a specific sub-structure within a complex argumentation or the 
outcome of an argumentation: “The final sequence of statements accepted by all 
participants, which are more or less completely reconstructable by the participants or 
by an observer as well, will be called an argument” (p. 247). We can therefore 
distinguish between argumentation as a process and argument as a product. 
Krummheuer notes that argumentation traditionally relates to an individual 
convincing a group of listeners but may also be an internal process carried out by an 
individual. He uses the term ‘collective argumentation’ to describe an argumentation 
accomplished by a group of individuals. 
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Some researchers, for example, Boero, Garuti, Lemut, and Mariotti (1996), assert that 
it is only by engaging in conjecturing and argumentation that students develop an 
understanding of mathematical proof. Boero et al. use the term ‘cognitive unity’ to 
signify the continuity that they assert must exist between the production of a 
conjecture during argumentation and the successful construction of its proof: 

During the production of the conjecture, the student progressively works out his/her 
statement through an intensive argumentative activity functionally intermingled with the 
justification of the plausibility of his/her choices. During the subsequent statement-
proving stage, the student links up with this process in a coherent way, organising some 
of the justifications (‘arguments’) produced during the construction of the statement 
according to a logical chain. (p. 113) 

Boero et al. claim that the reasoning which takes place during the argumentation 
plays a crucial role in the subsequent proof construction—“it allows students to 
consciously explore different alternatives, to progressively specify the statement [of 
the conjecture] and to justify the plausibility of the produced conjecture” (p. 118). 

Critics of this conjecturing/argumentation approach to proof assert, however, that the 
natural language of students’ argumentation is in conflict with the logic associated 
with deductive reasoning. Balacheff (1991), for example, regards argumentation in 
the mathematics classroom as an invitation to convince, by whatever means the 
students choose. He asserts that argumentation implies the freedom to convince by 
whatever means one chooses and hence that there is a contradiction between the 
natural language of students’ argumentation and the logic associated with deductive 
reasoning: 

The aim of argumentation is to obtain the agreement of the partner in the interaction, but 
not in the first place to establish the truth of some statement. As a social behavior it is an 
open process, in other words it allows the use of any kind of means; whereas, for 
mathematical proofs, we have to fit the requirement for the use of some knowledge taken 
from a common body of knowledge on which people (mathematicians) agree.  
(p. 188−189) 

More recently, Balacheff (1999) again makes the strong assertion that argumentation 
is an obstacle to the teaching of proof because of this inherent conflict between 
mathematical proof [démonstration], which must “exist relative to an explicit axiom 
system”, and argumentation, which implies freedom to choose how to convince:  

The sources of argumentative competence are in natural language and in practices whose 
rules are frequently of a profoundly different nature from those required by mathematics, 
and carry a profound mark of the speakers and circumstances. (p. 3) 

Responding to Balacheff’s views on argumentation and proof, Boero (1999) focuses 
on the distinction between ‘proving’ as a process, that is, argumentation, and ‘proof’ 
as a product. He notes that from this perspective that the nature of arguments used by 
students depends on the establishment of a culture of theorems in the classroom, on 
the nature of the task, and the specific kinds of reasoning emphasised by the teacher. 
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Boero regards Balacheff’s (1999) reference to “the freedom one could give oneself as 
a person in the play of an argument” as inappropriate, as strong teacher intervention 
should ensure that students’ arguments are based on sound mathematical logic. 
Hanna (1995) also emphasises that teacher intervention must be a part of any learning 
methods which encourage students to interact with each other. She asserts, though, 
that where classroom practice is informed by constructivist theories, evidence 
indicates that in many cases teachers are not intervening:  

… teachers tend not to present mathematical arguments or take a substantive part in their 
discussion. They tend to provide only limited support to students, leaving them in large 
measure to make sense of arguments by themselves. (p. 44) 

ANALYSING THE STRUCTURE OF ARGUMENTS  
Argument theories such as those of Toulmin (1958) provide a theoretical framework 
for analysing the structure of written arguments, particularly deductive arguments, as 
well as the structure of the reasoning that occurs during a process of argumentation. 
Toulmin asserts that the foundation for the argument (data) and the conclusion based 
on this data must be bridged by a warrant that legitimises the inference. Toulmin 
describes warrants as “inference-licences”, whose purpose is to show that “taking 
these data as a starting point, the step to the original claim or conclusion is an 
appropriate and legitimate one” (p. 98). Toulmin notes that his model for an 
argument layout is focusing on a micro-argument: “when one gets down to the level 
of individual sentences” (p. 94). Micro-arguments form part of the larger context of a 
macro-argument. Krummheuer (1995), for example, applies Toulmin’s model to an 
argument where the conclusions from two subordinate arguments form the data for 
the main argument. 

PROVIDING A CONTEXT FOR ARGUMENTATION 
As part of a research study of the role of argumentation in supporting students’ 
deductive reasoning in geometry (see Vincent (2005); Vincent, Chick & McCrae, 
2002), 29 above-average Year 8 students at a private girls’ school in Melbourne, 
Australia were presented with a range of conjecturing/proving tasks. Some of these 
tasks were pencil-and-paper proofs, some were computer-based (using Cabri 
Geometry II TM), and others involved the investigation of the geometry of appropriate 
mechanical linkages. For the linkage tasks, the students worked with physical models 
of the linkages as well as with teacher-prepared Cabri models. During the video-
recorded lessons, the students worked in pairs to formulate conjectures and to 
develop geometric proofs. In the context of this research, argumentation was viewed 
as a social process and the extent to which each participant benefited from engaging 
in an argumentation was influenced by the level of peer interaction. 

Deductive reasoning was a new experience for these students, and teacher 
intervention was of paramount importance in the argumentations. Some interventions 
were merely to clarify the content of the students’ statements, answer non-geometric 
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queries, or assist with software related difficulties. Other interventions, however, 
assisted the students in some way—re-directing the students’ thinking if they had 
reached an impasse (designated guidance), for example, “What other things do you 
know about parallelograms?”; correcting false statements (correction), and ensuring 
that the students’ arguments were based on sound mathematical logic. Boero (1999) 
notes that “the development of Toulmin-type … argumentations calls for very strong 
teacher mediation” (p. 1). Interventions which I termed warrant-prompts were 
intended to provoke deductive reasoning by asking the students to justify their 
statements. An example of a warrant-prompt is: “Why do you say that?” in response 
to a students’ claim: “Those two angles are equal”.  

In general, four different phases of activity could be identified in the argumentations. 
An initial observation phase generally commenced with task orientation, where the 
students familiarised themselves with the task by referring, for example, to the given 
data or noting how the mechanical linkage moved. Following this observation phase, 
or sometimes associated with it, was a data gathering that led into conjecturing and 
proving phases. The phases were not always distinct, and observations and data 
gathering often continued throughout the conjecturing phase, and statements of 
deductive reasoning occasionally occurred in the task orientation phase.  

ARGUMENTATION PROFILE CHARTS 
Toulmin’s model was used to analyse the structure of the students’ arguments. In 
order to provide a visual display of the features of each argumentation, however, I 
devised an argumentation profile chart (for example, see Figure 1). The charts were 
constructed as X-Y scatter graphs, with speaking turns on the x-axis. Each 
characteristic to be displayed—the two students and the teacher-researcher, the 
phases of the argumentation associated with each statement (task orientation, data 
gathering, conjecturing, proving), and the medium in which the students were 
working (computer environment, pencil-and-paper, or a physical model of a 
linkage)—was given a unique y-value.  

Figure 1 depicts the argumentations of two pairs of students, Jane and Sara, and Anna 
and Kate, during their first conjecturing-proving task—an investigation of Pascal’s 
angle trisector (referred to as Pascal’s mathematical machine to avoid disclosing its 
geometric function). The students had access to a physical model of the linkage as 
well as to a Cabri model, where they were able make accurate measurements and 
drag the linkage to simulate its operation. Although Anna and Kate’s argumentation 
is more condensed, the structure is similar in each case, with both pairs of students 
engaging in a large number of observations and requiring substantial guidance. In 
both argumentations, initial tentative steps of deductive reasoning were supported by 
further data gathering and conjecturing. Jane and Sara, however, made many 
unproductive observations and incorrect statements, for example, “… so these two 
[two angles which formed a straight line] added together would have to equal 90 or 
something like that” (Sara, turn 58). Both pairs of students moved between the 
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physical model, the Cabri model, and their pencil-and-paper drawings. Anna and 
Kate, however, did not return to the physical model once they began exploring the 
Cabri model. 

Anna and Kate: Pascal's Angle Trisector
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Figure 2 shows the argumentation profiles for the students’ fourth conjecturing-
proving task—a Cabri-based task in which the students investigated the joining of the 
midpoints of the sides of a quadrilateral.  

Anna and Kate: Quadrilateral Midpoints
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Jane and Sara’s argumentation contrasts sharply with that of Anna and Kate, who 
immediately recognised the parallelogram formed when the midpoints were joined. 
Anna and Kate completed their proof without the need for teacher guidance, although 
it was Kate who dominated the deductive reasoning. Jane and Sara, however, focused 
on other features of the figure and failed to notice the parallelogram until their 
attention was drawn to it by intervention at turns 37 and 44. They were also 
handicapped in their conjecturing and arguing by frequent incorrect observations and 
their lack of confidence with quadrilateral properties and relationships: 

69 Sara:  I think it’s … um … because the midpoint always stays the same and if 
the angles of the triangle are always joined to the shape … 

70 TR: Which triangle? 

71 Sara: I mean of the square … sorry … of this … the parallelogram … this 
parallelogram is always … it’s centred … it’s in the very centre of the 
whole shape because of the lines … therefore it stays there.  

DISCUSSION 
A comparison of Anna and Kate’s argumentation profile charts for their first 
conjecturing-proving task (Pascal’s angle trisector) and for their fourth task 
(Quadrilateral midpoints) demonstrates the development of the deductive reasoning 
ability of these two students. Further evidence for this development was provided by 
an analysis of their argumentations and written proofs for other tasks which they 
completed. The ability of Anna and Kate to engage in argumentation was largely due 
to their facility with the language of geometry and their understanding of basic 
properties of triangles and quadrilaterals. It was, however, the process of 
argumentation which provided these two students with a sense of ownership of their 
proof. During the argumentation, deductive reasoning statements became ordered so 
that production of the written proof followed naturally, supporting the claims of 
cognitive unity by Boero et al. (1996).  

By contrast, Jane and Sara were hindered by a poor knowledge of geometric language 
and properties and substantial teacher intervention was required. However, the 
process of argumentation did create an environment in which Jane and Sara were able 
to develop some understanding of the nature of deductive reasoning and to gain a 
sense of satisfaction from their proof construction.  

CONCLUSION 
Argumentation profile charts facilitate comparisons of the extent of collaboration 
between students during the argumentation; the efficiency of the students’ data 
collection, conjecturing and deductive reasoning; and the level of intervention 
required by different pairs of students, or by the same pair of students in different 
tasks. By focusing on interactions and the overall structure of an argumentation, that 
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is, on conjecturing and proving as a process, the argumentation profile chart can 
provide valuable insight into how students approach problem-solving tasks.  
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CHARACTERIZING MIDDLE SCHOOL STUDENTS’ THINKING 
IN ESTIMATION 

Tanya N. Volkova 
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The goal of the research reported was to develop a framework for describing 
students’ thinking in situations involving computational estimation. Case-study 
methodology was used to investigate 8th grade students’ abilities to estimate. The 
developed Estimation Thinking Framework is empirically based, and consists of four 
developmental levels: (1) predimensional, (2) unidimensional, (3) bidimensional, and 
(4) integrated bidimensional. These levels are hierarchical in nature and based on 
the data collected during the study, analysis of existing classifications of estimation 
strategies, as well as Case’s (1996) theory of cognitive development. 

Mathematics education reforms of the recent decades in the United States have 
recommended that school mathematics curricula include topics on estimation. The 
National Council of Teachers of Mathematics (NCTM), in its Principles and 
Standards for School Mathematics (NCTM, 2000), acknowledged the importance of 
developing students’ ability to estimate. The attention given by NCTM to the 
necessity of developing estimation skills has resulted in the expansion of research on 
how students develop computational estimation strategies and how they reason in 
problem situations in which the context calls for an estimate. 
Over the last three decades, a substantial volume of research has been accumulated 
and provides a theoretical foundation for understanding the development of students’ 
abilities to estimate. However, further investigation of learning, understanding, and 
teaching estimation is necessary in order to provide educators with insights into 
practical applications of this research knowledge. The goal of the current study was 
to develop a framework for characterizing levels of students’ thinking based on their 
choice of computational estimation strategies. The research, stemming from the 
analysis of existing classifications of estimation strategies (e.g., Reys, Rybolt, 
Bestgen, & Wyatt, 1982; Rubenstein, 1985; Levine, 1982) and Case’s (1996) theory 
of cognitive development, addressed the construction of an empirically based 
framework which can be used to identify a level of middle school students’ thinking 
with regard to estimation. Thus, the findings of the study shed light on why a student 
chooses a particular estimation strategy.  

REVIEW OF RELATED LITERATURE 
There seems to be a consensus among mathematics educators and researchers that 
instructional decisions should be grounded in research-based knowledge of student 
thinking (e.g., Carpenter & Fennema, 1989, 1993; Mack, 1995; Lamon, 1993). 
Carpenter et al. (1989) and Fennema et al. (1993) posited the need for cognitive 
frameworks that would provide researchers and educators with detailed knowledge 
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about children’s thinking in each knowledge domain. This approach has been adopted 
by several studies targeting various mathematical knowledge domains. Carpenter et 
al. (1989) used this approach in a study focused on whole number arithmetic; Mack 
(1995) applied the same approach in the domain of fractions; Lamon (1993) utilized 
this principle in the domain of proportional reasoning; and Fuys, Geddes, and 
Tischler (1988) have proven this approach to be effective in the geometry domain. 
While the body of knowledge on development of children’s ability to estimate is 
growing, there is still a need for a framework that will allow characterizing levels of 
students’ thinking with regard to estimation. 
Several researchers devoted their studies to identification and classification of 
estimation strategies. Rubenstein (1985) examined the computational estimation 
abilities of eighth-graders, and developed an estimation test to measure four types of 
computational estimation (open-ended, reasonable versus unreasonable, reference 
number, and order of magnitude). Whereas Rubenstein (1985) classified estimation 
strategies based on the type of problems the students were given, Levine (1982) 
suggested a model for classification of estimation strategies based on the type of 
estimation technique. The model consisted of 8 categories: (1) using fractions; (2) 
using exponents; (3) rounding both numbers; (4) rounding one number; (5) using 
powers of 10; (6) using “known”/ “nicer” numbers; (7) incomplete partial products; 
and (8) proceeding algorithmically.  
Levine’s (1982) model is limited in its application: it can be used for strategy 
identification purposes only, and provides no way to account for all the possible 
estimation strategies. However, the nature of computational estimation is such that 
the number of estimation strategies is limited only by one’s level of cognitive 
development. Dowker (1992) conducted a study on estimation strategies used by 
professional mathematicians. The results showed that mathematicians used a great 
variety of strategies, as many as 23 for a single problem. This presented a challenge 
for the researcher, who tried to encompass all the possible estimation strategies in one 
comprehensive classification. In the attempt to overcome such shortcomings, Dowker 
(1992) modified Levine’s (1982) model by changing several categories and including 
the catch-all category named “other.”  This category included those strategies that 
were used only for one or two problems.  
Reys et al. (1982) focused on “good estimators” in order to identify cognitive 
processes they use to solve problems that require computational estimation. The 
researchers administered a 55-item computational estimation test to over 1,200 
students in grades 7–12 and to selected adults in order to identify a group of 59 
“good” estimators. The people from the selected group were interviewed to determine 
strategies and processes they use to solve estimation problems. The three key 
cognitive processes people use in computational estimation were identified as: 
reformulation, translation, and compensation.  
It is noteworthy that these classifications and models listed above, while providing 
some insight into the variety of estimation strategies and cognitive processes that 
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students use, do not focus on the students’ progression through the levels of thinking 
in computational estimation. The current study developed a framework that can be 
used to characterize students’ thinking with regard to computational estimation. The 
framework provides mathematics educators and teachers with descriptions of the 
levels of students’ thinking with regard to computational estimation.  
In 1996, Case put forth a theory of cognitive development with regard to quantitative 
thought. According to this theory, children’s cognitive growth proceeds through two 
stages during the school years: the dimensional stage (approximate ages 5-10) and the 
vectorial stage (approximate ages 11-18). More importantly, Case (1996) identified 
the four sub-stages of each stage of the cognitive growth: (1) predimensional, (2) 
unidimensional, (3) bidimensional, and (4) integrated bidimensional. Based on the 
Case (1996) model of cognitive development the Estimation Thinking Framework 
was developed for describing and characterizing the development of student’s 
thinking in computational estimation. 

METHODOLOGY 
Participants  
For the current research, a case-study methodology was selected to construct 
descriptors of the developmental levels of the framework. Eight students in grade 
eight at a public school in Normal, Illinois, formed the population for the study. All 
of the students were chosen from the top level of their mathematics classes, on the 
assumption that the high-level achievement students could be expected to exhibit a 
greater variety of strategies and techniques (Reys et al., 1982; Dowker, 1992) in 
solving problems involving computational estimation.  
Data Collection 
This study utilized an original interview protocol, comprised of 19 tasks designed to 
assess students’ ability to estimate across the four constructs: whole number, 
fractions, percent, and decimal fractions. The tasks allowed children to respond 
orally; students were not allowed to use paper and pencil to solve problems. The 
Interview Protocol was administered individually to each student in one 40-50 minute 
session; interview sessions were audio taped and transcribed. Students’ responses to 
the Protocol tasks, along with the researcher’s field notes, provided a basis for 
evaluating their levels of thinking in computational estimation.  
Data Analysis 
Transcripts of audiotapes and researcher’s field notes on each student’s thinking 
comprised the data for this study. Data were entered into a meta-matrix containing all 
students’ responses to each question. A double coding procedure (Miles & 
Huberman, 1994) was used to code students’ responses. First, the data were labeled, 
partitioned and clustered into the four categories (see Figure 1) according to the level 
of complexity of their estimation strategies: Level 1 (Predimensional), Level 2 
(Unidimensional), Level 3 (Bidimensional), or Level 4 (Integrated Bidimensional). 
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Level Descriptors of levels of cognitive development 
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 Students who operate at this level:  

• have a propensity to compute an exact answer, applying written or mental 
computation procedures and algorithms.  

• demonstrate inability to compare numbers using “benchmarks” (to identify 
which of two numbers is closer to a third number), to order numbers, to find 
or identify numbers between two given numbers 

• possess a limited understanding of the relations between numbers (e.g., 
multipliers vs. product, addends vs. sum, etc.) in arithmetic sentences.  
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Students who operate at this level: 
• use in addition to standard algorithmic procedures (mental or paper-and-

pencil) other estimation strategies. For instance, the students might adapt 
and use rounding or front-end techniques with whole numbers. In problems 
involved fractions they might accommodate techniques that require 
converting fraction to decimal fractions.  

• tend to treat decimal fractions as whole numbers, employing rounding and 
truncating techniques.  

• might see the relationship between percents and decimals; however, tend to 
fall short of seeing connections between percents and fractions.  

• are limited in their use of the strategies, applying the same successful 
strategy over and over again for different types of problems. 
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In contrast with students who function at Level 2 (unidimensional), students 
who operate at Level 3 (bidimensional): 
• tend to use a greater variety of estimation strategies.  
• choose computational strategies in accordance with the situation described 

in the problem.  
• do not rely solely on a successful strategy that worked for other problems; 

become more flexible in their choice of strategies. 
• However, in contrast with students who function at Level 4 (integrated 

bidimensional), students who operate at Level 3 (bidimensional) 
• tend to use the estimation strategies that are available for them in isolation 

for each particular situation.  
• cannot easily switch from one strategy to another, which is illustrated by 

their inability to come up with different strategies for a single problem.  
• do not look for different possible techniques or strategies to verify their 

estimate 
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 Students who operate at the integrated bidimensional level  
• are able to coordinate two complex and multi-dimensional components 

(mental computation and number nearness task),  
• show their ability to switch between strategies easily.  
• are no longer applying the same strategy to “check” their estimates; they 

use different strategies to confirm the results. Moreover, once they find an 
estimate, they tend to try another strategy to yield a closer estimate. 

Figure 1. Estimation Thinking Framework. 
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Next, students’ responses to items within each category were described to yield 
criteria for each level of the initial framework. To assure the quality of the study, data 
were collected from two sources: (1) students’ responses to the interview protocol 
tasks; and (2) researcher’s field notes on each student’s thinking strategies; the data 
from both sources were later tested for consistency. 
RESULTS 
The following subsections provide a parallel comparison of the descriptors of the 
Estimation Thinking Framework based on the data collected in the current study to 
the descriptors of sub-stages of the Case (1996) theory of cognitive development with 
regard to quantitative thought. 
Level 1 – Predimensional 
With regard to quantitative thought, Case (1996) found that the students who 
operated at the predimensional level were able to generate number tags (e.g., 2, 3, 
etc.) and to make qualitative judgments about quantities (e.g. more or less). However, 
they fell short of integrating these two aspects of knowledge into a meaningful 
structure, and therefore tended to respond at chance level when asked to decide 
whether, say, 4 was larger or smaller than 5. Results of the current study showed that 
students who operate at this level tend to use estimation strategies that are limited to 
standard algorithmic procedures. They have a propensity to compute an exact answer, 
applying written or mental computation procedures. They also show inability to 
compare numbers using “benchmarks” (to identify which of two numbers is closer to 
a third number), to order numbers, to find or identify numbers between two given 
numbers; as well as limited understanding of the relations between numbers (e.g., 
multipliers vs. product, addends vs. sum, etc.) in arithmetic sentences. For example, 
they are unable to predict what happens to the product if a multiplier is less than one, 
or if the multiplier is greater than one. Furthermore, when asked to estimate, students 
tend to respond at chance level by guessing the estimate. 
The following is an excerpt from the interview with Masha (pseudonym), whose 
responses exemplify Level 1, “predimensional,” of computational estimation.  

Interviewer: Estimate the answer to “3 1/8 +2 4/5. 
Masha: I’ll start by converting this to improper fractions, so that’ll be 25/8 plus… 
Interviewer: Do you think it’s easier to work with improper fractions? 
Masha: Yeah. 
Interviewer: Can you just add these numbers, 3 and 2?.. 
Masha: Yeah. So, that would be 5 and then find the common denominator… I 

think it would be 40. 
Interviewer: You don’t need to find a common denominator, but think about 

fractions… 4/5 and 1/8. If you add these two fractions, is the sum greater 
or less than 1?  

Masha: Greater… 
It is clear from the above responses that Masha cannot think of any estimation 
strategies besides standard algorithmic procedure. Moreover, her predictions can be 
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described as a “lucky guess” strategy, since her answer is incorrect and she could not 
provide an explanation of her reasoning.  

Level 2 – Unidimensional 
According to Case (1996), students who exemplified thinking at unidimensional level 
were able to use a mental counting line to count backwards and forwards. However, 
they were unable to use one number line to locate two numbers and then compute 
differences simultaneously using the second number line. With regard to estimation, 
the results of the current study showed that, in addition to standard algorithmic 
procedures (mental or paper-and-pencil), students are able to use other estimation 
strategies. For instance, the students might adapt and use rounding or front-end 
techniques with whole numbers. In problems that involve fractions they might 
accommodate techniques that require converting fractions to decimal fractions. These 
students usually treat decimal fractions as whole numbers, employing rounding and 
truncating techniques. Even though the students operating at this level might see the 
relationship between percents and decimals, they fall short of seeing connections 
between percents and fractions. Despite the growing number of strategies available to 
students at the bidimensional level, they are still limited in their use of the strategies, 
applying the same successful strategy over and over again to different types of 
problems. 

Level 3 – Bidimensional 
Students who operated at Case’s bidimensional level showed proficiency at 
performing more than one mental operation, which Case calls vectors. Results of the 
current study showed that, in contrast with students who function at Level 2 
(unidimensional), students who operate at Level 3 (bidimensional) tend to use a 
greater variety of estimation strategies. They choose computational strategies in 
accordance with the situation described in the problem. In other words, they do not 
rely solely on a successful strategy that worked for other problems; they become 
more flexible in their choice of strategies. However, the strategies are not connected 
and are used in isolation for each particular situation. The students cannot easily 
switch from one strategy to another, which is illustrated by their inability to come up 
with different strategies for a single problem. When they get an estimate, they stop 
looking for other possible techniques or strategies to verify their result.  

Level 4 – Integrated Bidimensional 
With regard to quantitative thought, Case (1996) found that the students who 
operated at the integrated bidimensional level were able to use multiple mental 
counting lines to do whole number arithmetic. With regard to computational 
estimation, the results of the study suggest that students at the integrated 
bidimensional level are not only able to coordinate two complex and multi-
dimensional components (mental computation and number nearness task), but to do 
this they apply more than one strategy for a single problem. Thus, they show their 
ability to switch between strategies easily. At this level they are no longer applying 
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the same strategy to “check” their estimates; they use different strategies to confirm 
the results. Moreover, once they find an estimate, they tend to try another strategy to 
yield a closer estimate.  

The following is an excerpt from the interview with Victor, who demonstrated his 
ability to apply two different strategies to find an estimate for the problem.  

Interviewer: Estimate the answer to “3 1/8 +2 4/5. 
Victor: I think five and something… a little less than six. 
Interviewer: Why is that? 
Victor: Because, uhm… these two [1/8 and 4/5] don’t look like they are enough 

to create one, so it would be more than five, because three and two make 
five… 

Interviewer: But how do you know that 1/8 and 4/5 will not be enough to make a 
whole? 

Victor: Just because one-fifths is greater than one-eighths. 
Interviewer: Can you think of another way to justify that? 
Victor: Uhm, because, 4/5 is, like, 80% of 1. 
Interviewer: Yes… 
Victor: and then 1/8 is, like, uhm… about 10% of 1. 
Interviewer: Uh-huh… 
Victor: So these two together are about 90%…So the answer will be close to 6…  

It is clear from Victor’s responses that, first, he applied a “benchmark” strategy – he 
estimated how far the two numbers are from the number 1, and how much it takes to 
complete another number to get the whole unit. Then Victor estimated what percent 
of the whole unit the fractions represent, and by adding two percents found that the 
fractions are not enough to make a whole. Thus, Victor’s responses exemplify Level 
4 thinking in computational estimation. 

DISCUSSION 
Data collected for the current research showed that children of the same age (in this 
case – middle school children) can be on different levels of thinking with regard to 
computational estimation. This finding is more in line with the van Hiele (1959/1984) 
model than with the Case (1996) model. While Case focused on students’ age or 
maturation, the van Hiele model – although it does not specifically deal with the 
domain of computational estimation – places the emphasis on students’ progression 
through the levels of understanding due to the instructional intervention. The levels 
of estimation thinking framework are not age-specific, and progress from level to 
level will depend more on the content and methods of instruction received by the 
student, than on their age. The presented framework was developed to characterize 
middle school students’ thinking in estimation; however, further research is necessary 
to explore whether the framework is applicable to other age groups. 
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REVIEWING AND THINKING  
THE AFFECT/COGNITION RELATION 

Margaret Walshaw Tânia Cabral 
Massey University, NZ UERGS, Gua�ba, RS, Brazil 

 

This paper is a theoretical discussion about learning. In it the core question of 
learning is first reviewed, assessed, then reworked to offer a new sensibility about 
what it is that prompts us to learn. Central to the reframing is the affective domain 
and the role that affect plays in learner outcomes. Our intent is to develop a theory of 
learning that foregrounds the non-rational and often unexplained aspects of learning. 
The general strategy taken draws upon the work of Lacan and uses that framework 
and language for developing a coherent explanation of some affective aspects of 
learning that are ordinarily overlooked in mathematics education.  

INTRODUCTION 
This paper is a theoretical discussion about learning. In it the core question of 
learning is first reviewed, then rethought and reframed to offer a new sensibility 
about what it is that prompts us to learn. Theoretical insights about learning are not 
new in mathematics education and an enduring history has mapped out robust 
explanations about what it is that prompts us to take up new ideas. The approach 
taken in this paper takes as its central plank the affective domain and the role that 
affect plays in learner outcomes. Going against the grain of much contemporary 
scholarly work on affect (see Hannula, Evans, Philippou, & Zan, 2004), we look at 
one way in which the affect/cognition is currently being worked through within social 
science. In arguing for the usefulness of our approach for learning theory, we contend 
that it offers a fresh and helpful way to explain the relationship between the 
individual and the social. Arguably the approach presents a challenge to classic ideas 
about learning, yet the potential of such work to move forward current 
understandings of learning is not to be underestimated.  

Research interest in the affective domain has proceeded through quite different 
theoretical viewpoints. Characterisations of affect are inclusive of “a wide range of 
beliefs, feelings and moods that are generally regarded as going beyond the domain 
of cognition” (McLeod, 1992, p. 576). Those characterisations go by the name of: 
anguish, anxiety, attitudes, autonomy, beliefs, confidence, curiosity, disaffection, 
dislike, emotions, enthusiasm, fear, feelings, frustration, hostility, interest, intuition, 
moods, panic, perseverance, sadness, satisfaction, self-concept, self-efficacy, 
suffering, tension, viewpoint and worry. All these categories have come under 
scrutiny (e.g., Goldin, 2000; Hannula, 2002; Ma, 1999; Martinez & Martinez, 2003; 
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McLeod, 1992) and from those investigations important conclusions have been 
drawn with respect to the affect/cognition relation.  

Contrary to McLeod’s (1992) contention that research on affect lacks a strong 
theoretical basis we believe that what we are witnessing now is a plethora of 
groundings, drawn from theories of discursive practice (e.g., Evans, 2000; Walshaw, 
2004a), of embodiment (Drodge & Reid, 2000), of somatic markers (e.g., Brown & 
Reid, 2004), of neuroscience (Schl�glmann, 2002), of representation (e.g., Goldin, 
2000), and of situated practice (e.g., Lave, 1988). We develop our own theory of 
affect using Lacanian ideas, in the hope that it might contribute towards the 
centering, rather than the marginalisation, of research on affect within the field. A 
Lacanian treatment like ours is not entirely foreign in mathematics education (see 
Breen, 2000; Brown, Hardy & Wilson, 1993; Cabral, 2004; Evans, 2000; Walshaw, 
2004b) and our work builds on that recent tradition. 

IDEAS ABOUT LEARNING 
Learning in mathematics education is by no means a unified theory. In attempting to 
produce a rigorous method and a satisfactory explanation of learning, theorists have 
proceeded with different emphases from alternative starting points and have often 
been in contest with one another. Since Gagné’s (1965) classic interpretation of 
learning as behavioral change, new paradigms, influenced by cross-disciplinary 
practices, have tended to problematise conditions of learning as ‘holding good’ for 
learners, irrespective of the learner’s history, interests and circumstances. Yet for all 
the inclusiveness in this exacting scholarship, the new paradigms tend to overlook 
affective aspects that we consider fundamental to the pedagogical encounter.  

In the constructivist approaches influenced by Piaget and the post-Piagetian work of 
von Glasersfeld, it is the autonomous individual, and more specifically, the 
individual’s developing internal representation within the mind (Goldin & 
Shteingold, 2001) that becomes the central unit of analysis. Drawing on humanist 
sensibilities about the individual, constructivists’ accounts of learning necessarily 
rely on the autonomous learner, understood as the stable, core, knowing agent. In 
opposition to the constructivists’ privileging of interior mental processes, 
sociocultural perspectives, mark up social contexts and experiences. They give 
priority to shared consciousness, or intersubjectivity, arguing that conceptual ideas 
proceed from the intersubjective to the intrasubjective. Semiotic mediation theory is 
proposed to account for intersubjective arrangements and the part those arrangements 
play in the development of internal controls in the learning process.  Emotive and 
unconscious aspects are ignored by that learning mechanism. 

In claiming that learning comes about from ongoing participation within a 
community, situated theorists offer ideas about learning that are relational and 
connectivist (Greeno, 2003). From a stress on the mutually relational effects of the 
social and individual, the idea is developed that learning is constituted socially. 
Lave’s social practice theory, in particular, offers an insightful critique of the central 
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processor model of the mind. She foregoes description of a learning mechanism to 
explain learning as participation in social practices. Similarly, in embodied 
mathematical learning theory, learning is generated mutually and relationally from 
active and ongoing engagement within a community. Mathematical ideas are “not 
held by institutions or individuals but are embodied by human beings with normal 
human cognitive capacities living in a culture” (Lakoff & Núñez, 2000, p. 359).  

Those evolving practices, and the adaptations people make to maintain coherence 
within complex, dynamic systems, are brought to the fore in enactivist theory. 
“Learning is understood in terms of ongoing, recursively elaborative adaptations 
through which systems maintain their coherences within their dynamic 
circumstances” (Davis & Simmt, 2003, p. 138). In these formulations of learning, it is 
not the autonomous individual that is the principal unit of analysis; nor is a collective 
understanding the focus. Rather, what are at stake are the evolving relationships 
between people and the settings made through the “nested learning systems” (ibid, p. 
142) within which both the individual and collective are mutually constituted. In the 
next section we offer a development of a mechanism that is able to explain how 
learning emerges between people and settings and how it evolves within the 
dynamics of the spaces people share and within which they participate.  

TAKING AFFECT INTO ACCOUNT 
Each of the learning theories discussed above offers important insights (as well as 
important criticisms of others) about how it is that we come to learn. However, in 
valorising, in turn, the rational aspects of learning and promoting shared 
consciousness and the realization that experience is always conscious, all these 
viewpoints have a tendency to sidestep important affective aspects that we believe are 
integral to learning. As has been argued (e.g., Britzman, 1998; Ellsworth, 1997; 
Jagodzinski, 2002), when experience is synonymous with rational consciousness, the 
complex affective situations and conditions in which learning takes place inevitably 
are glossed over. A different perspective would foreground the importance of non-
rational and unexplained aspects of learning and for us, Lacan provides a suitable 
theoretical framework and a language for doing that. In this section we elaborate 
some aspects of his critical work on psychoanalysis, and draw upon them to suggest 
theoretical and empirical directions for an analysis of how we learn.  

Psychoanalytic theories presents complex and well-developed ideas about 
subjectivity (Grosz, 1995) and offer instructive lessons about knowledge that have 
the potential to inform understandings about learning (Britzman; Jagodzinski). In 
Lacanian thinking, unconscious levels of awareness, as well as conscious ones, are 
central to the human psyche. This understanding points to a different set of 
presuppositions from those upon which the disciplinary theories of learning discussed 
above are built. In those theories, cognitive know-how rests upon the modernist 
conception of the conscious and rational knower. Subjectivity, for Lacan, on the other 
hand, is not constituted by consciousness alone; unconscious processes will always 
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interfere with conscious intentionality and experience (Britzman). In Lacanian 
thinking, the subject is always ‘already rhetorically marked.’ 

Lacan maintains that the subject’s very existence consists of desire. However, rather 
than conflating desire with conquest and attainment, desire in the Lacanian 
formulation revolves around the quest for a secure identity. The learner in the 
classroom could not be that person without relationships, location, networks and 
history that allow her to fabricate a presence of self-coherence and effectivity. The 
desire for self-presence, however, will always be subject to the constant deferral of 
satisfaction. Marked by both conscious and unconscious intentionality that actualise 
the learner’s talk and actions, desire takes shape in the margins (Lacan, 1977). As the 
“reality of the unconscious” (Grosz, 1995, p. 67), language plays a key role in its 
dynamics.  

It is in Lacan’s three psychic registers of subjectivity—the Symbolic, the Imaginary, 
and the Real�that we see potential for understanding what it is that prompts learning 
to take place. In the classroom setting the psychic registers work together to inform 
the learner’s experience and sense of perception. It is the responsibility of the learner 
to negotiate through any conflict that might arise from the forms of recognition that 
each offers. In particular, the symbolic for Lacan is the domain of laws, words, 
letters, and numbers that structure our institutions and cultures�the ‘Law of the 
Father’ and the ‘Big Other.’ For example, in the school, the Big Other might include 
the mathematics curriculum, the rules and procedures of the school community, and 
the norms of the classroom as well as the sociomathematical norms established by the 
classroom learning community. Students desire recognition from each other and from 
their teacher, as they work at embodying those signifiers. When they succeed, the 
recognition becomes a motivator and learning is made possible. 

Lacan’s Imaginary register is the realm of visual-spatial images and illusions of self 
and world. Lying at the limits of perception, the Imaginary register works to 
undermine the individual learner’s sense of self. In the pedagogical relation the 
teacher and the students look for an image with which they choose to identify 
themselves�an image with which they feel comfortable and hope to be liked by 
others. For example, many students work hard to construct a sense of self and bodily 
appearance. That sense of self may or may not be in opposition to the contents of the 
Symbolic register and it is the successful learner who is able to resolve any conflict 
between the ‘data’ from the Imaginary and the Symbolic registers. 

Lacan’s Real Register is an indicator of our socio-psychical growth; in our 
understanding, it can also be a measure of a productive pedagogical encounter. Desire 
for recognition in the Real register is concerned with the mirroring of affect and 
emotion. A learner may want to mirror the teacher’s desire on the basis of a range of 
impressions and feelings that pass through memories and unconscious desires. Those 
memories can be triggered by, among other things, a gesture, or the tone, pitch, or 
resonance of the teacher’s voice (Britzman). Lacan (1973) claims that language 
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constitutes the subject of desire, and in this he is saying that when the subject�either 
teacher or student�speaks he or she is trying to be recognised and liked.  

In the classroom student’s desire for recognition from the teacher plays a crucial part 
in the learning process. It is our contention that desire for the teacher’s desire is what 
attaches the psychical to classroom practice, and classroom practice to the psychical. 
Role modelling is not at stake in the teacher/learner relation, precisely because the 
learner’s talk and actions go beyond the proposals of role model pedagogies. What 
we want to stress is that when the learner secures the emotional resonance she desires 
it is precisely that time when a mathematical idea is able to attach itself and enable 
the student to learn productively in the mathematics classroom. It is through 
investigating repeated performances of the learner’s strategies of self construction, in 
connection with others (Britzman), and explaining where the learner locates spaces of 
personal advantage, that the process of learning can be laid bare. 

The Lacanian idea, then, that the subject’s very existence consists of desire for a 
secure identity might be observed as those strategic projects by which, through 
resolving conflict between psychical registers, the learner personalises rules of 
conduct in order to optimize existence in the classroom. When there is no struggle 
over meanings between the learner and the teacher about what it means to be a 
learner in this classroom, the classroom becomes a safe place in which to speak and 
act. Inevitably that secure identification will produce new knowledge for the leaner. 
Self-construction is, of necessity, part of a dynamic and complex interchange with 
knowledge. It is fundamental to learning.  

CONCLUSION 
This paper has explored ideas about learning. It first mapped out conventional and 
current ideas about learning as proffered within the discipline. It traced an 
engagement with questions of how learning takes place in constructivist, 
sociocultural, situated, embodied, and enactivist formulations of learning and 
proceeded to assess those viewpoints in relation to work being undertaken within 
social science. Noting how all these theories offer important insights (as well as 
important criticisms of other ideas) about how it is that we come to learn, the 
assumptions propping up the respective theories were unpacked. A reliance on, in 
turn, the rational autonomous learner, a conflation of experience with consciousness, 
a unequivocal acceptance of shared consciousness, and a lack of a learning 
mechanism were all noted as critical shortcomings to a productive understanding of 
the affect/cognition relation.  

We have outlined some fundamental concepts from Lacanian theory and have drawn 
on these concepts to consider the affect/cognition relation. Although these concepts 
challenge central assumptions within mathematics education, the choice of 
psychoanalytic concepts has been deliberate to fill in the gaps and the inconsistencies 
in current formulations and to account for previously unexplained aspects of learning. 
In offering sights about how the unconscious is structured, we suggest that Lacan 
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offers a useful way of considering how knowledge is constituted. Drawing on his 
ideas about unconscious desire we suggest theoretical directions for thinking about 
learning as a psychic event and hint at the implications of those ideas for classroom 
research.  

Learning in this perspective becomes a question, not about conscious experience with 
self and others, but rather to do with the way in which unconscious processes, 
working at different levels and with different kinds of information, undermine 
experiential knowing. The place of the unconscious, and hence the non-rational 
learner, then become crucial to the learning process. Arguably the approach presents 
a challenge to classic ideas about learning, yet the potential of such work to move 
forward current understandings of learning is not to be underestimated. It is our belief 
that it offers a fresh and helpful way to explain the relationship between the 
individual and the social.  
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YOUNG CHILDREN’S ABILITY TO GENERALISE THE 
PATTERN RULE FOR GROWING PATTERNS 

Elizabeth Warren 
Australian Catholic University 

A common approach used for introducing algebra to young adolescents is an 
exploration of visual patterns and expressing these patterns as functions and 
algebraic expressions. Past research has indicated that many adolescents experience 
difficulties with this approach. This paper explores teaching actions and thinking that 
begins to bridge many of these difficulties at an early age. A teaching experiment was 
conducted with two classes of students with an average age of nine years and six 
months. From the results it appears that young children are capable of not only 
thinking about the relationship between two data sets, but also of expressing this 
relationship in a very abstract form.   

INTRODUCTION 
Mathematics activity is seen as the domain of reasoning about objects and their 
relations, and involves examining and investigating the truth of claims about those 
objects and relations (Carpenter, Franke & Levi, 2003). The power of mathematics 
lies in relations and transformations which give rise to patterns and generalisations. 
Abstracting patterns is the basis of structural knowledge, the goal of mathematics 
learning in the research literature (Jonassen, Beissner & Yacci, 1993; Sfard, 1991). 
Thus mathematics teaching should focus on fostering fundamental skills in 
generalising, and expressing and systematically justifying generalisations (Kaput & 
Blanton, 2001). Such experiences give rise to understandings that are independent of 
the numbers or objects being operated on (e.g., a+b = b+a regardless of whether a 
and b are whole numbers, decimals, or variables). Ohlsson (1993) names such 
understanding abstract schema and argues they are more likely to promote transfer to 
other mathematical notions than a schema based on particular numbers or content.  
Traditionally, elementary schools give little emphasis to relations and transformations 
as objects of study. It appears that, as Malara and Navarra (2003) argued, classroom 
activities in the early years focus on mathematical products rather than on 
mathematical processes. Strings of numbers and operations in arithmetic are not 
considered as mathematical objects but as procedures for arriving at answers (Kieran, 
1990). Fundamental to relations and transformations is the concept of the function, a 
schema about how the value of certain quantities relate to the value of other 
quantities (Chazan, 1996) or how values are changed or mapped to other quantities, 
referred to in the literature as co-variational thinking.  
A common activity that occurs in many early years’ classrooms in the Australian 
context is the exploration of simple repeating and growing patterns using shapes, 
colours, movement, feel and sound. Typically young children are asked to copy and 
continue these patterns, identify the repeating or growing part, and find missing 
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elements; a focus on single variational thinking where the variation occurs within the 
pattern itself. Approaches for introducing algebra to young adolescents (12-13 years) 
build on early explorations of visual patterns, using the patterns to generate algebraic 
expressions (Bennett, 1988). Such patterns are predominantly growing patterns. 
Students are asked to form the functional relationship between growing patterns and 
their position, and use this generalisation to generate other visual patterns for other 
positions, that is, they are asked to reconsider growing patterns as functions (i.e., as a 
relationship between the pattern and its position) rather than as a variation of one data 
set (i.e., as relationship between successive terms within the pattern itself). This often 
involves generating the visual representation, recording data in a table (the position 
and number of elements at that position), and from the table identifying the 
relationship between the two data sets. Past research has indicated that many young 
adolescents experience difficulties with the transition to patterns as functions 
(Redden, 1996; Stacey & MacGregor, 1995; Warren, 1996, 2000). These difficulties 
include the lack of appropriate language needed to describe this relationship, the 
propensity to use an additive strategy for describing generalisations (i.e., a focus on a 
single data set), and an inability to visualise spatially or complete patterns (Warren, 
2000). However young children are believed to be capable of thinking functionally at 
an early age (Blanton & Kaput, 2004). This research investigates teacher actions that 
begin to assist young children to view and describe growing patterns in terms of their 
positional relationships, that is, to begin to bridge the gap between single variational 
thinking and functional thinking before they commence formal algebraic thinking. 
The specific aims of this research were to: (i) investigate models and instruction that 
help young students to create unknown steps/positions in growing patterns, and (ii) 
articulate the generality of the growing pattern in terms of its position in the pattern.  

METHOD 
Two lessons were conducted in two Year 4 classrooms from two middle socio-
economic elementary schools from an inner city suburb of a major city. The sample, 
therefore, comprised 45 students (average age of 9 years and 6 months), two 
classroom teachers and 2 researchers. The lessons reported in this paper were those 
conducted by one of the researchers (teacher/researcher). The lessons were of 
approximately one hour’s duration. The first lesson focused on copying and 
continuing simple growing patterns, describing the patterns in terms of positional 
language, and using this relationship to predict and create the pattern for other 
positions, for example, the 10th position. In this instance the patterns chosen were 
those where the links between the pattern and its position were visually explicit. (e.g., 
a pattern where its width is its position and its height is always 2). The second lesson 
entailed re-examining some of these patterns, extending young children’s language 
and thinking to describe and predict the patterns for any position, and reversing the 
thinking (i.e., identifying the position when given the pattern). It was decided not to 
record the data in a table but to ascertain if children could link the generalisation with 
the construction of the pattern itself. Using Halford’s structural mapping theory, 
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Warren (1996) found that converting a visual pattern to a table of values increased 
the processing load, making the task more difficult. In fact, recording data 
sequentially in a table appeared to encourage single variational thinking, that is 
finding relationships along the sequence of numbers instead of finding the 
relationship between the pairs, hence the omission of this step in this research. 
Data gathering techniques and procedures 
During the teaching phases, the other researcher and classroom teacher acted as 
participant observers. The lessons occurred sequentially. In each instance the other 
researcher and classroom teacher recorded field notes of significant events including 
student-teacher/researcher interactions. Both lessons were videotaped using two 
video cameras, one on the teacher and one on the students, particularly focussing on 
the students that actively participated in the discussion. At the completion of the 
teaching phase, the researcher and teacher reflected on their field notes, endeavouring 
to minimise the distortions inherent in this form of data collection, and come to some 
common perspective of the instruction that occurred and the thinking exhibited by the 
children participating in the classroom discussions. The video-tapes were transcribed 
and worksheets collected. A pre and post-test were administrated before the first 
lesson and two weeks after the completion of the second lesson. The two tests 
comprised three questions as shown in Figure 1. 

Draw the next step in these growing patterns  

1(a) 

 

1(b) 

1(c) 

 

2. Using these two shapes create your 
own growing pattern.  

3.  

 1st  2nd    3rd        4th   5th    10th  
(i) Fill in the missing steps (ii) Write the general rule for this pattern. ______________ 

Figure 1. Growing pattern questions on the Pre & Post test. 
Questions 1 and 2 were included to ascertain children’s understanding of growing 
patterns while Question 3 probed their ability to predict further positions in the 
pattern and describe, in general terms, the relationship between the pattern and its 
position. These tests mirrored the types of activities and discussions that occurred 
during the teaching phase. The delayed post test served to ensure that the responses 
reflected children’s own thinking, rather than simply recalling the discussions that 
ensued during the teaching phase.  

RESULTS 
The results of the pre and post-tests (see Table 1) indicated that there was growth in 
children’s understanding of growing patterns and in their ability to describe in 
general terms the relationship between the pattern and its position.  
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Table 1. Frequency of response to growing pattern questions on the Pre & Post test  
 Pre test Post test 
 1a 1b 1c 2 3(i) 1a 1b 1c 2 3(ii) 
Incorrect 16 21 21 24 5 8 16 13 20 1 
Correct 29 22 21 19 31 36 28 31 24 44 
No answer  2 3 2 9 1 1 1 1 0 

As these results indicated, at the beginning of the teacher phase many children 
experienced difficulties in simply continuing and creating growing patterns. Even 
though after the two lessons, many more children were successful in these activities, 
there were still many who exhibited some difficulties with these tasks. Responses to 
Question 3(i) indicate that by the completion of the two lessons more children were 
able to correctly draw the pattern when given differing positions.  

The responses to Question 3(ii), the question relating to writing the general rule for a 
simple growing pattern, were categorised. The responses fell into 7 broad categories 
ranging from descriptions that gave no indication of the relationship between the 
pattern and its position to responses that specifically related the pattern to its position. 
The next section describes each category with a typical response for each.  
Category 1. No response. 
Category 2.  No direct relationship to the question asked (No relationship) 
Typical response:You do your original number. 
Category 3. Stating that the pattern is simply growing (Single variation) 
Typical response: The patterns keep on growing and growing. 
Category 4. Describing a relationship within the pattern itself  
Typical response: Always the same as the tops as the bottom. 
Category 5. Stating that the pattern is growing in 2 (Quantifying the single variation) 
Typical response: Goes up by two. One more on each end. 
Category 6. Relating the position to the total number of tiles required for that position  
Typical responses: Each step number x 2 = number of *'s or It’s double the step number. 
Category 7. Relating the position to a description of the pattern  
Typical response: The top and bottom row of the stars is the same number as the step 

Table 2 summarises the frequency of responses for each category for the pre-test and 
the post-test.  

Table 2. Responses to Question 4(ii): Write the general rule for this pattern 
 Category Pretest Posttest 
1. No response 12 4 
2. No relationship 2 4 
3. It grows – Single variation 6 3 
4. Relationship within the pattern itself 0 3 
5. It grows in twos – Quantifying single variation 22 12 
6. Relationship between position and pattern – total number of tiles 2 7 
7. Relationship between position and pattern – visual description 1 12 

The results indicated that there was significant growth in these children’s ability to 
describe the pattern in general terms, that is, specifically relate the pattern to its 
position (co-variational thinking).  
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Examination of the lessons gave some insights into the teaching actions that assisted 
this growth in understanding. The next section describes some teaching actions that 
supported this growth and thinking that hindered the generalisation process. 
Supporting processes 
 The use of concrete materials The use of concrete materials appeared to assist many 
children ascertain the missing steps in the pattern. A number, when completing the 
accompanying pen and paper worksheet, recreated the pictorial pattern with the tiles 
and then used the tiles to create the 5th and 10th step. They then drew a picture of their 
solution on the worksheet.  
Patterns where the relationship between the pattern and position were explicit These 
types of patterns appeared to assist children to verbally describe the relationship 
between the pattern and the position, for example, it is twice the step number, it is the 
same as the step number, it is one more than the step number. 
Explicit questioning to link the position to the pattern For the pattern presented in 
Question 3, when asked to describe the 4th step, one child responded that is was 8 
tiles. Explicit questions needed to be asked to ensure that the children connected the 
pattern’s shape to its position. These questions were of the form – What does the 
pattern look like? How many rows? How many in each row? For the 3rd step, how 
many on the bottom, how many on the top? The questions explicitly related the 
position to the pattern’s visual components.  
Generalising from the pattern in small position numbers, to large position numbers. 
It was found that to articulate the relationship between position number and the visual 
pattern in general terms, children needed to discuss the relationship for increasingly 
larger positions, for example, describe the 10th step and the 20th step. Most children 
successfully completed this task. To ensure that children were linking the pattern’s 
position to the pattern itself, several more discussion ensued, with each time the step 
number increasing, for example, what would the 100th step look like? 1000th step, 
3000th step? While most children appeared to successfully complete this task, on the 
post-test over half the sample reverted to a single variation description of the pattern. 
Hindering processes 
Language used to describe the generalisation 
Most children experienced difficulty in precisely describing a visual pattern. For 
example, when they created a 20 by 3 array, most described this as 60. With probing, 
some indicated it was 3 across, 3 rows of 20 and eventually 3 columns of 20.  
Writing the generalisation as compared with saying it orally 
The classroom discussions indicated that these children found it much easier to 
verbalise the generalisation than to provide a formal written response. When asked to 
share their written responses for the pattern delineated in Question 3, one child shared 
‘it increases by 2 every time’ another ‘always the same number on the bottom and the 
top’ and two more said ‘Each step has step number on the bottom and top’ and ‘Just 
put them in groups of 2 one on each other’. The range of responses indicated that 
even though many could verbally say the generalisation, when it came to writing it 
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many experienced difficulties, with the tendency to give responses that focused on 
the single variation of the pattern.  
Completing patterns – single variation 
Their propensity to think of growing patterns as adding on the growing part to the 
preceding step affected their ability to create missing steps within the pattern and to 
create the step number when given the total number of tiles. For example, we 
presented visual patterns giving only 1st, 2nd and 5th steps; children were asked to 
complete the missing steps. The most common strategy was to simply compare the 1st 
and 2nd step and continue adding on tiles to reach the 5th step. This single variation 
thinking (Additive strategy) was best exhibited in the following example where they 
were given the 1st and 3rd step (   &            ). Nearly all of the children gave        as the 
2nd step. When challenged they simply recreated the 3rd step to fit their pattern.  
Reversing the thinking We also presented the total number of tiles and asked which 
step this represented. Most children found this very difficult, perhaps for two reasons. 
First, it relied on linking the position to the step number, which many struggled with, 
and second in some instances it required a good understanding of number patterns.  
Expressing the generalisation in language Many children could not express the 
pattern in general language, and when using the language there was confusion 
between the ordinal language and number of tiles.  

T. What if I had the nth position? What would the pattern look like? 
Cl nth on the top and nth on the bottom. 
T. Describe the pattern in terms of the number of tiles. 
C2 n tiles on the top and n tiles on the bottom.  

On the more positive side, there were at least five children in each class that could 
not only describe the generalities in correct mathematical language but also write 
these generalities using abstract notation systems (e.g., for the nth step there are n 
blue tiles and n + 1 yellow tiles).  
DISCUSSION AND CONCLUSION 
As indicated by the results of the pre-test nearly half of the children could not 
complete the next step in simple growing patterns nor create their own growing 
pattern. This could be for two reasons. First, they had had limited experiences with 
growing patterns in the early years, or second, growing patterns are not as easy as 
they first appear. An examination of curriculum documents and commonly used 
classroom texts would suggest that the predominant focus in the early years is on 
repeating patterns. These children certainly did not experience the same difficulties 
with repeating patterns (due to space restrictions this data cannot be reported in this 
paper). By the completion of the teaching phase there had been some improvement in 
their ability to complete and create growing patterns, indicating that perhaps the 
difficulties did indeed stem from a lack of experience in this area. As indicated by 
past research, many young adolescents experience difficulties with the transition to 
patterns as functions. The inability to visualise spatially or complete patterns 
(Warren, 2000) is a key impediment to this. The impact that earlier classroom 
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experiences have on this thinking requires further investigation. This research 
appears to indicate that such experiences purposely built into elementary classroom 
experiences may indeed commence to address this impediment.  
The results confirm the conjecture of Blanton and Kaput (2004) that young children 
are capable of thinking functionally. They also suggest that there are a variety of 
teaching actions that support this thinking, namely, using concrete materials to create 
patterns, specific questioning to make explicit the relationship between the pattern 
and its position, and specific questioning that assist children to reach generalization 
with regard to unknown positions. Young children are not only capable of thinking 
about the relationship between two data sets but also of expressing this relationship in 
a very abstract form. 
While young children are capable of thinking functionally, it appears from this 
research that single variational thinking is perhaps cognitively easier or so entrenched 
in early experiences that a propensity to revert to this thinking is understandable. It 
was conjectured that not recording the data in a table would reduce the probability of 
this occurring. However, instead of looking for patterns in sequences of numbers, 
they appeared to look for patterns in the sequence of tiles, that is, instead of saying 
we keep adding on 2 for the sequence of numbers in the table, they said “we add on 
two tiles as we proceed along the steps”. This thinking was so entrenched that some 
children were even willing to change the examples given to make them fit their 
sequential thinking pattern.  
The interaction between oral description of patterns and putting this description in 
written form also requires further investigation. Many children exhibited an ability to 
express the generalisations orally, but such descriptions often lacked precision. While 
their oral responses appeared ‘correct’, one wonders how much ‘filling in’ the 
listener does when hearing the responses to questions asked. A review of the video-
tapes indicated that this was indeed the case, suggesting that the precision needed for 
correct written responses can be missing from classroom conversations. In this 
instance, gestures and manipulation of materials add to the conversations, elements 
that are missing from written responses. These children also appeared to lack some of 
the mathematical vocabulary needed to give precise responses, words such as row 
and column and describing an array as 2 rows by 4 columns. Thus on many occasions 
they could model the functional relationship with concrete materials and could 
attempt to describe this relationship using imprecise language embellished with 
gestures, they often reverted to ‘lower level’ responses when asked to write their 
generalization in a written form (e.g., “add on 2” instead of “the number of tiles is 
double the step number”). This could begin to explain the large variations in 
responses on Question 3(ii) on the post test, a problem that nearly all could complete 
and describe orally within the context of the classroom discourse.   
This research commences to not only identify teacher actions that support examining 
growing patterns as functional relationships between the pattern and its position, but 
also delineate thinking that impacts on this process. Many of the difficulties these 
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children experienced mirror those found in past research with young adolescents. 
This suggests that perhaps these difficulties are not so much developmental but 
experiential, as these early classroom experiences began to bridge many of the gaps.  
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CONSOLIDATING ONE NOVEL STRUCTURE WHILST 
CONSTRUCTING TWO MORE 

Gaye Williams 

Deakin University 

This study reports the cognitive processing of a Year 8 female student (Kerri) during 
a test, and during her subsequent homework as she consolidated as part of 
abstracting; a topic of recent research interest. This case adds to the body of 
knowledge about how constructing and consolidating can occur simultaneously. The 
analysis captured the complexity of the cognitive processing, and their intertwined 
nature. Data was captured through lesson video, and post-lesson, video-stimulated 
reconstructive student interviews. It was found that Kerri’s constructing and 
consolidating included characteristics previously identified by others, and an 
additional feature. Her constructing included “branching” (Kidron & Dreyfus, 2004, 
p. 159); but unlike the case cited, one of these branches related to a new goal. 

INTRODUCTION 
The process of consolidating has been studied using tasks specifically designed to 
elicit constructing and consolidating activity at junior and senior year levels in 
secondary mathematics, through clinical interviews (Dreyfus, Hershkowitz & 
Schwarz., 2001; Dreyfus & Tsamir, 2004, Monaghan & Ozmantar, 2004) and during 
classroom learning (Tabach, Hershkowitz, & Schwarz, 2004). In each of these cases, 
the constructing and consolidating processes were directed towards a particular 
mathematical goal. The present study contributes an illustration of a different nature; 
Kerri was undertaking her usual learning and assessment, associated with her 
mathematics classes, and was not engaged in a task specifically designed for 
constructing purposes. Her constructing process ‘branched out’ (Dreyfus & Kidron, 
2004) into two separate constructing processes when she suddenly recognised the 
new mathematics she had constructed could serve another purpose. Kerri extended 
her understanding of interrelationships between algebraic, geometric, and numeric 
representations of linear graphs as a result of the overall constructing and 
consolidating she undertook. This abstracting should be of use in her future studies. 

THEORETICAL BACKGROUND  
The process of ‘abstracting’ contains three stages: (a) a need to know; (b) 
‘constructing’ a new entity; and (c) ‘consolidating’ that entity so it can be recognized 
with ease and built-with in future activities 1(Hershkowitz, Schwarz, & Dreyfus, 
2001). ‘Constructing’ (C) has ‘recognizing’ (R) and ‘building-with’ (B) nested 
within it. These epistemic actions are observable through dialectic discourse: and 

                                              
1 Hershkowitz, Schwarz, & Dreyfus (2001) is henceforth referred to as HSD (2001). 
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together form the RBC-model (HSD, 2001). Williams (2002) integrated Krutetskii’s 
(1976) mental activities (‘comprehending’, ‘analyzing’, ‘synthetic-analyzing’, 
‘synthesizing’, and ‘evaluating’), and an additional activity she empirically identified 
(‘evaluative-analysis’), into the RBC-model (see Figure 1). The types of thinking 
represented in Figure 1 are now described, and are later elaborated through the 
illustration in this paper. Recognizing involves seeing the relevance of previously 
known procedures, processes, and strategies (a process requiring an understanding of 
the mathematics involved, or comprehending, and which can also involve an analysis 
of structure). Building-with (B) involves using known mathematical ideas, concepts, 
and strategies in an unfamiliar combination, or an unfamiliar sequence to solve a 
problem. B can include finding patterns (analysis), simultaneously considering more 
than one aspect of a problem (synthetic-analysis), and using this synthetic-analysis 
for purposes of judgement (evaluative-analysis). Constructing involves integrating 
mathematical concepts to form a new mathematical structure (synthesis), and can 
include immediate recognizing of the relevance of a newly abstracted entity for a new 
purpose (evaluation). The shaded parts of Figure 1 are used to distinguish 
spontaneous constructing from constructing guided by an expert other. For more 
information about differences in these ways of constructing, see Tabach, 
Hershkowitz, and Schwarz (2004) and Williams (2004) respectively. 

 

 

 

 

 

 

 

 

 

Figure 1. Williams’ (2002) integration of observable cognitive elements (HSD, 2001) 
with Krutetskii’s (1976) mental activities illustrating their nested nature.  

Consolidating possesses three characteristics (B, Building-with; RfB Reflecting upon 
building-with, and Rf, reflecting generally) (Dreyfus & Tsamir, 2004) although 
Monaghan & Ozmantar (2004) question whether Rf always occurs. Consolidating a 
novel structure whilst constructing another has been identified in several contexts 
including Year 7 students working in a pair (Tabach, Hershkowitz, et al., 2004) and a 
learner of tertiary mathematics thinking alone (Dreyfus & Kidron, 2004). Ivy, 
abstracting in tertiary mathematics (Kidron & Dreyfus, 2004), constructed and 
consolidated through a “branching” constructing process which later reunited as she 

Process of autonomous, 
spontaneous constructing 
 

Novel Creating by a 
research mathematician 
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(Synthesizing, Evaluating) 
 

BUILDING-WITH 
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pursued her ultimate goal. Her branching process involved simultaneously 
considering two directions, continuing along one, and later linking the two branching 
constructing processes in pursuit of her overall goal. In the present study, 
constructing is examined through the cognitive activity represented in Figure 1, and 
examination of consolidating is informed by the research above.  
The research question: By what process did Kerri construct and consolidate new 
knowledge, and how does her activity further illuminate these processes?  

RESEARCH DESIGN 
This study was part of a broader study of autonomous, spontaneous, and creative 
student activity during mathematics learning in Year 8 classrooms in Australia and 
the USA. Data was generated as part of the international Learners’ Perspective Study. 
Each class was video-taped for ten or more lessons using three cameras that focused 
respectively on the class, the teacher, and different focus students each lesson. A 
mixed-image video was produced in class with the focus students at centre screen, 
and the teacher as an insert in the corner. In addition to providing evidence of social 
influences on cognitive processing, this video provided salient stimuli for individual, 
post-lesson reconstructive student interviews undertaken to generate valid data 
(Ericcson & Simons, 1980) associated with student classroom activity including 
student thinking. The student operated the video remote to find the parts in the lesson 
that were important to her, and then discussed what was happening, her thinking, and 
her feelings. Kerri’s interview focused on the mathematical activity of interest to the 
US research team (mathematical entity developed, and social influences on that 
development), rather than specifically on the student’s cognitive processing 
(interview focus in Australia for other cases in the author’s broader study). Due to 
Kerri’s ability to articulate her thoughts, and her desire to do so, the interview 
captured rich data about Kerri’s cognitive processing as well.  
THE CONTEXT 
Just prior to the start of the research period, the class were taught to find equations of 
linear graphs by plotting two points, ruling the line between them, drawing a right-
angled triangle to measure ‘rise’ and ‘run’ (called a ‘slope triangle’ by the teacher), 
taking the ratio of these lengths to find the gradient, finding the y-intercept by 
inspection, and substituting the gradient and y-intercept into the equation y = mx + b. 
Kerri’s interview reconstruction of the test on this procedure just prior to the research 
period showed she forgot to bring graph paper so created a novel solution process. 
After the test, and prior to research period, students undertook a homework exercise 
to find the equation to a line given the co-ordinates of two points, and to find the 
length of the line segment between the points. The length of line segment formula 
had not been taught; the teacher expected students to plot graphs, measure lengths, 
and find the y-intercepts by inspection. In class the next day (Lesson 1 of the research 
period) the teacher demonstrated ‘finding the equation of a line without graphing’ 
(when two points were given). Evidence for this case is presented below as a 
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narrative. Data sources are indicated by ‘[SI]’ for Kerri’s interview after Lesson 1, 
and ‘[L1]’ for video of Lesson 1.  
ANALYSIS AND RESULTS 
It was inferred that Kerri’s constructing activity prior to Lesson 1 was spontaneous 
(self-instigated and self-directed, see Williams, 2004) because the teacher awarded 
200% to Kerri’s test thus suggesting the originality of the work. During her 
interview, Kerri reconstructed her thinking in her test. Her novel method entailed 
sketching and recognizing that a slope triangle lay between the two points given “cuz 
you can picture a line in a little right triangle on it” [SI]. She then used her knowledge 
of the Cartesian Axis System to find the lengths of the horizontal and vertical sides in 
this triangle by subtraction, and then recognized she could substitute x and y as well 
as the constant m into the general linear equation y = mx + b to find another constant 
(this complex substitution method had not been previously taught).  

if you find the slope and the … difference of the points and … then we can substitute, oh 
perfect. So I just wrote the equation. [SI] 

Kerri demonstrated her pleasure in this discovery of how substituting could be 
applied by adding “oh perfect” to illustrate her affective state when she found the 
way to proceed. When reflecting on this process in her interview, she commented on 
the quality of the newly developed process “Actually I thought like- I thought it was 
kind of a big idea… it wasn’t too big for me” [SI]. The next evening, whilst doing her 
homework (using the teacher’s graphical method), Kerri developed a generalized 
understanding of the new method she had developed in the specific numerical 
question in the test. (Notation for transcript: Three dots indicate omissions that do not 
alter the meaning. Square brackets: researcher additions clarifying the context): 

I was doing my graph [during homework], and then I like realized like- really solidly, … 
I got the same answer, … [by measuring as] if you do the subtraction. [SI]  

Kerri thought about both methods as she did her homework, and realized each gave 
the same answer. I firstly provide evidence about what Kerri realized, then later 
describe Kerri’s further novel thinking during that homework session. What Kerri 
knew ‘really solidly’ was evident in class the next day [L1]. In class, Kerri drew 
attention to the teacher’s sketch, used as she demonstrated ‘finding the equation of a 
line without a graph’: “You still graphed it” [L1-Kerri]. Kerri demonstrated she could 
find the gradient by operating on elements of the ordered pairs representing the points 
on the line without referring to the slope triangle: “I would just be like the difference 
in Y is two, and the difference in X is one. So that's your slope” [SI]. In Lesson 1, in 
preference to using a plot or a sketch, Kerri used her fast method of subtracting 
relevant elements of ordered pairs to find the side lengths to take the ratio to find the 
gradient. She continued using her new method even though most students relied on 
graphical representations to support their thinking, and also queried Kerri’s method.  
The additional constructing Kerri undertook during her homework session, after she 
had found the relationships between operations on elements of ordered pairs, and the 
rise and the run is now described.  
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and then also [during my homework] … we had to find the distance between the two 
plots, and it was supposed to graph them too-… I was using Pythagoras’ Theorem. [SI]  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Kerri’s Constructing and Consolidating Activity 

R     Cognitive artifacts initially 
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10: Insight å. The difference in x values and difference in y values 
(respectively) are equivalent to the length of the horizontal and vertical 
sides of a slope triangle for that line. So side lengths can be found by 
operating on relevant attributes of ordered pairs. 
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gradient: the ratio of the difference in 
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Gradient = (y2 – y1) / (x2 – x1) 
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Once Kerri realized how to find the vertical and horizontal side lengths in the slope 
triangle, she recognized it was useful for another purpose—finding the length of the 
line segment. In her interview after Lesson 1, Kerri described what she understood 
(and used in class) that the students at her table did not [SI]: 

Interviewer So what do you think that you discovered, that other people didn't? 
Kerri [the question] said graph and find the distance- and most people would 

graph the line, and then do the little thing [slope triangle]. But I would 
find what- see that'd be two and then one [subtracting y values and x 
values], so you do um, a squared plus b squared equals c squared. … if 
you make it a right triangle- it's the hypotenuse- not just the distance  

In doing so she demonstrated an ability to shift flexibly between representations and 
use both specific numerical values and general formulae as she justified her method. 
Figure 2 (above) diagrammatically represents Kerri’s spontaneous cognitive activity 
described below, and aids communication of this activity. Figure 2 superimposes 
Kerri’s cognitive activity on the diagrammatic representation used in Figure 1. In this 
way, the cognitive elements Kerri displayed are evident through both the diagram and 
the text. Each element of cognitive activity in Figure 2 is represented by a number to 
add clarity to the text. The Figure 1 convention of shading all spontaneous activity 
has not been followed with arrows that would obscure Figure 2 (these arrows were 
left unshaded). Figure 2 includes three copies of Figure 1; the original Constructing 
of Insight å (Figure 2; 10) at the bottom of the page, and the additional constructing 
of both Insights ß and ç (Figure 2; 12, 13), that use the outcome of Insight å as a 
cognitive artefact. This further constructing is represented by the two smaller copies 
of Figure 1 positioned side by side at the top of Figure 2. They both share the same 
‘Recognizing ellipse’ containing Insight å, but draw also from the original 
‘Recognizing ellipse’ (base of diagram, cognitive artefacts possessed prior to Kerri’s 
initial constructing). Both Figures 1 and 2 inform the interpretation below. 
Kerri analyzed her sketch and recognized cognitive artefacts (right-angled triangle in 
sketch [1], co-ordinates associated with a Cartesian Axis System [3]), and built-with 
these cognitive artefacts (subtracted y values, and x values in the two ordered pairs 
[8, 5]) to develop a novel way to solve the problem. When Kerri undertook practice 
exercises for homework, she simultaneously considered her new method [8] and the 
teacher’s method [7] (synthetic-analysis, as part of building-with). She compared the 
lengths obtained by each method and found they were the same [9] (evaluative-
analysis, part of novel building-with). As a result of this process she constructed new 
insight [10]—she realised she no longer needed the triangle to find the lengths. In 
constructing new insight, Kerri synthesized (sub-category of constructing) by 
subsuming the attributes of the Cartesian Axis (that enabled her to find the lengths of 
the vertical and horizontal lines) into relevant attributes of the ordered pairs 
representing points on the line [9]. She operated upon these ordered pairs without 
needing a sketch to aid her thinking. She then found the gradient through additional 
operations on these ordered pairs [12]. Kerri then recognized a new purpose for 
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Insight å (evaluating as part of spontaneous constructing). Kerri synthesized 
Pythagoras’ Theorem [6], with her novel mathematical structure [10], to construct 
Insight ç—the length of a line segment can be found by operating on elements of the 
ordered pairs at the end of the segment [13]. In developing Insights ß and ç [12, 13], 
Kerri Built-with Insight å [10]; thus consolidating it during novel building-with. 

DISCUSSION AND CONCLUSIONS  
Figure 2 draws attention to the increased complexity in thinking that occurred during 
Kerri’s sustained exploratory activity associated with three insights. The whole of 
Figure 2 captures Kerri’s overarching constructing of interconnections between 
different aspects of, and representations of function. Kerri’s cognitive activity 
illustrated the progressive connecting of different representations that occurred 
through synthetic-analysis and evaluative-analysis. Further research is required to 
explore whether, and how, these cognitive processes could be elicited during 
classroom learning, and whether doing so would increase constructing opportunities.  
Kerri demonstrated the three stages of abstracting (HSD, 2001): (a) she needed to 
know a way to answer the test question; (b) constructed as a result of this need; and 
(c) consolidated her new learning as she recognized a way to satisfy another need. 
She also exhibited the three identified stages of consolidating (Dreyfus & Tsamir, 
2004); novel building-with; through her test solution (B), reflecting on novel B when 
she compared it with the teacher’s process during homework (RfB), and reflecting 
generally about associated positive affect, what she thought about other students’ 
querying her approach, and the quality of the construction achieved (Rf). Kerri was 
consolidating her novel B as she constructed her first insight thus illustrating the 
intertwined nature of consolidating and constructing processes. In addition, Kerri 
demonstrated that consolidating was occurring through the characteristics she 
displayed that have previously been identified by Dreyfus and Tsamir (2004): 
“impetus”, “self-evidence”, “confidence”, “flexibility”, and “awareness”. Kerri 
displayed these characteristics as she: (a) recognized her novel structure for other 
activity; (b) justified her thinking; (c) changed from tentative knowing to knowing 
“really solidly”; (d) flexibly moved between representations; and (e) knew other 
students required visual support that she did not, and that she had found a “big idea”.  
Kerri, like Ben, in Dreyfus and Tsamir (2004), was a gifted student, so although these 
findings support the presence of the identified consolidating characteristics during the 
activity of gifted students (R, RfB, Rf), they do not address the absence of Rf found 
by Monaghan & Ozmantar, (2004) in another case. As Kerri was in a class of gifted 
students, and the other students did not spontaneously construct in this instance, the 
study does point to features of the situation that provided impetus for Kerri’s novel 
thinking. In this case, the absence of a ‘tool’ gave impetus to novel thinking. This is 
contrary to findings in other contexts where tools were found to enhance learning 
(e.g., Tabach, Hershkowitz, et al., 2004). There was also opportunity to sustain novel 
thinking during reflection undertaken with ‘hands on activity’ that preceded ‘telling 
rules’. Aspects of the idiosyncratic learning situation in which Kerri’s thinking 
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occurred could inform research into factors that promote learning in which complex 
mathematical thinking and high positive affect can co-exist during the generation of 
new knowledge. Although some aspects of Kerri’s constructing process were not 
explored (e.g., whether she explored unproductive pathways), Kerri’s reconstruction 
of her thinking was sufficiently rich to demonstrate ‘branching for another purpose’ 
as a possible outcome of consolidating during further constructing. 
Acknowledgements: Thanks to Mary Barnes for her useful comments that 
contributed to the final version of this paper.  
This data forms part of the US data set for the international Learners’ Perspective Study 
directed by David Clarke at the University of Melbourne 
http://www.edfac.unimelb.edu.au/DSME/lps/. Data was analyzed using the facilities and 
technical assistance available through the International Centre for Classroom research. 
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We report on one aspect of a longitudinal study which seeks insight into the ways in 
which spreadsheet experience and teachers’ pedagogic strategies shape pupils’ 
construction of meaning for algebra. Using data from stimulated recall interviews we 
analyse the evolution of meaning for variable through the mediation of the variable 
cell and the mediation of naming a column. We discuss metaphors of change and 
dragging, together with the process of naming. 

BACKGROUND 
Research suggests that spreadsheets can support pupils in developing an 
understanding of variables. In a longitudinal study of two groups of 10-11 year old 
pupils working on traditional problems, Sutherland and Rojano (1993) conclude that 
‘a spreadsheet helps pupils explore, express and formalise their informal ideas’ 
(p.380), moving from thinking with specific numbers to symbolising a general rule. 
Moreover, it is claimed that spreadsheet notation ‘can ultimately be used as cognitive 
support for introducing and for sustaining the more traditional discourse of school 
algebra' (Kieran, 1996, p.275). Dettori et al. (1995) discuss the benefits and 
limitations of such use of spreadsheets, suggesting their value in supporting pupils’ 
understanding of what it means to solve an equation, for example, and their limitation 
in the formal manipulation of relations. 

Sutherland (1995) found that low achieving 14-15 year olds, who had worked on a 
unit which required them to write an algebraic version of a spreadsheet formula, were 
able to use their knowledge in a paper and pencil test. One pupil drew a spreadsheet 
on paper and was able to represent the relationships using letters when subsequently 
interviewed. Sutherland concluded that ‘the spreadsheet symbol and the algebra 
symbol came to represent “any number” for the pupils’ (p.285). Mariotti and Cerulli 
(2001) similarly report that in a paper and pencil environment, pupils used signs 
derived from their symbolic manipulator ‘L’Algebrista.’ Several researchers point to 
the important role of the teacher in guiding pupils’ construction of meaning when 
working with technological tools (for example Dettori et al, 1995). 

The framework of semiotic mediation is useful for interpreting the role of 
technological tools in a didactic situation. Rooted in the work of Vygotsky, semiotic 
mediation refers to the mediating function of signs and tools on the learners’ 
construction of meaning. Mariotti (2002) identifies two levels of semiotic mediation. 
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At the first level, meanings emerge directly from pupils’ activity, and hence the tool 
functions as a semiotic mediator. At the second level 

‘(Since) the mathematical meaning incorporated in the artifact may remain inaccessible 
to the user … evolution is achieved by means of social construction in the classroom, 
under the guidance of the teacher’ (Mariotti, 2002, p.708) 

Spreadsheets offer access to the meaning of algebra through the use of formulae and 
graphing and specifically to the meaning of variable through the notion of a ‘variable 
cell’ and ‘variable column’ (Haspekian, 2003). In this paper we consider how a 
teacher guides the evolution of meaning for variable, focusing in particular on 
guiding meaning for variable in paper and pencil activity.  

This study builds upon the Purposeful Algebraic Activity project1 which aimed to 
explore the potential of spreadsheets as tools in the introduction to algebra and 
algebraic thinking. The project involved the design and implementation of a 
spreadsheet-based teaching programme with five Year 7 classes (aged 11-12). Two of 
the tasks in particular involved moving away from the spreadsheet and making some 
links to standard notation. Of relevance here is the finding that different tasks offered 
different opportunities for pupils to construct meaning for variable (Ainley, Bills and 
Wilson, 2004) but that not all pupils seemed to construct this meaning for spreadsheet 
notation. We have also found that spreadsheet affordances can support pupils’ paper 
and pencil generalising (Wilson, Ainley and Bills, 2004). 

These emerging findings have informed the development of this study which focuses 
more closely on the guidance of the teacher. It seeks insight into the ways in which 
spreadsheet experience and teachers’ pedagogic strategies mediate pupils’ 
construction of meaning for algebra. As part of the study, one of the classes who 
participated in the teaching programme was traced into Year 8 (aged 12-13). The 
class of high attainers was taught by Judith, an experienced mathematics teacher who 
was familiar with the content of the teaching programme (having taught it to other 
classes in Year 7). During this year, the class participated in follow up work, planned 
in collaboration with Judith and driven by the demands of Year 8 curriculum together 
with the affordances of the spreadsheet. Judith also taught some additional algebra 
lessons which focused on simplifying expressions and solving equations.   

PEDAGOGIC STRATEGIES  
Judith employed specific pedagogic strategies with the aim of guiding the evolution 
of meanings for algebra and making links to the paper and pencil activities in the 
curriculum. Such strategies were employed at various times during the year but 
mainly fell into four series of lessons within algebra units of work. An overview of 
these lessons is given below. Some lessons took place in a computer room, others 
took place in the classroom, often utilising the projected image of the spreadsheet.  
                                              

1 Both the Purposeful Algebraic Activity project and this study are funded by the Economic and 
Social Research Council 
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Series of lessons Pedagogic strategies 

‘Odd one out’ lessons used the spreadsheet 
as an environment for generating equivalent 
expressions. Pupils were given the task of 
identifying which formula or expression was 
the odd one out and then were invited to 
make up their own odd one out games. 

• Emphasising idea of the variable cell 
and the variable column 

• Making links between spreadsheet 
notation and standard notation 

‘Myphone’ lessons built upon and extended 
work from Year 7. Pupils set up a 
spreadsheet to show the cost of calls under 
different tariffs and solved various problems 
on the spreadsheet and by solving equations. 

• Naming a column on a spreadsheet 
• Making links between spreadsheet 

formulae, equations and graphs 
• Focusing on what it means to solve 

an equation 
‘Sum and product’ lessons built upon and 
extended work from Year 7. Pupils used trial 
and improvement in both environments to 
solve quadratic equations, one esoteric and 
one about a sheep pen of a given area.  

• Naming a column on a spreadsheet 
• Focusing on what it means to solve 

an equation 

‘Generalising’ lessons involved writing 
spreadsheet and algebraic formulae to 
represent various relationships, and then 
solving problems using various methods. 

• Writing formulae and using 
substitution through work on printed 
screen snaps  

• Using spreadsheet affordances - focus 
on calculations, use of notation, 
feedback  

• Considering different solution 
strategies 

This paper focuses on three strategies which specifically relate to the meaning of 
variable: emphasising the idea of the variable cell and column; making links between 
spreadsheet notation and standard notation; and naming a column on a spreadsheet.  

DATA COLLECTION  
In each of the lessons, a range of data was collected including field notes, audio and 
video recordings of Judith’s teaching, and video and screen recordings of the activity 
of a pair of pupils. Following each series of lessons, a small group of pupils was 
interviewed using the technique of stimulated recall (Calderhead, 1981). The pupils 
were invited to watch short video clips from the lessons, some with and some without 
sound, and asked questions such as: Can you remember what was happening here? 
What do you think Judith meant when she said …? Can you remember what you 
were thinking? One focus of the discussion was pupils’ construction of meaning for 
variable. The discussions were characterised by the openness of the pupils who had 
known the researcher for over a year and who represented the range of attainment 
within the set. Although the pupils were not always confident that they could recall 
what they were thinking at the time of the lesson, the interviews provided some 
valuable insights into their interpretations of notation and pedagogic strategies.  
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Alongside the data from the lessons, pupils were also interviewed in pairs at the 
beginning and end of the year, although there is not space to refer to this data here. 
Judith was also interviewed at the end of the year. The data was semi-transcribed and 
transcripts were interwoven with non-verbal behaviour, any written work and 
interaction with the computer as appropriate. In our initial analysis, we outline the 
affordances offered by the spreadsheet and then consider the evolution of the 
meaning for variable within the field of experience of pupils’ spreadsheet-based 
activity. We focus in particular on the mediation of the variable cell and of the 
process of naming a column in making links to standard algebraic notation. 

SPREADSHEETS 
The spreadsheet environment offers three important affordances related to variable 
which we consider in this paper: the variable cell, the variable column and the named 
column. Haspekian (2003) identifies four features of a ‘variable cell,’ such as A2. 
The first feature corresponds with the use of a letter to stand for a variable: 

• ‘an abstract, general reference: it represents the variable  
• a particular concrete reference: it is here a number  
• a geographic reference  
• a material reference’ (p.6) 

Spreadsheets also have the facility for filling down a formula through a range of cells 
and generating a ‘variable column’ (Haspekian, 2003). A name for a column, or 
indeed a cell or row, can also be defined and that name used in a formula (the ‘A’ 
column is defined as ‘n’ in the example below). When the formula is filled down, 

each new formula then 
includes the same name. This 
facility has not been widely 
researched in terms of pupils’ 
algebraic thinking.  

EVOLUTION OF MEANING FOR VARIABLE 
In the spreadsheet environment, the activity of writing formulae to solve problems 
involves using notation, such as A2, but pupils may or may not recognise that the 
notation represents each of the features of the variable cell, and in particular an 
‘abstract, general reference,’ a variable (Haspekian, 2003). This meaning emerges 
from the pupils’ activity and reflection guided by the teacher. In this case, Judith 
emphasised the idea of the variable cell and variable column, making links to the use 
of standard notation in the paper and pencil environment.  
Mediation of the variable cell 
In a number of the lessons in the teaching programme and then in the follow up work 
described earlier in the paper, the pupils had worked on various tasks which involved 
writing formulae and then changing the value in a cell. In the ‘Odd one out’ series of 
lessons, pupils were given various spreadsheet expressions such as ‘6*A2+12’, 
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6*(A2+2), ‘2*(A2+2)+4*(A2+2)’ and ‘5*(A2+1)+8’ and were set the task of finding 
the odd one out by ‘testing’ various values in A2. Judith made links between the 
spreadsheet notation of A2 and standard algebraic notation which the pupils had 
already been introduced to (“denotes emphasis on the following syllable). 

Judith This A2 that we’ve been thinking about has been a “cell (hand gesture, 
box) on the spreadsheet that we were looking at last lesson (…) … Could 
I put any number into that A2 box? (substitutes 3 and then 7 for A2 in the 
formula written on the whiteboard) … When we can change a number … 
we’re thinking to write maths down …  what do we normally do? Yeah 

Pupil Put x 
Judith We usually put an x, a missing number, x. Just because we were thinking 

of this as a cell on the spreadsheet it’s the “same as using algebra, it’s the 
same as putting a missing number, which we usually put x … Could I use 
any other letter? Could I have put a q in there? … 

Pupil You can use any letter 
Judith You can use any letter. So instead of using A2 now we’re gonna look at 

can you do it with any other letter, okay, because that letter just represents 
any number … So if I change all of these to x’s, does it still work? (erases 
each A2 from the formula on the whiteboard and replaces each with x) 

Judith emphasised the idea of a variable cell, firstly using the image of the cell as a 
‘box,’ literally replacing A2 with different numbers, and then making the link to 
standard notation. In their subsequent work on equivalent expressions using letters 
pupils could draw upon this image of variable. When asked in the stimulated recall 
interview about the values that A2 and x could take for expressions to be equivalent, 
Jason referred to the link that Judith had emphasised. 

Researcher Could it [x] be a decimal number? … 
Jason Yeah, it’s the same as A2 

Beatrice said that she thought that x meant ‘any number’ but she wasn’t sure whether 
the expressions were equivalent if x was a decimal or a negative number. In contrast, 
when asked about similar work using A2 in her book, Beatrice felt strongly that A2 
could be a decimal or a negative number in the equivalent expressions. This is an 
indication of the complexity of pupils’ interpretations of notation. 
In terms of the rationale for replacing A2 with x in the paper and pencil environment, 
Judith referred to the socio-mathematical norm of using a letter as ‘what we normally 
do’ and referred in later lessons to potential confusion if A2 was used on paper. 
Indeed, in one of the ‘Odd one out’ lessons, Erin had tried to multiply 4 by A2, and 2 
by A2 on paper, but had written the products as 8A2 and 4A2 respectively. She 
commented on this possible source of confusion in the interview: 

 Erin Because in the classroom they might think it’s A times 2 … normally in 
algebra, when you’re doubling something, you should put (.) say if it was 
x, it would be 2x. So they might think A is just another x 

Other pupils, however, felt that using A2 on paper would not be confusing because in 
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standard algebra ‘it’s 2a’ (rather than ‘a2’) and ‘algebra letters are never capitals.’ 
Analysis of the interview with Judith indicates that she sees the variable cell as 
important in mediating meaning for variable. Further, she pointed to the distinction 
between changing a number in a cell and filling down a series of calculations. 

Judith The “single cell … I think it reinforces the idea of a variable … having 
one number that can be changed for anything is slightly different than 
having a number, and an answer, and a “different number and an answer 
… I can’t put my finger on “exactly what, but a few times I’ve got the 
impression from what the children have said. They don’t “quite see that 
this calculation here is the same as the next one above but with a different 
number in your variable position, if you see what I mean. They think of it 
as a different position almost and therefore not the same, not quite the 
same variable 

Judith’s perception of the pupils’ construction of meaning is insightful in two 
important and complementary ways. The variable cell offers the metaphor of 
kinaesthetic and visual change. Pupils see that a range of values can be entered into 
the ‘material reference’ (Haspekian, 2003) of the cell. They can also see that the 
formula which includes the variable cell does not change. 
The variable column offers the metaphor of kinaesthetic and visual dragging. When a 
formula is filled down through dragging, pupils see a range of values as a list in the 
variable column. The formulae then include different variable cells: A2, A3, A4 etc. 
which, in Judith’s words are ‘not quite the same variable.’ In terms of making links to 
standard algebraic notation, the inter-relation between this series A2, A3, A4 etc. and 
a single letter is more complex than for the variable cell. Yet an understanding of this 
relationship can potentially support pupils in their work with literal symbols through 
the metaphor of dragging. In the context of activity involving the variable column 
pupils tended to talk about ‘the number that is in A2,’ focusing on the ‘particular 
concrete’ (Haspekian, 2003) interpretation of A2. This is consistent with the fact that 
pupils tend not to change the number in A2 when they fill down. 
Mediation of naming a column 
In the ‘Myphone’ and ‘Sum and product’ lessons, Judith taught the class how to 
name a column on the spreadsheet. The aim was twofold: to make clearer the links 
between spreadsheet notation and standard algebraic notation; and to encourage 
pupils to see the notation as representing a variable. We do recognise however, as 
some pupils did, that there is no real reason to name a column on the spreadsheet.  

Judith [Discussing the formula =A2*0.16+15] We don’t wanna call those cell 
A2, B2, er, A3, A4, A5 … We want to give them a letter like we would do 
in the classroom if we’re gonna do that algebraically … Now instead of 
having to write down it’s that cell times nought point one six plus fifteen, 
you can now say it’s nought point one six times x if you’ve used x or 
nought point one six times m if you've used m and add fifteen 
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Our analysis suggests that naming a column mediated meaning in two ways. Naming 
a column involves highlighting the column and ‘defining’ a name. This engages 
pupils in the naming process and provides an image for variable as a range of 
numbers. The pupils’ language reflects this active process, for example ‘we had to 
minus the a, because we defined that as the a thing.’ When asked to explain what a or 
m meant in a formula, pupils such as Julian clearly drew upon this image: 

Julian A2 is just that individual column (points to a single point), column, like 
cell thing (makes box shape with hands), the a is the actual whole thing 
column (moves hand up and down) 

When writing a formula, rather than clicking on a cell and perhaps ignoring the 
notation, pupils type the name such as a or m, engaging directly with the notation.  
As well as the image associated with naming, the named column (like the variable 
column) also offers the metaphor of dragging. Here, unlike the variable column, the 
links between notation are clearer, although there are different conventions in 
standard notation, such as omitting the * for multiply and writing 6a, for example, 
rather than a6. For these high attaining pupils the use of a single letter seemed to be a 
helpful bridge and the differences in convention were unproblematic.  
Judith was also positive about naming a column, seeing it as a valuable strategy in 
making links to paper and pencil algebra and curriculum demands.  

Judith The naming of the column I think is successful in terms of them linking 
the algebra, certainly from my point of view … I think it helps them to 
see, instead of it’s, well it’s anything in that column, that it’s “n, if you see 
what I mean … that column is a “variable column as opposed to just 
somewhere where you put a sum, if that makes sense 

Judith also perceived that naming a column helped some pupils to identify the 
variable and to set out their work. 

DISCUSSION 
We have discussed the evolution of meaning for variable in one class of high 
attainers, drawing upon data in which pupils and their teacher were invited to discuss 
their learning and teaching. In particular, we attempted to analyse the mediation of 
the variable cell and the process of naming a column under the guidance of the 
teacher. The dynamic metaphors of change and dragging together with the process of 
naming appeared to support the evolution of meaning for variable.  
Most pupils interpreted A2 as ‘any number’ in the context of work with variable 
cells, supporting the findings of Sutherland (1995). However, analysis of discussion 
around activity involving the variable column suggests that pupils’ interpretations are 
context specific. We recognise the complexity of researching pupils’ interpretations 
and the limitations of our analysis given that there was not space to refer to interview 
data and observations of pairs. Nonetheless, we suggest that naming a column can 
potentially support pupils in developing a clearer sense of the notation as a variable.  
Whilst some pupils comment that ‘when you do spreadsheets then you do algebra,’ 
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others, perhaps with a narrower conception of what algebra is, say that ‘it doesn’t 
really feel like algebra on the spreadsheet.’ Does this matter? Is it a good thing? Is it 
important to make links to paper and pencil activity? We would not want to suggest 
that spreadsheet activity is valuable only as a preliminary to introducing the 
traditional discourse of algebra, but we do suggest that rich spreadsheet activity can 
be invaluable in supporting pupils’ construction of meaning for algebra. Our data 
points to the important role of the teacher in guiding this evolution of meaning, as 
illustrated in the words of Erin talking about spreadsheets and algebra:  

Erin I see links between them when she [Judith] talks about links between 
them but when they’re like separate then I think they’re separate (laughs)  

In this ongoing research we are also analysing the mediation of writing formulae and 
graphing activity in the evolution of meaning for algebra.  
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A STUDY OF THE GEOMETRIC CONCEPTS OF ELEMENTARY 
SCHOOL STUDENTS AT VAN HIELE LEVEL ONE 
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This study presents partial results from the project “A Study of perceptual 
apprehensive, operative apprehensive, sequential apprehensive and discursive 
apprehensive for elementary school students (POSD)”, funded by National Science 
Council of Taiwan (NSCTW, Grant No. NSC92-2521-S-142-004). It was undertaken 
to explore the geometric concepts of the elementary school students at the first level 
of van Hiele’s geometric though. The participants were 5,581 elementary school 
students, randomly selected from 23 counties/cities in Taiwan. The conclusions 
drawn from this study were: (a) It was easier for students to identify straight and/or 
curved lines due to the obvious distinctions; (b) Students had difficulties in judging 
rotate figures because of the direction and position concepts; (c) Identifying circle 
was the easiest for students, triangle next; quadrilateral was the most difficult one. 

INTRODUCTION 
Geometry is one of the most important topics in mathematics (Ministry of Education 
of Taiwan (MET), 1993, 2000, 2003; National Council of Teachers of Mathematics 
(NCTM), 1989, 1991, 1995, 2000). Geometry curriculum is developed and designed 
according to the van Hiele model of geometric thought (MET, 1993, 2000, 2003). 

In 1957, the van Hiele model was developed by two Dutch mathematics educators, P. 
M. van Hiele, and his wife (van Hiele, 1957). Several studies have been conducted to 
discover the implications of the theory for current K-12 geometry curricula, and to 
validate aspects of the van Hiele model (Burger & Shaughnessy, 1986a; Eberle, 
1989; Fuys, Geddes, & Tischler, 1988; Mayberry, 1983; Molina, 1990; Senk, 1983; 
Usiskin, 1982, Wu, 1994, 1995). Most of researchers focus on the geometry curricula 
of secondary school. To discover the implications of the van Hiele theory for 
elementary school students. However, it is also very important. The focus of this 
study is at the elementary level. This research report is one of the six sessions from 
the project “A Study of perceptual apprehensive, operative apprehensive, sequential 
apprehensive and discursive apprehensive for elementary school students (POSD)”, 
funded by National Science Council of Taiwan (NSCTW, Grand No. NSC92-2521-S-
142-004). 

The main objectives of this study were as follows: 

 1. To determine the passing rate of each geometric shape. 

 2. To determine the passing rate of each geometric type. 
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THEORICAL FRAMEWORK 
There are five levels of the van Hiele’s geometric thought: “visual”, “descriptive”, 
“theoretical”, “formal logic”, and “the nature of logical laws” (van Hiele, 1986, p. 
53). These five levels have two different labels: Level 1 through Level 5 or Level 0 
through Level 4. Researchers have not yet come to a conclusion of which one to use. 
In this study, these five levels were called Level 1 through Level 5, and the focus of 
this study was on Level 1, visual. 

At the first level, students learned the geometry through visualization. “Figures are 
judged by their appearance. A child recognizes a rectangle by its form and a rectangle 
seems different to him than a square (Van Hiele, 1986, p. 245).” At this first level 
students identify and operate on shapes (e.g., squares, triangles, etc.) and other 
geometric parts (e.g., lines, angles, grids, etc.) according to their appearance. 

METHODS AND PROCEDURES 
Participants  
The participants were 5,581 elementary school students who were randomly selected 
from 25 elementary schools in 23 counties/cities in Taiwan. There were 2,717 girls 
and 2,864 boys. The numbers of participants, from 1st to 6th grades, were 910, 912, 
917, 909, 920, 1,013 students, respectively. 

Instrument 
The instrument used in this study, Wu’s Geometry Test (WGT), was specifically 
designed for this project due to there were no suitable Chinese instruments available. 
This instrument was designed base on van Hiele level descriptors and sample 
responses identified by Fuys, Geddes, and Tischler (1988). There are 25 multiple-
choose questions of the first van Hiele level (Part 1); 20 in the second (Part 2); and 25 
in the third (Part 3). The test is focus on three basic geometric concepts: triangle, 
quadrilateral and circle. The result of the first part of WGT was used in this research 
report. 

Twenty-five questions at level one were characterized into nine types based on its 
geometric attributions. They are Type 1: identification of open and closed figures, 
Type 2: identification of convex and concave figures, Type 3: identification of 
straight line and curve line, Type 4: identification of rotate figure, Type 5: 
identification of figures of different sizes, Type 6: identification of extremely obtuse 
figures, Type 7: identification of wide and narrow figures, Type 8: identification on 
the width of contour line, Type 9: identification on filled and hollow figures. 

The scoring criteria were based on the van Hiele Geometry Test (VHG), developed 
by Usiskin, in the project “van Hiele Levels and Achievement in Secondary School 
Geometry” (CDASSG Project). In the VHG test, each level has five questions. If the 
student answers four or five the first level questions correctly, he/she has reached the 
first level. If the students (a) answered 4 questions or more correctly from the second 
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level; (b) reached the criteria of the first level; and (c) did not correctly answer 4 or 
more questions, from level 3, level 4, and level 5, they were classified as in second 
level. Therefore, using the same criteria set by Usiskin (1982), the passing rate of this 
study was set at 80%. 

Validity and Reliability of the Instrument 
The attempt to validate the instrument (WGT) involved the critiques of a validating 
team. The members of this team included elementary school teachers, graduate 
students majored in mathematics education, and professors from Mathematics 
Education Departments at several preservice teacher preparation institutes. The team 
members were given this instrument, and provide feedback regarding whether each 
test item was suitable or not. They also gave suggestions about how to make this test 
better. 

In order to measure the reliability of the WGT, 289 elementary school students 
(Grades 1-6) were selected to take the WGT. These students were not participants in 
this study. The alpha reliability coefficient of the first part of WGT was .6754 (p < 
.001) using SPSS® for Windows® Version 10.0. 

Procedure 
The one-time WGT was given during April 2004. The class teachers of the 
participants administered the test in one mathematics class. The tests were graded by 
the project directors. 

The distribution of the questions is in Table 1. 

 Triangle Quadrilateral Circle 

Type 1: open and closed figure Q 1 Q2 Q3 
Type 2: convex and concave figures Q 4 Q5 Q6 
Type 3:  straight line and curve line Q 7 Q8 Q9 
Type 4: rotate figure Q10 Q11 Q12 
Type 5: figures of different sizes Q13 Q14 Q15 
Type 6: extremely obtuse figures Q16 Q17  
Type 7: wide and narrow figures Q18 Q19  
Type 8: identification on width of the contour Q20 Q21 Q22 
Type 9: identification on filled and hollow Q23 Q24 Q25 

Table 1: The type and distribution of questions in level one 

RESULTS 
The passing numbers and passing rate for each type and each geometric shape at level 
1 were reported in Table 2. 
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Overall performance on basic figures 
From the data of Table2, the total passing rate was 77.5%. The overall passing rates 
of the triangle concept were 75.88%, 71.49% for quadrilateral, and 85.14% for circle. 
It seemed that the circle concept is the easiest one for students, followed by triangle 
concept, and quadrilateral concept.  

 Total 

Triangle 

N=5581 

Quadrilateral 

N=5581 

Circle 

N=5581 

Type 1 12289 73.40% 4072 72.96% 3976 71.24% 4241 75.99% 

Type 2 14308 85.46% 4750 85.11% 4181 74.91% 5377 96.34% 

Type 3 15642 93.42% 5307 95.09% 4932 88.37% 5403 96.81% 

Type 4 13213 78.92% 4522 81.02% 3723 66.71% 4968 89.02% 

Type 5 11401 68.09% 3047 54.60% 3713 66.53% 4641 83.16% 

Type 6 6122 54.85% 3675 65.85% 2447 43.85%   

Type 7 6537 58.56% 3232 57.91% 3305 59.22%   

Type 8 14088 84.14% 4940 88.51% 4706 84.32% 4442 79.59% 

Type 9 13686 81.74% 4570 81.88% 4928 88.30% 4188 75.04% 

Total 107286 77.50% 38115 75.88% 35911 71.49% 33260 85.14% 

Table2: The numbers passed and passing rate of each type and shape 

Overall performance on each type 
The overall passing rates, from Type 1 to Type 9, were 73.40%, 85.46%, 93.42%, 
78.92%, 68.09%, 54.85%, 58.56%, 84.14%, and 81.74% respectively. It seemed that 
Type 3 is the easiest one for students, followed by Type 8, and Type 9. Type 6 was 
the most difficult one, followed by Type 7, and Type 2.  

Type 1 (Identification of open and closed figure) 
The example of Type 1 questions is shown in Fig. 1. The passing rates of the triangle 
concept were 72.96%, 71.24% for quadrilateral, and 75.99% for circle. It showed that 
students could easily identify the open and closed figures in circular concept and 
have difficulties on quadrilateral.   

 

Fig. 1: The identification of open and closed figure 
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Type 2 (identification of convex and concave figures) 
The example of Type 2 questions is shown in Fig. 2. The passing rates of the triangle 
concept were 85.11%, 74.91% for quadrilateral, and 96.34% for circle. It showed that 
students could easily identify the convex and concave figures in circular concept and 
have difficulties on quadrilateral.  

 

 

 

Fig. 2: The identification of convex and concave figure 

Type 3 (identification of straight line and curve line) 
The example of Type 3 questions is shown in Fig. 3. The passing rates of the triangle 
concept were 95.09%, 88.37% for quadrilateral, and 96.81% for circle. It showed that 
students could easily identify the straight line and curve lines in circular concept and 
have difficulties on quadrilateral. 

 

 

 

 

Fig. 3: The identification of straight line and curve line 

Type 4 (identification of rotate figure) 
The example of Type 4 questions is shown in Fig. 4. The passing rates of the triangle 
concept were 81.02%, 66.71% for quadrilateral, and 89.02% for circle. It showed that 
students could easily identify the rotate figures in circular concept and have 
difficulties on quadrilateral. 

 

 

 

 

Fig. 4: The identification of rotate figures 

Type 5 (identification of figures of different sizes) 
The example of Type 5 questions is shown in Fig. 5. The passing rates of the triangle 
concept were 54.60%, 66.53% for quadrilateral, and 83.16% for circle. It showed that 
students could easily identify the figures of different sizes in circular concept and 
have difficulties on quadrilateral. 
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Fig. 5: The identification of figures of different sizes 

Type 6: identification of extremely obtuse figures 
The example of Type 6 questions is shown in Fig. 6. The passing rates of the triangle 
concept were 65.85% and 43.85% for quadrilateral. It showed that students could 
easily identify the figures of extremely obtuse figures in triangular concept and have 
difficulties on quadrilateral. 

 

 

 

 

Fig. 6: The identification of extremely obtuse figures 

Type 7 (identification of wide and narrow figures) 
The example of Type 7 questions is shown in Fig. 7. The passing rates of the triangle 
concept were 57.91% and 59.22% for quadrilateral. It showed that students could 
easily identify the figures of wide and narrow figures in quadrilateral concept and 
have difficulties on triangular. 

 

 

 

Fig. 7: The identification of wide and narrow figures 

Type 8 (identification on width of the contour line) 
The example of Type 8 questions is shown in Fig. 8. The passing rates of the triangle 
concept were 88.51%, 84.32% for quadrilateral, and 79.59% for circle. It showed that 
students could easily identify the width of the contour line in triangular concept and 
have difficulties on circle. 

 

 

 

 

Fig. 8: The identification of width of the contour line 
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Type 9 (identification on filled and hollow figures) 
The example of Type 9 questions is shown in Fig. 9. The passing rates of the triangle 
concept were 81.88%, 78.30% for quadrilateral, and 75.04% for circle. It showed that 
students could easily identify the filled and hollow figures in triangular concept and 
have difficulties on circle. 

 

 

 

Fig. 9: The identification of filled and hollow figures 

CONCLUSION: 
At the first van Hiele level (visual), students judged the figures by their appearance. 
Among these nine different types of figures in this study, Type 3 (identification of 
straight line and curve line) is the easiest for students and Type 6 (extremely obtuse 
figures) is the most difficult one. The circular concept is the easiest for students; on 
the other hand, the concept of quadrilateral is the most difficult to students.  

The results of this study identified the easiest and the most difficult concepts for 
students, it is important to investigate the reason(s) behind this result. The authors of 
this study are interested to investigate why elementary students have difficulties in 
identifying extremely obtuse figures. One reason might be that extremely obtuse 
figures are rarely shown in the textbook, and in their daily lives. Researchers might 
consider this as their research interests. 
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