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Equivalence of algebraic expressions is at the heart of transformational work in 
algebra. However, we know very little about students’ understanding of equivalence. 
This study is part of a larger project that explores the use of CAS as a didactical tool 
for promoting both technical and conceptual growth in high school algebra with 
tasks specially designed by the research team. We report on a class of 10th graders 
coming to grips with the underlying theoretical ideas related to algebraic 
equivalence and on the role that the CAS played in the shaping of these newly 
emerging notions. Two different notions of equivalence of expressions were found to 
emerge: one was purely numerical and entailed reasoning about expressions for 
which some but not necessarily all numerical substitutions would yield equal values; 
the other entailed both numerical and common-form reasoning. Interpretation of 
CAS outputs (the equality test, in particular) played a role in occasioning discussions 
that don’t normally occur in algebra classrooms and led to clarifying distinctions 
about equivalence for many.  

PAST RESEARCH IN THIS AREA  
While computers and calculators enabled with symbol-manipulating capabilities have 
been considered quite appropriate for student use in tertiary-level mathematics 
courses (Heid, 1988), such has generally not been the case for the secondary-level. 
Many teachers have tended to stay away from such technology in their classrooms, 
preferring that their students first develop paper-and-pencil skills in algebra (NCTM, 
1999). In contrast, graphing calculators have been adopted on a wide scale -- their use 
supported by the large number of studies providing evidence of the role that graphical 
representations can play in enhancing student understanding in algebra (Kieran & 
Yerushalmy, 2004). This has, of late, encouraged some researchers to begin to 
investigate whether and how CAS technology can contribute to student learning of 
secondary school algebra. 

Recently, researchers (e.g., Artigue, 2002; Guin & Trouche, 1999; J.-B. Lagrange, 
2000) have argued that these new technological tools promote both conceptual and 
technical growth in mathematics, as long as the technical aspects are not ignored. 

                                           
1 The data that are reported in this paper were collected and analyzed while Luis Saldanha was a post-doctoral fellow at 
the Université du Québec à Montréal. The authors express their appreciation to the Social Sciences and Humanities 
Research Council of Canada, which funded this research, and to the other members of the research team who 
collaborated in the design of the tasks: André Boileau, José Guzmán, Fernando Hitt, Denis Tanguay, and also Michèle 
Artigue who served as consultant on this project, and the participating classroom teachers who provided feedback on a 
regular basis throughout the successive cycles of task development.    
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More specifically, Lagrange (2000) has elaborated the notion that technique is the 
bridge between task and theory. In other words, as students develop techniques in 
response to certain tasks, they engage in a process of theory building. The 
technological tools that students use in this theory building become instruments of 
mathematical thought (Verillon & Rabardel, 1995), permitting both conceptual 
amplification and reorganization (Pea, 1987). Instrumented techniques thus have an 
epistemic value, contributing to the understanding of the objects they involve. 
Instrumentation theory, which articulates the relation between tool use and 
conceptual development has been applied to the learning of not only calculus but also 
high school algebra. For example, Drijvers (2003), who focused on the relation 
between instrumented techniques in a CAS environment and the learning of 
parameters, noted that the obstacles raised by student difficulty in reconciling CAS 
output with expected results presented opportunities for learning, when addressed 
within whole-class demonstrations and discussions.  

In another CAS study (Ball, Pierce, & Stacey, 2003) dealing explicitly with 
equivalence of expressions, researchers found that students could not recognize 
equivalent expressions, even simple cases, and noted that, "the ability to recognize 
equivalent forms of algebraic expressions is a central part of working with CAS and 
one that is likely to take on new importance in future curricula" (p. 4-16). Similarly, 
Artigue (2002) drew upon students’ work involving the passage from one given form 
of an expression to another to illustrate how the research team paid specific attention 
to the fact that "equivalence problems arise which go far beyond what is usual for the 
classroom." She used the CAS as a "lever to promote work on the syntax of algebraic 
expressions, which is something very difficult to motivate in standard environments" 
(p. 265), adding that its use obliges students to face equivalence and simplification 
issues. According to Nicaud et al. (2004), "reasoning by equivalence is a major 
reasoning mode in algebra; it consists of searching for the solution of a problem by 
replacing the algebraic expression of the problem by equivalent expressions … 
identities allowing for the transformation of expressions while maintaining 
equivalence" (pp. 171-2). The importance accorded to the notion of equivalence of 
expressions, as well as students’ reported difficulties in this area, suggests that we 
need to know a great deal more about the ways in which algebra learners think about 
equivalence of expressions. Wishing to build upon the recent work that has been 
initiated by researchers in this area, we designed a study that uses CAS as a lever for 
promoting student work, and reflection, on equivalence of expressions.  

THE STUDY 
The study reported in this paper is part of an ongoing three-year project involving 
five intact classes of 10th graders (15-year-olds). These students have been following 
an integrated program of mathematics since the 7th grade, which means that algebra is 
part of the course of study each year. One of these five classes is featured in this 
report. Students in this class had learned basic techniques of factoring and the solving 
of linear and factorable quadratic equations during the previous year and had used 



Kieran & Saldanha 

 

PME29 — 2005 3- 195 

graphing calculators on a regular basis; however, they had not had any experience 
with the notion of equivalence or with symbol-manipulating calculators. They were 
quite skilled in algebraic manipulation, as was borne out by the results of a pre-test 
administered at the outset of the study. It was during the algebra part of their 10th 
grade mathematics course, when the activities designed by the research team, 
accompanied by CAS technology (TI-92 Plus calculators), were integrated into their 
regular program of mathematics and taught by the classroom mathematics teacher. 

The Design of the Activities 
Of the eight activities created by the research team, each one designed to take up 
about two 65-minute-long class periods, three dealt with equivalence of expressions. 
Each activity was punctuated by parts, each part including presentation of student 
work and discussion of the main issues raised by the tasks in the given part. Tasks 
were of three types that involved either work with CAS, or with paper/pencil, or were 
of a reflective nature. For every activity, there was an accompanying teacher version 
that included suggestions for classroom discussion. In designing these tasks, we took 
seriously both the students’ background knowledge and the fact that these tasks were 
to fit into an existing curriculum; but we also moved to ensure that they would unfold 
in a particular classroom culture that reflected a certain priority given to discussion of 
serious mathematical issues.  

Activity 1:  Equivalence of Expressions 
Part I (with CAS): Comparing expressions by numerical evaluation 

 Part II (with paper/pencil): Comparing expressions by algebraic manipulation 
Part III (with CAS): Testing for equivalence by re-expressing the form of an 

expression – using the EXPAND command 
 Part IV (with CAS): Testing for equivalence without re-expressing the form of an 

expression – using a test of equality 
Part V (with CAS): Testing for equivalence – using either CAS method 

Activity 2:  Continuation of Equivalence of Expressions 
Part I: Exploring and interpreting the effects of the ENTER button, and the 

EXPAND and FACTOR commands 
 Part II: Showing equivalence of expressions by using various CAS approaches 
Activity 3:  Transition from Expressions to Equations 
 Part I (with CAS): Introduction to the use of the SOLVE command 
 Part II (with CAS): Expressions revisited, and their subsequent integration into 

equations  
Part III (paper/pencil): Constructing equations and identities 

 Part IV (with CAS): Synthesis of various equation types 

Figure 1: Outline of content of the three activities related to equivalent expressions 

In these activities, equivalent expressions were defined as follows: "We specify a set 
of admissible numbers for x (e.g., excluding the numbers where one of the 
expressions is not defined). If, for any admissible number that replaces x, each of the 
expressions gives the same value, we say that these expressions are equivalent on the 
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set of admissible values." As seen in Figure 1, which displays in outline form the 
content of the three activities related to equivalence, numerical evaluation of 
expressions served as the entry point for discussions of equivalence. The 
impossibility of testing all possible numerical replacements in order to determine 
equivalence motivated the use of algebraic manipulation and the search for common 
forms. Discussion included attention to restrictions on equivalence. The relation 
between equivalent/non-equivalent expressions and equation solutions was then 
explored in both CAS and paper/pencil tasks. 

Classroom Set-Up and Data Sources 
Two video cameras were set up in the classroom, one in the front and fixed in 
position, and a second one in the rear that pivoted and zoomed. Two ceiling-mounted 
microphones provided sound that was mixed and directed into each camera. One or 
two researchers took field notes during each class period. Two students were 
interviewed (and videotaped) after each class period in order to further probe their 
thinking. A post-test involving CAS use was administered after the three sets of 
activities had been completed. Thus, data sources for the segment of the study 
analyzed for this report include the DVD-captured videotape of all the classroom 
lessons involving the three activities, individual interviews with nine students, 
transcripts of selected video segments, the completed activity sheets of all students, 
written pre- and post-test responses, and researcher field notes. 

RESULTS AND DISCUSSION 
Responses to one of the post-test questions in particular, Question 5(iii) (see Figure 
2), suggested that students’ emerging ways of thinking about equivalence were being 
confounded with notions of equality. While for part (i) 93% of the students were 
coded with a correct score, and 100% of them used a valid CAS method to show that 
there are no other solutions in part (ii), only 60% of them correctly answered part 
(iii). Examples of students’ correct answers to Q.5(iii) were: 

• "They are not equivalent, because when x stays as x and both sides are factored 
out they are not identical. These expressions can be equal when x is replaced by 2 
or 2/3, because the two sides would be identical." 

• "They are not equivalent, as only when 2 and 2/3 are plugged in as values of x are 
the expressions equal. They cannot be put into common form." 

Incorrect answers included the following: 

• "They are equivalent when the numbers you are substituting are x = 2 or x = 2/3. 
Not any other numbers." 

• "The expressions are equivalent since they both have the same solutions." 
While it could be argued that students’ incorrect responses were merely an indication 
of linguistic error (i.e., using "equivalent" instead of "equal"), we wondered whether 
the problem might be deeper than that and might reflect an interpretation of 
equivalence purely in numerical terms and an absence of the relevance of the idea of 
algebraic form as a tool of algebraic thinking. Furthermore, we asked ourselves 
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whether the ways in which they were using the CAS tool or whether the ways in 
which the CAS displayed its outputs could be serving to reinforce numeric 
interpretations to the exclusion of those related to form.  
Q.5     The following equation has x = 2 and x = 2/3 as solutions: 

x(2x-4)+(-x+2)2 = -3x2+8x-4 
(i) Precisely what does it mean to say that, “the values 2 and 2/3 are solutions of this  equation”? 
(ii) Use the CAS to show that: (a) the two values above are indeed solutions, and  
      (b) there are no other solutions. 
What I entered into the CAS: 

What the CAS displays and my interpretation of it: 
 (iii) Are the expressions on the left- and right-hand sides of this equation equivalent? 
        Please explain. 

Figure 2: Post-test question (see part iii) that revealed interpretations of equivalence 

Correct answers to Q.5(iii) had generally incorporated two components, that of being 
able to represent equivalent expressions in some common form and that of producing 
the same numerical value for equivalent expressions on substitution by each of an 
infinite set of values. Incorrect answers did not refer to common form. Of the 60% of 
those who were successful in answering Q.5(iii) on the non-equivalence of the two 
given expressions, 88% of them used some type of common-form argument in their 
reasoning. (See Saldanha & Kieran, 2004, for further discussion of this result.) 

We note also that only two students used the equality test to determine whether the 
two given expressions are re-expressible in a common form. Indeed, our analysis of 
students’ work sheets for the activities preceding the post-test, as well as the 
interview data, revealed that many students were puzzled by the equality test. 

 

Figure 3: Output from the TI-92 Plus for four cases of equivalent and non-equivalent 
expressions using the equality test 

Figure 3 illustrates the TI-92 Plus output when the equality test is used for: (i) two 
equivalent expressions with no restrictions, (ii) two equivalent expressions with one 
restriction, (iii) two non-equivalent expressions that are equal only when x = 1 or x = 
1/3, and (iv) two non-equivalent expressions that are never equal. As can be seen, this 
test produces true when an equation is entered that is formed from two equivalent 
expressions (note, however, that the restriction to the equivalence is not displayed); 
on the other hand, the CAS simply displays the input-equation when the left- and 
right-hand-sides of the equation are not equivalent expressions. Thus, with its two 

 

(i) 

 

(ii) 
(iii) 
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distinct outputs – either true or the input-equation -- the equality test can serve as a 
test for equivalence of expressions.  

The latter output was, however, difficult for students to interpret. This is illustrated 
by the following excerpt, drawn from an interview with a student (S) immediately 
after classroom work on Activity 1: 

S:  When I see "true", I figure that that there aren’t any exceptions [having entered:  
     (3x–1)(x2–x–2)(x+5) = (x2+3x-10)(3x-1)(x2+3x+2) / (x+2)].  Like, I figure if it says 

"true" all the time, it would always, no matter what you put x as, it would be equivalent.  
I:   Ok. Let’s go on to the next part here. [turning page] Alright, do you remember that one? 
S:  Uhm, I entered the problem [ (x 2 + x − 20)(3x 2 + 2x − 1) = (3x − 1)(x2 − x − 2)(x + 5) ] and it 

gave me pretty much the same problem back, but rearranged, it’s the same answer. 
When you think that the other one said "true," it is kind of puzzling. ... The answer that 
it gave me. I figure that that’s this statement, like the first expression equals the second 
expression is true. … When I see an equal sign, I figure they are equivalent, the same.  

I:  Is there anything you might do to check whether your hunch about what that means is 
right indeed? 

S:  I’d expand it. Then you see all the parts. 
I:  Did you actually do that as a follow up? 
S:  I did, myself, but I don’t think we did, as a class. 
I:  And did it corroborate what you 
S:  No, because when you expand them, they’re different. 
I:  Would you revise your response to this in light of that? 
S:  Yes, but I still don’t understand why it would tell me that it’s equivalent.   
I:   So, if I understand you correctly, to you it’s sort of mysterious why 
S:  It’s misleading. 

While this student evidently thought that, when a statement with an equal sign is 
returned, such a display should still signal equivalence of the two given expressions, 
others did not know what to make of such output. They thought that the CAS should 
display false if the two expressions that formed the equation were not equivalent, 
especially for cases such as x = x+1, which they argued "could never be true." They 
had seen false displayed when they had substituted certain values into equations 
containing restrictions, and thus expected false for certain cases when using the 
equality test. Naturally, there was considerable classroom discussion around this 
issue when it was first encountered during Activity 1. Teacher and students alike both 
referred to some of the prior numerical substitutions they had made with these 
expressions, pointing out that equations made from such expressions were sometimes 
true and sometimes false, depending on the numerical value being substituted. If an 
equation formed of two expressions was not always true (subject, of course, to a few 
restrictions), they argued, then the expressions forming that equation were not 
equivalent and never could be. But because there were sometimes exceptions to the 
equivalence (in the case of inadmissible values, which were not always obvious to the 
students), some believed there might be exceptions to the "non-equivalence of 
expressions," which they were similarly not seeing. Thus, the fragility of students’ 
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emerging knowledge of equivalence was being exposed by their difficulty with 
interpreting some of the CAS displays. 

Activity 3 introduced students to the SOLVE command and its use in interpreting the 
equivalence of the given expressions of an equation. Students seemed more at ease 
with the CAS outputs of SOLVE: true, some solutions, or false. They were on more 
familiar ground; but it was a numerical ground (solutions that included all real 
numbers, only some real numbers, or no real numbers). Thus, those equations that 
had been returned "as is" by the equality test, and which had been uninterpretable by 
many, were now seen in a clearer light. However, as illustrated by some of the post-
test responses, the expressions on the two sides of an equation for which there were 
some solutions were being considered as equivalent expressions, that is, "equivalent 
for certain values of x." With their purely numerical interpretations of equivalence, 
they tended to lump into the category of equivalence both pairs of expressions whose 
equations were true for all, as well as those with only a few solutions. In contrast, 
those students whose numerical interpretations were accompanied by "common-
forms" reasoning (i.e., only those pairs of expressions forming equations that were 
true for all could be expressed in common form) correctly distinguished equivalent 
from non-equivalent expressions. The ramifications of the former kind of reasoning 
on students’ understanding of the process of equation solving where sub-expressions 
of the equation are to be replaced by equivalent expressions must surely be obvious. 

While the CAS equality test, with its "mysterious" output, alerted students to 
something that they needed to think deeply about and brought their conceptual 
difficulties to the surface, clearly not all of them were resolved. As students continue 
to work with equation-solving procedures during the year and more attention is paid 
to the role of common-form arguments in talking about equivalent expressions, 
equivalence of expressions may slowly become disentangled from equality of 
expressions. As students gain more experience with the CAS, along with and in 
interaction with their emerging knowledge on equivalence of expressions, they may 
come to use the equality test, among others, with confidence. Ball, Pierce, and Stacey 
(2003) have pointed out that the students in their CAS study had a great deal of 
difficulty in recognizing equivalent expressions. To compensate for this difficulty, we 
suggest that students need to be adept at using various CAS tests in order to 
determine equivalence of expressions, but they also must have a clear idea of what is 
meant by equivalent expressions. The report of this part of our study has described 
our initial efforts toward understanding students’ grappling with both these issues. 

CONCLUDING REMARKS 
In this study, CAS was not intended to replace paper/pencil work as a technical tool. 
Nor was it to be simply a means for checking paper/pencil work. It was, however, 
intended for use as a didactical tool for coming to grips with underlying theoretical 
ideas in algebra. Some of the components of our activities that made CAS a 
didactical tool were questions that used the machine to occasion discussions that 
don’t normally happen in mathematics classes. Tasks that asked students to write 
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about how they were interpreting their work and the related CAS displays bring 
mathematical notions to the surface, making ideas and distinctions much clearer, in 
ways that simply "doing mathematics" may not require. If CAS is to be effective at 
the high school level, it is precisely this kind of usage that needs to be considered. 
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