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This paper provides an analysis of a teaching experiment designed to foster students' 
geometrical reasoning and verification in small group. The purposes of the teaching 
experiment in this paper were to characterize gifted students' proof constructions and 
to contribute to the theoretical body of knowledge about gifted students' 
mathematical thinking. The experiment was conducted as part of education for gifted 
sixth-graders (12 years of age). The analysis of the students' responses in this paper 
documents the evolution of the students' proving ability as they participated in 
activities from an instructional sequence designed to support geometrical reasoning. 
Three types of reasoning (pragmatic, semantic, intellectual) and creative informal 
proofs were identified in the analysis. In order for mathematically gifted students to 
develop their proving ability, teachers need to draw explicit attention to the value of 
informal proofs. Likewise, in order for students to develop their sense of geometrical 
reasoning, they need a lot of experience in conjecturing, testing, and then verifying in 
a mathematical way. 

INTRODUCTION  
There is a widespread agreement that students have difficulties with constructing 
proofs (Senk, S. L., 1982; Chazan, D. & Lehrer, R. (Eds.), 1998; English, L. D. (Ed.), 
1997;Weber, K. 2001). A great deal of educational research investigating students' 
proving abilities were conducted. Much of the research on proof has examined both 
the valid and invalid proofs. More recently, some researchers have paid less attention 
to the proofs that students produce and have focused instead on the processes that 
students use to create those proofs (Graves, B., & Zack, V., 1997;Artzt, A., & Yoloz-
Femia, S., 1999;Weber, K., 2003). The aim of this study is also to describe and 
investigate the proving processes that students produce.  

The traditional view of proof has been and still is, largely determined by a kind of 
philosophical rationalism, namely, that the formalist view that mathematics in general 
(and proof in particular) is absolutely precise, rigorous and certain. Although this 
rationalistic view has been strongly challenged in recent years by the fallibilist views 
of, for example, Lakatos (1976), Davis and Hersh (1986), and Ernest (1991), it is 
probably still held by the vast majority of mathematics teachers and mathematicians. 
In an extreme version of this view, the function (or purpose) of proof is seen as only 
that of the verification (conviction or justification) of the correctness of the 
mathematical statements (Chazan, D. & Lehrer, R. (eds), 1998).  
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This paper is based on the fallibilist perspective and Brousseau’s (1997) theory of 
didactic situation. According to Lakatos (1976), mathematics is not a purely 
deductive science proceeding from accepted axioms to established truths. And he 
believes that the uncertainty in proofs is the basis for mathematical activity, not an 
impediment to it, because uncertainty makes possible the process of proof analysis. 
On the other hand, Brousseau (1997) documented that an attitude of proof exists and 
is developed by particular didactic situations. According to Brousseau, proof must be 
formulated and presented while being considered, and therefore most often written, 
and must be able to be compared with other written proofs also dealing with the same 
situation. The didactic situation in this study was designed to motivate students to 
discuss and favor the formulation of their implicit validations and informal proofs, 
even if the students’ reasoning is incorrect or imperfect.  

METHODOLOGY 
Participants in the study were two groups of mathematically gifted sixth-graders of 
16 students per group, studied geometry for three hours each day emphasizing 
mathematical argumentation and validation. The students’ individual written proof 
constructions were collected. Classroom instruction and task-based, semi-structured 
individual interviews with 3 students were videotaped. Students were asked to 
explain their reasoning and challenge other students' explanations and validations in 
the instruction. The instructor asked to find the answers or representations, even 
though it consists of one word or visual images only. The necessity of proof was 
proposed by students who met uncertainty about the truth of mathematical 
propositions. In this process, students' pragmatic, semantic, intellectual reasoning, 
which Brousseau (1997) has distinguished as such, and informal proofs were 
identified and discussed.  

Analysis was conducted by the theory of didactic situations as described by 
Brousseau (1997) and the interpretive framework developed by Strauss, A., & 
Corbin, J. (1990). Transcriptions of the classes and interviews, written proof 
constructions were summarized per student per task. Analyses of these summaries 
were discussed with the instructor in order to minimize inappropriate interpretations. 
The analyses led to the identification of many creative mathematical ideas, reasoning 
and informal proofs.   

The task below provides an example of the question sets presented to the students. 
Observing, conjecturing, testing, generalizing and validating occurred while 
confronting the problematic issues in these questions.  

1. Let's observe a football. You need to imagine a football as a polyhedron made 
of regular pentagons and regular hexagons. Then how many regular pentagons 
and regular hexagons are used?  

2. How many vertices are there? Explain how you found it.  
3. How many edges are there? Explain how you found it.  
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4. Looking at one vertex, what kinds of polygons are there? Is it all the same for 
every vertex? What is the sum of the interior angles collected at one vertex? 

5. How many spherical solids can be made if we use regular triangles?  
6. How many spherical solids can be made if we use squares?  
7. How many spherical solids can be made if we use regular pentagons?  
8. How many spherical solids can be made if we use regular hexagons?  
9. How many spherical solids can be made if we use two kinds of regular 

polygons such as a football?  
There are many possibilities for making spherical solids, so it is necessary to 
establish criteria for constructional method and their justification or verification. 
They may discuss what kind of regular polygons can and cannot be used 
simultaneously for making a spherical polyhedron. Of course they can investigate and 
announce the reasons, and predict another possible form for a football, discuss their 
strengths and weaknesses. The intent of the instructional sequence is to support 
students’ development of sophisticated ways to reason geometrically about 
polyhedron in space and represent the consequences mathematically. The instructor 
encouraged students to observe regularity, pattern, or law and yield worthwhile 
results by insight. Any particular case or consequence was actively examined and 
verified, so that students acquired the credit of the conjecture they produced.  

RESULTS AND DISCUSSION 
The responses were marked and coded in terms of the number of reasoning types 
(intellectual, semantic, pragmatic) and in terms of the process of reasoning, whether 
it was attempted, incomplete and invalid. The transcriptions were categorized in 
terms of the central issue being considered.  

Questions Pragmatic Semantic Intellectual 

How many regular 
pentagons and regular 
hexagons are used? 

20/32 (62.5%) 

counted directly 

3/32 (9.4%) 

examined other 
students’ answers 

9/32 (28.1%) 

logic and 
calculation 

How many vertices are 
there? 

19/32 (59.4%) 

counted 

4/32 (12.5%) 

systematic 
counting 

9/32(28.1%) 

12 times 5 

How many edges are 
there? 

9/32 (28.1%) 

Counted 

12/32 (37.5%) 

systematic 
counting 

11/32 (34.4%) 

sum of 60, 30 

Is it all the same for 
every vertex? 

21/32 (65.6%) 

constructed 
0/32 (0%) 

11/32 (34.4%) 

what if not 
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How many spherical 
solids if we use regular 
triangles?  

4/32 (12.5%) 

constructed 

18/32 (56.3%) 

systematic  

10/32 (31.3%) 

sum of angles 

How many spherical 
solids if we use squares? 

3/32 (9.4%) 

constructed 

6/32 (2.2%) 

systematic  

23/32 (71.9%) 

sum of angles 

How many spherical 
solids if we use regular 
pentagons?  

1/32 (3.1%) 

constructed 

4/32 (12.5%) 

systematic  

27/32 (84.4%) 

sum of angles 

How many spherical 
solids if we use regular 
hexagons?  

0/32 (0%) 
2/32 (6.3%) 

systematic  

30/32 (93.8%) 

sum of angles 

How many spherical 
solids if we use two kinds 
of regular polygons such 
as a football?  

28/32 (87.5%) 

constructed 

2/32 (6.3%) 

systematic  

2/32 (6.3%) 

sum of angles 

analogy 

induction 

Table 1: Percentages of reasoning type students used (N=32) 

The above table shows percentages of reasoning types followed by students per 
question. None of the students used pragmatic reasoning after similar questions were 
presented repeatedly (see shaded parts in Table 1). This indicates that students could 
judge the value or the level of reasoning and reflected their reasoning processes when 
they proceeded (see the last row of Table 1). However, if the problem situation would 
be changed completely, most students went back to pragmatic reasoning. Pragmatic 
reasoning is not perfect and often clumsy but foster students to revise their idea or 
think alternatively. The manipulative material named “Polydron” was used in this 
study, which helped students construct solids, guess, reflect on their construction, and 
test their guesses in various ways. It is argued that appropriate manipulative material 
can foster pragmatic reasoning that facilitates semantic and intellectual reasoning.  

It was extremely difficult to distinguish between semantic and intellectual reasoning 
because students often reasoned in a mixed way. Both semantic and intellectual 
reasoning given by one or a group of students usually were discussed for a long time 
and were connected to creative informal proofs. The episodes described here provide 
explanations on that.  

Episode: pragmatic reasoning and semantic reasoning 
The episode below, which lasts about 3 minutes, comes from discussions in a group 
of five students. These students have studied independently on the first question, and 
now are comparing their answers. 

[Codes]  
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1 S1: So what is your answer? Mine is 12.  
2 S2:  Regular pentagon? 12. I counted the regular hexagon first. It’s 19. 
3 S3:  So did I, but in my case, it’s different, it’s 20.  
4 S1:  How did you count?  
5 S2:  Well, I started at this face, let’s count again, one, two, …, twenty.  
6             Oh, it’s strange, what’s happening here!                    [Pragmatic] 
7 S4:  I think 20 is correct because there were no mistakes before. Maybe you’ve  
8.  missed one.  
9 S2:  I need to count once again. By the way, all of you got 20?  
10 S1, S5:  Yeah.   
11 S1:  Why don’t you count by following different directions? It might be   
12.  helpful.                                   [Semantic] 
13 S5:  [speaking to S1] Directions? Why do we consider directions?  
14 S2:  If we collect lots of evidence, then we can believe a lot. Is it correct? 
15 S1:  In addition to that, there would not be mistakes if we insist on a direction  
16   while counting.  
17 S5:  Oh! That’s a good idea. Then we had better investigate how many 

directions are there.   
18 S1:  [speaking to teacher] We have discovered interesting aspects.   

S2 explicitly states that he reasoned pragmatically not by mathematical calculation 
but by direct counting only (“I started at this face.” Line 5) and he tried to prove by 
counting in front of the peers again. It reveals how he reasoned and how he felt 
certainty in his thinking at the same time. When S1 says that 20 is correct because 
there were no mistakes in S2’s counting (Line 7), it indicates that S1 observed S2’s 
way of counting and sought mathematical or systematic approach. His remark on 
directions (Line 11-12) is sufficient to show that he proceeded to semantic reasoning 
and promote other students’ understanding of the problem.  

In the above episode, S1 not only proposed a good solution to the problem but also 
presented a systematic way of counting which can diminish uncertainty in their 
processes. His description of the counting pattern does not need to be tested and is 
sufficient to suggest that they found out interesting aspects of semi-regular solids. In 
the next episode, on the spherical solids made of squares, another example of 
pragmatic and semantic reasoning is provided 

[Codes]  
1  S6: Only cube, cube can be made if we use squares. 
2  S7: How do you know? 
3 S6:  Just because, …, at any rate, I remember what I did.   [Pragmatic] 
4 S8:  We need to explain mathematically. I am thinking on that.  
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5 S9:  It is a sort of order. I mean we have to consider each one from the case  
6  with three squares at each vertex by increasing squares.       [Semantic] 
7 S10:  Four. Then, four.            
8 S9:  Okay. Isn’t it obvious? There are no solids with four squares at each  
9  vertex.  
10  [S1 is trying to make a plane with four squares] 
11 S6:  Okay, okay. It always becomes a plane if we use four squares. So we are 
12  done, it was proved finally.  

Although the above episode occurred after students spent considerable time to guess, 
test, and verify, S6 still seems to be in the pragmatic thinking level (Line 3). 
However, S8 and S9 helped him quickly grasp key ideas of justification (Line 4-6), 
so that he describes or formulates the problem situation meaningfully (Line 11). The 
pragmatic reasoning itself is insufficient but can be seen as an important part of 
mathematical reasoning from the above episode. When S9 states an order of 
consideration (“a sort of order” Line 5), S6 not only understood what she meant but 
was also convinced that it is sufficient for verification.  

Episode: intellectual reasoning 
According to Brousseau (1997), students adopt false theories, accept insufficient or 
false proofs and the didactic situation must lead them to evolve, revise their opinion 
and replace their false theory with a true one. He emphasized that a mathematical 
theory is progressively constructed. This point of view was identified in the previous 
section on pragmatic reasoning. Students who participated in this study often 
presented false conjectures and tested them insufficiently. It was impossible to find 
students who can reason intellectually from the beginning. The next episode occurred 
after students spent much time reasoning pragmatically or semantically. 

[Codes]  
1  S1: It is easy to find the number of regular hexagons by using the number 
2  of regular pentagons in a football. 
3  S2: How? 
4 S1:  12 times 5 divided by 3, and then we have 20. Because, uh, uh, every 

regular  
5  pentagon is surrounded by regular hexagons and every regular hexagon 
6  has three regular pentagons.      [Intellectual] 
7 S3:  Fantastic! Fantastic! It makes sense. 
8 S4:  Say that again please. Why do you divide 60 by 3? 
9 S1:  Because we counted three times.  

S1 arrives at a mathematical expression which is an essential idea for developing 
geometrical reasoning in the given problem situation (“12*5÷3=20” in his worksheet 
& Line 3). Led by him, students check their solution and expressions in terms of 
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efficiency or sufficiency. This intellectual work of S1 must similar to 
mathematicians’ activity, which is a faithful reproduction of a scientific activity, as 
Brousseau (1997) emphasized. S9 too, reasons intellectually in the next episode when 
she solves the last question on semi-regular polyhedron. 

[Codes]  
1  S9: I am thinking of a good expression for them. Always the same kind of 

polygons 
2  are at each vertex, …, in this case, three squares, in case of …  
3  S6: Right. In case of a football, there are two regular hexagons and one  
4  regular pentagon.  
5 S10:  That kind of information varies in all situations. I don’t know. 
6 S6:  That kind of information varies… in all situations? 
7 S9:  It’s not important … I mean… If I say … five, six, six, then all of you  
8  are able to know what solid I am thinking. Okay, let’s express it like this  
9  from now on. [writes as “(5, 6, 6)” and shows it to other members] Then  
10  we are ready to find another solid like a football.   [Intellectual]  

S9 drew a table and check several cases which can be semi-regular solids using her 
own expressions (Line 9), that made her discover meaningful ideas. Intellectual 

reasoning is usually accompanied by useful expressions. 
S9 proposed excellent expressions or informal proofs 
while solving other problems, too. (see Figure 1) She 
demonstrated that not all squares have circumscribed 
circles by Figure 1. She said in the interview after the 
class, “Triangles are very special polygons because we can 
find circumscribed circles in any of them.” Her intellectual 
reasoning was informal and insufficient as in the above 
episode or Figure 1, but it contributed to successive 
verification and justification, which is essential for 

developing geometrical reasoning. 

CONCLUSION 
The mathematically gifted students demonstrated pragmatic, semantic, and 
intellectual reasoning in this study. Nine (including S1, S9 in the previous sections) 
of 32 students consistently reasoned intellectually in most of all the settings via 
pragmatic and semantic reasoning. Furthermore, they presented crucial ideas for 
formal proving or validation. These ideas gave chances to discuss what proof means 
and why proof is needed in mathematical situations. The students who had reasoned 
pragmatically at first have learned from discussions with other students on 
verifications, and consequently changed their ways of reasoning. Thus, it is argued 
that the didactic situation in this study permitted the evolution and the organization of 
informal but close to formal proofs by means of various kinds of reasoning. The 
example episodes also illustrate that peer interaction in small group is critical to 

Figure 1 
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leading students in which they reflect and simplify their idea while explaining to 
peers. The theoretical purposes of the teaching experiment were to characterize gifted 
students' proof constructions and to contribute to the theoretical body of knowledge 
about gifted students' mathematical thinking. The connection of informal and formal 
proofs by students is an area in need of additional research. 
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