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The purpose of this paper is to demonstrate the use of the statistics of relative risk 
and odds ratios in mathematics education. These statistics are widely used in other 
fields (especially medical research) and offer a useful but currently under-utilised 
alternative for education. The demonstration uses data from a longitudinal study of 
students’ understanding of decimal notation. We investigate the statistical 
significance of results related to the persistence of misconceptions and the hierarchy 
between misconceptions. Relative risk and odds ratio techniques provide confidence 
intervals, which give a measure of effect size missing from simple hypothesis testing, 
and enable differences between phenomena to be assessed and reported with impact.  

This paper demonstrates some possibilities for analysing educational data, which 
draw upon methods that are widely used in reporting results of medical, 
environmental and epidemiological research. We believe that these measures provide 
very useful techniques for testing for statistical significance and reporting confidence 
intervals, which will enhance mathematics education research. Capraro (2004) draws 
attention to important recent policy changes within the American Psychological 
Association, evident in their publication manual, that stress the importance of 
researchers supplementing statistical significance testing with measures of effect size 
and confidence intervals, with many journals making them mandatory. 

For those worried about deep vein thrombosis (DVT) after long flights, BUPA’s 
website (Newcombe, 2003) cites Farrol Kahn as saying that “Several studies have 
shown [wearing flight socks] to be of benefit and it reduces the risk by up to 90 per 
cent.” However, we can be cheered that “The researchers discovered the risk of 
developing DVT after a long-haul flight seemed to be low - at about 1 per cent of all 
long-haul passengers.” Some of us can be further comforted by the observation of 
Runners’ World (Reynolds) that “Being athletic accounts for ten times more victims 
than any other risk factor.” 

These reports in the popular press, along with reports in research literature, are 
mostly describing the results in terms of relative rather than absolute risk. So, for 
example, instead of commenting that DVT developed in only about 0.10% (10% of 
1%) of passengers wearing flight socks, the website reports that the risk is reduced by 
up to 90%. This puts what might be seen as a tiny reduction in risk (just 90% of 1%) 
into perspective and shows its importance. 

In this paper, we will show how these ideas of relative risk can be applied to 
educational data and discuss the benefits and issues arising. We illustrate the methods 
and challenges by some reanalyses of longitudinal data on students’ understanding of 
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decimals. This was a cohort study, which tracked the developing understanding of 
over 3000 students in Years 4 – 10 at 12 schools for up to 4 years, testing them with 
the same test at intervals of approximately 6 months. Details of the sampling, the test 
and its method of analysis and many results have been described elsewhere; for 
example, Steinle and Stacey (2003), and Steinle (2004). For the purpose of this paper, 
it is sufficient to know that students are classified into 4 coarse codes, (A, L, S and 
U) on the basis of their answers to one section of this Decimal Comparison Test. In 
general terms, students in coarse code A are generally able to compare decimals; 
students in coarse code L generally treat longer decimals as larger numbers (for a 
variety of reasons); students in coarse code S generally treat shorter decimals as 
larger numbers (again for a variety of reasons); and coarse code U contains all 
remaining students. Answers to the other items in the test refine these coarse codes 
into 12 fine codes, which represent expertise (A1, which is a subset of A), various 
particular misconceptions, or students who cannot be classified. The longitudinal 
study traced student’s understanding in terms of the coarse and fine codes and used 
this to examine questions such as which misconceptions are prevalent at different 
ages, whether some misconceptions are better to have than others, how often students 
appear to lose expertise, and whether students tend to move between misconceptions 
in predictable ways.  

AN EXAMPLE USING RELATIVE RISK AND ODDS RATIOS  
The main ideas in this paper will be illustrated by considering the question of whether 
it is better for a student to be in code L or S, i.e. from which of these groups are 
students more likely to become experts (i.e., move to code A1) on their next test? 
Table 1 summarises the data. Looking over the whole sample1, there were 847 
occasions where a student completed a test coded as S and then completed another 
test. On this subsequent test, 230 of the S students became experts and 617 did not, 
giving a 27% (230/847) chance of an S student becoming an expert and a 73% 
chance of an S student not becoming an expert. Similarly, from Table 1, there were 
1257 occasions where a student completed an L test and was followed to their next 
test. The L students had 20% (251/1257) chance of becoming an expert. It seems that 
it is better to be an S student2. 

Conditions 
Outcome1 

(A1 on next test) 
Outcome2 

(not A1 on next test) 
Total 

Condition1 (S) n11 = 230 n12 = 617 n1 = 847 
Condition2 (L) n21 = 251 n22 = 1006 n2 = 1257 

Table 1: Numbers of A1 and non-A1 tests following S and L tests 
                                              

1 More careful analysis, as in Steinle (2004), would define the samples to reduce the effect of 
confounding variables such as age.  The purpose here is to illustrate the procedures; the results 
here broadly match the refined analysis.  
2 This result is consistent with responses to individual items reported by large-scale studies 
around the world since the 1980s. See, for example, Foxman et al. (1985).  
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There are several ways in which this result can be tested statistically. A chi-squared 
test rejects the null hypothesis that the proportions of L and S students becoming 
expert are the same ( 2 14.82χ = , d.f.=1, p=0.0001). However, the chi-squared test 
simply indicates the degree of evidence for association and does not give other 
information such as a confidence interval.  

Analysing absolute differences in proportions becoming experts 
A second method is to test whether the proportions of students going to A1 (moving 
to expertise) from S and L are the same. Assuming the counts for S and L are 
independent binomial samples, the difference of the proportions from Table 1 is 
distributed approximately normally with mean (0.27 – 0.20) and standard error 0.019 
(Agresti, 1996). Hence a 95% confidence interval for the true difference in 
probabilities is 0.07 ± 1.96 × 0.019, i.e. the interval (0.03, 0.11). This confidence 
interval provides more information than the chi-squared test. The interpretation of 
this confidence interval is in terms of absolute differences in the chance of moving to 
A1 from S and L. With 95% confidence, the percentage of S students becoming 
expert is between 3 and 11 more than for L students. In other words, if we have 100 L 
and 100 S students, and if 20 L students become experts on the next test, we can be 
confident that between 23 and 31 S students will become experts.  

Analysing relative risk of becoming an expert 
Another approach to testing whether two proportions are the same is to consider the 
relative, rather than the absolute difference in the proportions as above. This is 
especially useful when the proportions are small, as the absolute differences will also 
be small, although their ratios may be large. Because of its origins in epidemiological 
studies, the proportions of interest are classically labelled risk, but in our 
circumstance (where becoming an expert is a benefit rather than a harm) chance 
seems a more appropriate label. To answer the question of whether it is better to be S 
or L, the relative risk (chance) of becoming an expert on the next test is calculated as 
the ratio of the chances of S to A1 and L to A1. Figure 1, where the steps involved 
are demonstrated and given to two decimal places, shows that the relative chance of 
becoming an expert (from S and L in that order) is 0.27/0.20 = 1.36. This number 
indicates that an S student is 36% more likely to become an expert on the next test 
than is an L student.  

Is this a significant difference? As indicted in Figure 1, the natural logarithm of this 
relative chance (i.e. relative risk) is normally distributed (Agresti, 1996; Bulmer, 
2005), and the 95% confidence interval for the relative chance of becoming an expert 
is (1.16, 1.59). As 1.00 is not inside this interval, we are 95% confident that an S 
student is more likely to become an expert than an L student. In fact it is reasonable 
to say that an S student has at least a 16% greater chance of becoming an expert and 
possibly up to 59% more chance, compared with an L student. The best estimate is 
36% more chance since the relative chance is 1.36. This is an intuitive way of 
presenting the results, with some impact. 
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Ln 1.49 = 0.40 

SE = 0.10 

95% confidence interval 
for Ln(RR1) is 
Ln(p1,1/p1,2)±1.96×SE  

0.31±1.96×0.08 

=  (0.15, 0.46) 

95% confidence 
interval for Ln(OR1) is 
Ln(o1/o2)±1.96×SE 

0.40±1.96×0.10 

= (0.20, 0.61) 

Conclusion based on 
whether 1 is included in 
the 95% confidence 
interval for 1RR  (which 
is the antilog of above). 

95% CI for 1RR  
is (e0.15, e0.46) = 
(1.16, 1.59) 
which does not 
include 1.00 

Conclusion based on 
whether 1 is included in 
the 95% confidence 
interval for 1OR (which 
is the antilog of above). 

95% CI for 1OR  
is (e0.20, e0.61) = 
(1.22, 1.83) 
which does not 
include 1.00 

Figure 1: Calculations of Relative Risk and Odds Ratio from Table 1 

Analysing the odds ratio for becoming an expert 
The right-hand side of Figure 1 also provides an explanation of a related measure of 
association called the odds ratio. The odds of an S student becoming an expert on the 
next test are 230:617 = 0.37 and the odds for an L student are 251:1006 = 0.25. The 
odds ratio is therefore 0.37/0.25 = 1.49. The calculation of the 95% confidence 
interval for the odds ratio is (1.22, 1.83) (Agresti, 1996; Bulmer, 2005). As 1.00 is 
not inside this interval, we can be 95% confident that there is a true difference 
between the odds for an S and an L student becoming an expert on the next test.  

The odds ratio is harder to interpret than the relative risk considered above, but it is 
widely used because it can be applied to a wider range of research designs than 
relative risk, and has strong mathematical properties giving it a role in other statistical 
testing. Moreover, when the risks of the event under both conditions are low (e.g. less 
than 10%), the odds ratio is a good approximation to the relative risk and can be 



Steinle & Stacey 

 

PME29 — 2005 4-221 

interpreted as such. SPSS performs odds ratio calculations under the Crosstabs menu, 
as the Mantel-Haenszel common odds ratio estimate. 

Features of Relative Risk and Odds Ratio Analyses 
In using both relative risks and odds ratios, it is important to think carefully about 
what is a good comparison to demonstrate an effect. If we had carried out the odds 
ratio analysis for L compared to S (i.e. swapping conditions in Table 1) then the odds 
ratio would have been the reciprocal i.e. 1/ 1.49 (i.e. 0.67). Similarly, the relative risk 
of moving to expertise of L compared to S is the reciprocal of 0.20/0.27, i.e. 74%. 
When the relative risk is less than one, it is common to use relative risk reduction to 
present the results. Instead of saying that an L student has only 74% of the chance 
(risk) of becoming an expert that an S student has, it is common to talk about a 26% 
reduction in the chance of becoming an expert, as was done in the DVT example in 
the introduction. This again is an intuitive way of presenting the results with impact. 

If the odds ratio test gives a significant result for S compared to L, will the test also 
be significant for L compared to S?  The answer is yes: the only disadvantage is that 
the point estimates less than 100% are harder to describe in words, as indicated 
above. The formulas in Figure 1 show that the confidence interval would have been 
obtained from the reciprocals (1/1.83, 1/1.22) = (0.55, 0.82). So, if one of these 
confidence intervals includes 1.00 (so that the null hypothesis is accepted), then the 
other will automatically. The same situation applies for relative risk: if S compared to 
L is significant, then L compared to S will be significant. The choice of whether to 
discuss condition1 to condition2 or vice versa is therefore a choice between 
interpreting ratios greater or less than one.  

Another important question is: if a test of the relative risk (or odds ratio) shows a 
significant difference in the chances that an event E happens, would these tests show 
significant differences in the chances that the event not-E happens? In our example, 
both the relative risk and odds ratios show S students have more chance of becoming 
expert than L students. Is it also the case that there is a significant difference in the 
chance of S students, compared with L students, not becoming an expert on their next 
test? Note that in this case, risk is a good term because not becoming an expert is a 
perceived harm. For the odds ratio, this result is true – a significant result for event E 
implies a significant result for event non-E. This is an advantage of the odds ratio 
analysis. This situation, however, does not automatically follow for relative risk 
analysis. For example, the relative difference between risks of 1% and 2% for event E 
is much larger than the relative difference for risks of 99% and 98% for event non-E. 

ESTIMATES OF RISK IN THE LONGITUDINAL DATA 
In this section, we apply the techniques described above to questions of hierarchy 
(which misconceptions are better to have), and persistence (are some misconceptions 
likely to trap students more than others), and consider some of these questions by 
comparing students in primary school (Years 4 – 6) with secondary school students 
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(Years 7 – 10). As noted above, Steinle (2004) presents an analysis where 
confounding variables related to the sampling are treated carefully. The results 
presented here are in agreement with those from more careful analyses and therefore 
summarise some of the major results of the refined data analysis.  

Hierarchy: which misconceptions are best to have? 
The preceding analysis demonstrated that a student in code S is more likely to 
become an expert (A1) by the next test than a student in code L. The 95% confidence 
intervals of both relative risks (RR) and odds ratios (OR) determined in Figure 1 are 
provided graphically in Figure 2 (see the lowest two rows). Confidence intervals 
which are larger than 1.00 indicate a significant difference with the condition first 
listed having the larger result. So, it is clear being in L is worse than being in S, but 
which is the best code to have: S or U or A?  

The intermediate rows of Figure 2 show the confidence intervals for both measures 
(RR and OR) for a comparison of code U with code S. The RR indicates that a U 
student is between 1.2 and 1.6 times more likely than an S student to be an expert on 
the next test. (Typically, students who answer the test inconsistently and hence are 
not classified by the test, belong to the group U). The top two rows in Figure 2 show 
that in turn, students in code A are more likely than those in code U to be experts on 
the next test. This is to be expected, since the numerically largest group in code A is 
in fact the experts (A1). Note that the confidence interval for OR in row 2 is off the 
graph to the right (it is between 7.8 and 10.9).  

Together these results show that the hierarchy of these four codes is (highest to 
lowest) A, U, S, then L. It is best to be an expert or near expert (i.e. in A), then it is 
best to be undecided (U), then to have a shorter-is-larger (S) misconception and worst 
to have a longer-is-larger (L) misconception. 

0.00 0.50 1.00 1.50 2.00 2.50 3.00

OR to A1 (S,L)
RR to A1 (S,L)

OR to A1 (U,S)
RR to A1 (U,S)

OR to A1 (A,U)
RR to A1 (A,U)

 

Figure 2: Confidence intervals for RR and OR analyses of the movement to expertise 
from various codes. (Note. Row 2 is off the scale to the right, so not shown)  
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Persistence: do some misconceptions keep students longer than others?  
Steinle (2004) examined various measures of persistence – how often students retest 
in the same code on their next test. The basic finding was that 89% of A1 students 
retest as A1 at the next test (i.e., persist in A1), compared to 44% of L students 
persisting in L, 38% of S students persisting in S and 29% of U students persisting in 
U. Note that persisting in A1 is desirable, while persisting in other codes is not. 
Closer analysis showed interesting variations between older and younger students, 
some of which are summarised graphically in Figure 3. 

The top two rows of Figure 3 show that, as both confidence intervals include 1.00, 
there is not a significant difference in the persistence in A1 by students in Secondary 
school compared with students in primary school. The next two rows are to the left of 
1.00 indicating that there is a significant difference and it is the younger L students 
who have higher levels of persistence than the older L students. Rows 5 and 6 
indicate that the opposite result holds true for the S students. In particular, row 5 
indicates that older S students are approximately 1.5 times more likely to persist in S 
than the younger S students. The last two rows indicate that there is no significant 
difference between older and younger U students in their persistence in U. 

0.00 0.50 1.00 1.50 2.00 2.50
OR stay U(Sec,Prim)
RR stay U(Sec,Prim)

OR stay S(Sec,Prim)
RR stay S(Sec,Prim)

OR stay L(Sec,Prim)
RR stay L(Sec,Prim)

OR stay A1(Sec,Prim)
RR stay A1 (Sec,Prim)

 

Figure 3: Confidence intervals for RR and OR analyses of the persistence in various 
codes between students in Secondary and Primary schools 

CONCLUSION 
The main aim of this paper has been to explore the application of techniques of 
relative risk and odds ratio analysis to our educational data. Reporting relative risk 
(or reduced relative risk) is very common in the popular press as well as in the 
scientific literature in other fields, and so it seems worthwhile investigating it for our 
context. There are several advantages, which relate to the ease of interpreting the 
change in risk and the way in which it provides an alternative presentation of results 
in possibly a more memorable form.  Contrast these two statements: An S student has 
an extra 30% to 40% chance of becoming an expert, compared with an L student, 
with, The rate that S students become experts (27%) is 7% more than the rate of L 



Steinle & Stacey 

 

4-224 PME29 — 2005 

students becoming experts (20%). The difficulty of describing the last absolute, rather 
than relative, result highlights the inadequacy of ordinary language in distinguishing 
absolute and relative change, especially when it is a change in rate or percentage that 
is being discussed. Analysing relative risk approach has advantages here, along with 
providing confidence intervals.  

We expect that some members of the mathematics education community will be 
uncomfortable when we draw upon the medical context for research methods, even to 
analyse results. It is inherent in applying these concepts, to take an undesirable 
outcome (such as a disease or even death) as an implied metaphor for mathematical 
error or misunderstanding. When using any metaphor, different aspects of the 
metaphor will be carried across to the target situation by different people. Our 
position is that we can focus on the positives, as mathematical error as something to 
be overcome by joint effort of student and teacher. Other people may feel some 
discomfort in the use of techniques from medical research because of concerns about 
the way in which medical research has been simplistically held up as the “gold 
standard” for educational research in debates on funding principles in the USA 
(NCTM Research Advisory Committee, 2003). We contend that choice of 
methodology or data analysis techniques should not be judged by political or social 
associations, but by scientific reasoning. On the other hand, terminology needs to be 
chosen with sensitivity to the social needs in the area of application. Analysis of odds 
ratio and relative risk seems to have much to offer, although the language with which 
they are expressed needs modification.  
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