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In the context of the overall focus of PME29 on Learners and Learning 
Environments, we have chosen the topic of pedagogical task design for this Research 
Forum. We see task design as a crucial element of the learning environment, and 
wish to explore further the role that it plays for learners. The overarching question for 
this Research Forum is: Why is task design significant? 

To make progress on this question, we raise two issues: how does the task design 
impact on student learning? How does the agenda of the researcher or teacher shape 
the task design? More specifically we ask: how does the nature of the task influence 
the activity of students? What is important for mathematics educators in designing a 
task? 

In order to work on these questions, both in the preparations for the Forum, and 
within the sessions at the conference, we have chosen to take a specific topic within 
the curriculum, that of proportional reasoning, and to invite the contributors to the 
Forum to work on designing tasks for the learning and teaching of proportion for 
pupils of around 11-12 years old. 

The contributors 
There are four groups of researchers contributing to this Forum, all of whom work on 
aspects of task design from different perspectives.  

Dirk De Bock, Wim Van Dooren and Lieven Verschaffel explore features of the use 
of words problems in a number of mathematical areas, and have focussed on the 
ability to discriminate proportional and non-proportional situations. 

Koeno Gravemeijer, Frans van Galen and Ronald Keijzer use design heuristics from 
Realistic Mathematics Education (guided reinvention through progressive 
mathematization, didactical phenomenology, and emergent modeling) in an approach 
which also draws on design research. 

Alex Friedlander and Abraham Arcavi have many years experience within the 
Compumath project, which is developing a technology-based curriculum and 
studying the effects on pupils’ learning.  

Janet Ainley and Dave Pratt have developed an approach to task design based on 
creating tasks which are purposeful for pupils within the classroom environment. 

We hope that our understanding of task design will be enhanced by making explicit 
reflections on these differing perspectives in the context of specific examples of tasks 
and their use by pupils. 
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The design brief for the contributors 
Each of the teams of contributors was asked to design a task which focussed on 
proportional reasoning. The task had be suitable for pupils aged about 11-12 years, 
and it also had to be a ‘stand alone’ task, which could be tackled within one lesson. 
This condition was a significant constraint for some of the contributors, who would 
normally design tasks as part of a sequence. Contributors were asked to prepare their 
task in a form that could be presented to pupils, and were also asked to provide 
teachers’ notes. 

Each of the tasks has been trialled with pairs of pupils and the papers by each of the 
contributing teams which follow this introduction draw on this data to illustrate the 
discussion of the principles which underpinned their task designs. 

Dirk, Wim and Lieven’s task 
This task focuses on similarities and differences in a set of word problems, some of 
which require proportional reasoning, while others have a similar format, but are not, 
in fact, proportional problems. 

Yesterday, Mrs. Jones made some word problems to use in the math lessons. But they got 
all mixed up! Can you help Mrs. Jones to put some order in the word problems? Look at 
the problems very carefully and try to make groups of problems that belong together.  

A Ellen and Kim are running around a track. They run equally fast but Ellen started 
later. When Ellen has run 5 rounds, Kim has run 15 rounds. When Ellen has run 30 
rounds, how many has Kim run? 

B Mama put 3 towels on the clothesline. After 12 hours they were dry. The neighbour 
put 6 towels on the clothesline. How long did it take them to dry? 

C Mama buys 2 trays of apples. She then has 8 apples.Grandma buys 10 trays of 
apples. How many apples does she have? 

D John runs a bakery. He uses 10 kg of flour to make 13 kg of bread. How much 
bread can he make if he uses 23 kg of flour? 

E The locomotive of a train is 12 m long. If there are 4 carriages connected to the 
locomotive, the train is 52 m long. If there were 8 carriages connected to the 
locomotive, how long would the train be? 

F Today, Bert becomes 2 years old and Lies becomes 6 years old. When Bert is 12 
years old, how old will Lies be? 

G A group of 5 musicians plays a piece of music in 10 minutes. Another group of 35 
musicians will play the same piece. How long will it take this group to play it? 

H Yesterday, a boat arrived at the port of Rotterdam, containing 326 “Nissan Patrol” 
cars. The total weight of these cars was 521 tons. Tomorrow, a new boat will arrive, 
containing 732 “Nissan Patrol” cars. What will be the total weight of these cars? 
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I In the hallway of our school, 2 tables stand in a line. 10 chairs fit around them. Now 
the teacher puts 6 tables in a line. How many chairs fit around these tables? 

 

 
 
 

J In the shop, 4 packs of pencils cost 8 euro. The teacher wants to buy a pack for 
 every pupil. He needs 24 packs. How much must he pay? 
Now answer the following questions: 

• Write here the different groups of problems. (Use the letters on the sheets) 
• Why did you make the groups in that way?  
• Can you think of a different way to put the problems in groups? Explain that as well.  

Koeno, Frans and Ronald’s task 
This task is based around the story of Monica and Kim making a cycle trip from 
Corby to Cambridge. Various resources such as a map of the route, photographs and 
background information (the reason for the trip, the weather conditions) are provided. 

After cycling for 1 hour 30 minutes, the girls reach a village called Catworth where there is 
a signpost showing 18 miles from Corby and 30 miles to Cambridge. “Okay”, Monica says, 
“this is going well.” 
1. Could you tell why she might say this?  
2. How much time has it taken them to get to Catworth? And what is the distance they 

have covered? 
So what can you say about the speed of Monica and Kim? You can use the table to 
judge their speed. 

  

 

 

3. In the table, the speeds of various kinds of cyclist are given. However, if you want to 
compare the speeds of cyclist who are not riding the same road on the same day, 
conditions might be different. 
Could you mention the things that have to be taken into account, if we were to measure 
the speed of a cyclist. 

4. After a short stop, Monica and Kim are moving on. They get on the road from Catworth 
to Cambridge, a distance of 30 miles. At about what time do you think they will arrive in 
Cambridge? 

5. Of course, you cannot be absolutely sure about how long it will take them.  
Could you mention some reasons why you cannot be sure? Still, to make a sensible 
guess, it might be helpful to know how much time she would need if she were to keep 
up the same speed. 

6. How much time would the ride to Cambridge take if they were to keep up the same 
average speed as before? 

Cycling at a slow speed:   8 miles per hour 
Cycling at a normal speed:  12 miles per hour 
Cycling at a fast speed:  18 miles per hour 
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Alex and Abraham’s task 
This task is based around the practical activity of folding a 32x32 square piece of 
paper, as shown below. There are then a series of questions to address, some of which 
use a spreadsheet. In the pupils’ materials some guidance for using the spreadsheet is 
included, which has been omitted here. 

 
 

 
2. Describe some of the mathematical patterns you notice as you fold the shapes. 
3. Predict: What is the pattern of change in the perimeter, as you fold the shapes? 
4.a. Write on the drawings the dimensions and the perimeter of the first four shapes in 

the sequence. 
   b. Collect your data in a spreadsheet table that shows the dimensions and the 

perimeter of the first ten shapes in the sequence. 
5. Draw a graph to show the perimeter of the first ten squares and rectangles in the 

sequence. 
6. Look for patterns that describe the change in the perimeter, as the square is 

folded. Explain the connection between your patterns and the folding shapes. 
7.a. The teacher asked: By how many length units does the perimeter get shorter at 

each folding? Daniel replied: At each folding the perimeter gets shortened by the 
same length. Do you agree with Daniel? 

   b. Collect data that may help you to answer the teacher’s question. 
   c. Do you see any patterns in the collected data? Explain the connection between 

your patterns and the folding shapes. 
   d. Did you change your initial opinion about Daniel’s answer? Explain why you did or 

did not. 
8.a. The teacher asked: By what ration does the perimeter get smaller at each folding? 

Daniel answered: At each folding the perimeter of the new shape is half the 
perimeter of the previous one. Do you agree with Daniel? 

 (b, c and d as for question 7) 
9.a. Find pairs of shapes that have a perimeter ratio of one half. 
   b. Give a “rule of thumb” for finding such pairs. 
   c. Convince a fried why your rule always works. 

Janet and Dave’s task 
For this task pupils have measuring tapes, a spreadsheet. Each group also has a 
different item of dolls’ house furniture. 

Children in a primary school want to make a ‘dolls’ house classroom’. Use the piece of 
furniture you have been given to work out what size they should make some other 
objects for their classroom. 
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DIFFERENT PERSPECTIVES ON TASK DESIGN 

The four tasks presented here offer significant differences in the kind of activity that 
pupils may be engaged in when working on them, but they also arise from different 
approaches to task design. These are explored and elaborated within the individual 
papers, but we also draw attention here to one issue which may be discussed within 
the Forum sessions: the role of the teacher. 

Gravemeijer, van Galen and Keijzer emphasise the central role which they see the 
teacher as playing when a class is working on the task in guiding discussion to focus 
on mathematical issues and the development of tools to support proportional 
reasoning. De Bock, Van Dooren and Verschaffel have designed a task which it 
appears pupils may work on independently, but they also acknowledge the potential 
role of the teacher in encouraging whole class discussion around the task. Friedlander 
and Arcavi have constructed a task made up of a sequence of questions, which 
balances structured questions with more open invitations to make conjectures. Some 
of the questions are based on hypothetical conversations between the teacher and a 
pupil, and clearly offer support for pupils to work independently, or for an 
inexperienced teacher to use the materials. Ainley and Pratt’s task is stated very 
briefly. There is clearly a crucial role for the teacher, who would need an 
understanding of the approach, in leading discussion to explore and develop the task, 
but the authors also contrast the activity of pupils who need to rely on continuing 
support from the teacher, and those for whom the task itself determines the direction 
of their activity. 

 

 

NOT EVERYTHING IS PROPORTIONAL: TASK DESIGN AND 
SMALL-SCALE EXPERIMENT 

Dirk De Bock 1 2, Wim Van Dooren 2 3 and Lieven Verschaffel 2 
1 European Institute of Higher Education Brussels (EHSAL), Belgium 

2 Center for Instructional Psychology and Technology, University of Leuven 
3 Research assistant of the Fund for Scientific Research (F.W.O.) – Flanders 

INTRODUCTION 
Proportional (or linear) reasoning is a major tool for human beings in many cultures 
to interpret real world phenomena (Post, Behr, & Lesh, 1988; Spinillo & Bryant, 
1999), even when the phenomena are not linear ‘stricto sensu’. Therefore, not 
surprisingly, proportional reasoning constitutes one of the major topics in school 
mathematics from the lower grades of the elementary school to the lower grades of 
secondary school. From Grades 2 and 3 onwards children learn to multiply and divide 
and to apply these operations in simple word problems like “1 pineapple costs 2 euro. 
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How much do 4 pineapples cost?”, which are predecessors of proportional reasoning 
tasks. During Grade 4 and afterwards, proportional reasoning skills are further 
developed. From this age on, students are frequently confronted with proportionality 
problems, most often stated in a so-called missing-value structure such as: “12 eggs 
cost 2 euro. What is the price of 60 eggs?”, and are trained to set up and solve the 
corresponding proportion 12/60 = 2/x for the unknown value of x. However, in the 
last decade, mathematics educators formulated two main deficiencies of this current 
school practice for teaching and learning proportionality. 

First, because almost all proportional tasks students encounter at school are 
formulated in a missing-value format – and at the same time, non-proportional tasks 
are very rarely stated in this format – students tend to develop a strong association 
between this problem format on the one hand and proportionality as a mathematical 
model on the other hand. Recently, De Bock (2002) provided empirical evidence for 
that claim. In a series of exploratory studies in one specific mathematical domain, 
namely, problems about the relations between the linear measurements and the area 
or volume of similarly enlarged or reduced geometrical figures (such as the dolls’ 
house context in Janet and Dave’s task), it was shown that 12-16-year old students 
have an almost irresistible tendency to improperly apply direct proportional reasoning 
to length-area or length-volume relationships, especially when the problems are 
stated in a missing-value format. Changing the problem formulation by transforming 
the problems into a “comparison format” proved to be a substantial help for many 
students to overcome the trap of inappropriate proportional reasoning in this domain. 
This study – together with analogous findings by other researchers – suggests that 
teachers should at least bring more variation in proportionality tasks and especially 
take care that these tasks are not always formulated in a missing-value format. 

Second, as reflected in the Standards 2000 (National Council of Teachers of 
Mathematics, 2000, p. 217), “facility with proportionality involves much more than 
setting two ratios equal and solving for the missing term. It involves recognising 
quantities that are related proportionally and using numbers, tables, graphs, and 
equations to think about the quantities and their relationship”. In the same respect, 
Schwartz and Moore (1998, p. 475) explicitly stated that “when proportions are 
placed in an empirical context, people do not only need to consider at least four 
distinct quantities and their potential relationships, they also need to decide which 
quantitative relationships are relevant.” The example they gave relates to mixing 1 
oz. of orange concentrate and 2 oz. of water, compared to mixing 2 oz. of orange 
concentrate and 4 oz. of water. If the question is which mixture will taste stronger, 
the ratios should indeed be compared, but if the question is which mixture will make 
more, a ratio comparison is of course inappropriate. The claim for the unwarranted 
application of proportionality was made even stronger by Cramer, Post and Currier 
(1993, p. 160). They argued that “we cannot define a proportional reasoner simply as 
one who knows how to set up and solve a proportion”.  
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For the design of a task, we focussed on students’ ability to discriminate between 
proportional and (different types of) non-proportional situations.  

DESIGN OF A TASK 
Inspiration for the task design was found in a recent study by Van Dooren, De Bock, 
Hessels, Janssens and Verschaffel (2005). These researchers studied how students’ 
tendency to overgeneralise the proportional model develops in relation to their 
learning experiences and their emerging reasoning skills. For that purpose, they 
presented 1062 students from Grade 2 to 8 with a test containing 8 word problems: 2 
proportional ones (for which a proportional solution was correct) and 6 non-
proportional ones (2 additive, 2 affine and 2 constant). The following are examples of 
the non-proportional items: 

• Additive problem: “Ellen and Kim are running around a track. They run equally 
fast but Ellen started later. When Ellen has run 5 rounds, Kim has run 15 round. 
When Ellen has run 30 rounds, how many has Kim run?” (correct answer: 40, 
proportional answer: 90) 

• Affine problem: “The locomotive of a train is 12 m long. If there are 4 carriages 
connected to the locomotive, the train is 52 m long. How long is the train if 
there are 8 carriages connected to the locomotive?” (correct answer: 92 m, 
proportional answer: 104 m) 

• Constant problem: “Mama put 3 towels on the clothesline. After 12 hours they 
were dry. Grandma put 6 towels on the clothesline. How long did it take them 
to get dry?” (correct answer: 12 hours, proportional answer: 24 hours) 

The results showed that many 2nd graders already could solve simple variants of 
proportional word problems, but the firm skills to conduct proportional calculations 
(i.e. to solve proportional word problems) were acquired between 3rd and 6th grade. 
With respect to the non-proportional items, more than one third of all answers 
contained an erroneous application of the proportional model. The tendency to over 
rely on proportionality developed in parallel with the ability to solve proportional 
word problems: it was noticeable already in 2nd grade, but increased considerably in 
subsequent years, with a peak in 5th grade where more than half of the answers to 
non-proportional items were proportional errors. After this peak, the number of 
proportional errors gradually decreased, but they did not disappear completely: in 8th 
grade still more than one fifth of the answers contained a proportional error. There 
were some remarkable differences according to the mathematical model underlying 
the non-proportional problems: One would expect that the word problems with a 
“constant” model (like the “clothesline” problem mentioned above) were the easiest 
ones in the test (since there was no need for calculations), but these problems got the 
highest rate of proportional errors (up to 80% in 5th grade). For some word problems 
(like the additive “runners” item), the performances even decreased (with 30%) from 
2nd to 6th grade. The authors concluded that, throughout primary school, students not 
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only acquire skills to calculate proportions and solve proportional problems. The 
proportionality scheme becomes so prominent in students’ minds that they also begin 
to transfer it to settings where it is neither relevant nor valid.  

For the task that we designed, we worked with the same kind of word problems (4 
proportional ones, labelled with the letters C, D, H and J) and 6 non-proportional 
ones, namely 2 additive, 2 affine and 2 constant, respectively labelled with the letters 
A and F, E and I, and B and G). The exact formulation of the different problems is 
given in the introductory section of this research forum. To avoid confusion, we 
didn’t include problems for which the proportional model gives a more or less good 
approximation, but one can discuss its accuracy on the basis of realistic constraints 
(such as it is the case in the task of Koeno, Frans and Ronald). Although all ten 
problems in our task have an exact numerical answer, the task that we gave the 
students was not to calculate a numerical answer, but to group the problems in at least 
two different categories and to explain the motivation for their grouping. To allow at 
least one other way of grouping than the one based on the underlying mathematical 
model, two of the proportional problems (D and H) were given with a non-integer 
internal ration, while all other problems were based on easy, natural ratios.  

To clearly explain and illustrate the nature of the task (and, at the same time, to show 
its open-ended character), we first confronted the participants with 13 cardboard 
figures (stars, triangles and circles) in three different colours (grey, black and white). 
Two fictitious students, Tommy and Ann, were asked to help their teacher, Mrs. 
Jones, to classify these figures. Tommy suggested grouping all figures with the same 
shape (i.e., a grouping based on a “mathematical” criterion), while Ann proposed to 
bring together the figures with the same colour (i.e. a grouping based on a “non-
mathematical” criterion). Then, it was stated that Mrs. Jones made a series of 10 
word problems to use in the math lessons (labelled with the letters A to J), but again, 
they got all mixed up. Students were asked to do as Tommy and Ann had done and to 
help Mrs. Jones to classify the word problems. More concretely, they were invited to 
“look very carefully at the problems and to try to make groups of problems that 
belong together”. After that, they had to answer the following questions:  

• Why did you make the groups in that way?  
• Ann and Tommy did something different when they made groups of the figures. 

Can you think of a different way to put the problems in groups? Explain that as 
well.  

A SMALL-SCALE EXPERIMENT 
The task was given to four students (aged 11 years): Alice, Freya, Hans and Jonas. 
The researcher first introduced the task and checked pupils’ understanding of the 
instructions. Then, for about 20 minutes, the children were allowed to read the 
problems and sort them into groups. As each finished, the researcher directed the 
pupils to record their reasoning, and then to find other groupings. 
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Alice worked for about 14 minutes to find a first grouping in three categories: group 
1 (A and F, the two additive problems) because “they sound similar”, group 2 (B and 
G, the two constant problems) because “it is all like ‘how long will it take this person 
to do this?’ and stuff like that”, and group 3 with the six remaining problems (the 
four proportional and the two affine problems). Alice’s grouping is based on the 
underlying mathematical model of the problem, although she was unable to articulate 
this criterion. In her grouping, she made no distinction between the “pure” 
proportional problems and the affine problems (which, in fact, ask for a combination 
of multiplication and addition). After the researcher insisted, Alice came with a 
second (rather superficial) grouping into two categories (discriminating the problems 
with “how” and the problems with “what” in the problem statement). 

Freya needed about 14 minutes to find a first grouping into three categories: group 1 
(H), group 2 (B, C, D, E, F, I and J) and group 3 (A and G). She explained her 
criterion as follows: “I made the groups due to the operation you have to do to work 
out the answer. E.g. in group 2, you have to do multiplication to find the answer, and 
in group 3, you have to divide to find the answer”. Clearly, Freya’s actual grouping 
was not based on the criterion she formulated. Being invited by the researcher to find 
other ways of grouping, Freya proposed a second grouping in three categories: group 
1 (A, B, C and F), group 2 (D, E, G, I and J) and group 3 (H) and gave the 
explanation “I sorted my groups in this way by how easy, moderate or hard the 
questions were to work out”. 

Hans who worked for about 19 minutes before coming up with a first grouping also 
proposed three categories: group 1 (C, D and I), group 2 (A, B and E) and group 3 (F, 
G, H and I), explaining the motivation for his grouping as follows: “because group 1 
is ‘times question’, group 2 is questions you divide by and group 3 are add and 
multiply”. We cannot see any rationale in Hans’ grouping, nor a link between his 
actual grouping and the explanation he gave for it. After the researcher directed Hans 
to find a second set of groupings, Hans came with a categorization in four distinct 
groups: group 1 (A, E and H), group 2 (B and C), group 3 (I and J) and group 4 (D, F 
and G), but, once more, his justification remained unclear for the researcher.  

John, who worked for about 17 minutes, found a classification into two different 
groups: group 1 (C, E, F, G, H and J) and group 2 (A, B, D and I). He rather 
superficially explained the motivation for his grouping as follows: “I made these 
groups because I think it was the most common way and I managed to make them 
into two groups without any left over”. After directed to find a second grouping, John 
proposed four categories: group 1 (E), group 2 (A, C, I and J), group 3 (B, G and F) 
and group 4 (D and H). He now explained: “I put them into groups of weight, time 
and number (respectively groups 2, 3 and 5) and I could not find a group for the ‘train 
and locomotive’ one (problem E)” (which is not in line with John’s actual grouping).   
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CONCLUDING REMARKS 
The scale of the experiment was very small, so one can hardly infer definite 
conclusions from it. We observed that the four participating students showed great 
difficulties in making and motivating classifications of the ten word problems. They 
mainly looked for linguistic or other superficial differences between the problem 
formulations and not for an underlying mathematical structure. Possible explanations 
refer to the nature of the task and the type of problems that we used.  

With respect to the task, one can argue that, these students were unfamiliar with 
classification tasks. Typically, students are expected to “solve” mathematical 
problems, i.e., to give numerical answers (most often based on the numbers given in 
the problem formulation), and not to classify problems. Moreover, in retrospect, we 
think the task was also rather difficult or too “abstract” for 11-year old students. A 
possible alternative approach meeting more or less the same goals would have been 
to ask students to combine different problem statements with correct and incorrect 
(proportional or non-proportional) solution strategies provided by the teacher or 
experimenter. 

With respect to the problems we used, one can argue, in line with Ainley (2000) and 
several other authors, that the “word-problem” format is inadequate or insufficient to 
meaningfully contextualise mathematics in the mathematics classroom. Several 
authors (e.g. Reusser & Stebler, 1997) showed the beneficial effect of meaningful, 
authentic tasks also for problems where students inappropriately tend to apply linear 
methods. In this respect, Van Dooren, De Bock, Janssens and Verschaffel (2005) 
recently showed that students’ problem-solving behavior strongly improves when 
non-linear problems are embedded in a meaningful, authentic context and students 
are invited to perform an authentic action with concrete materials (i.e. when students 
are invited to cover a dollhouse floor with “real” tiles instead of calculating this 
number of tiles in a word-problem context).  

Notwithstanding these limitations and shortcomings and the rather disappointing 
results of our small-scale experiment, the various reactions of the four participating 
students also suggest that that this type of task design can be a rich starting point for 
significant classroom discussions on mathematical modelling: which operation is 
needed in a given problem situation?  
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DESIGNING INSTRUCTION ON PROPORTIONAL REASONING 
WITH AVERAGE SPEED 

Koeno Gravemeijer, Frans van Galen and Ronald Keijzer 

Freudenthal Institute, Utrecht, The Netherlands 
 

Instructional design in Realistic Mathematics Education aims at both fostering 
student reasoning, and at putting instructional tasks in a perspective of long-term 
learning processes. We try to illustrate this with a task on reasoning about average 
speed.  

TASK DESIGN 
There is a long history of instructional design, within which instructional tasks were 
designed with a primary focus on behavioral objectives. Central instructional design 
strategies were task analysis and the construction of learning hierarchies. Lessons 
would be planned on the basis of well-defined prerequisites and precise lesson goals. 
Teachers were expected to evaluate each lesson by assessing whether those goals 
were reached at the end of the lesson.  

Today this type of instruction is criticized as being ‘instructionist’ or as reflecting a 
‘transmission model’ of teaching. In contrast to teachers instructing, the emphasis is 
now on students constructing. Following Cobb (1994) we may argue that 
constructivism—as an epistemology—does not have direct implications for teaching, 
as “the constructivist maxim about learning may be taken to imply that students 
construct their ways of knowing in even the most authoritarian of instructional 
situations” (Cobb, 1994, 4). Still, constructivism may inspire one to consider how we 
can influence the construction processes of the students. One of the results of such 
considerations is a shift in attention from behavioral objectives to the mental 
activities of the students. In this respect, we may refer to Simon’s (1995) notion of a 
hypothetical learning trajectory. We may notice the flexibility and the situatedness of 
this concept. A teacher will design a hypothetical learning trajectory for the students 
in his or her classroom, given where the students are at this moment, while taking 
into account goals and teaching practices. Moreover the teacher will adjust the 
hypothetical learning trajectory on the basis of his or her interpretation of how the 
students act and reason. This puts the notion of task design in a different perspective. 
What the task entails is not fixed, as tasks are interactively constituted in the 
classroom. When we expect teachers to orient themselves on the mental activities of 
the students, and consider those in relation to the intended end goals, we might argue 
that teachers should be supported in making these considerations. 

In the Netherlands we constructed an instructional design strategy, which is aimed at 
developing prototypical instructional sequences and local instructional theories that 
are to offer teachers a framework of reference for constructing their own hypothetical 
learning trajectories. This strategy is based on what is called design research and on 
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the use of three design heuristics from realistic mathematics education (RME), 
namely, guided reinvention through progressive mathematization, didactical 
phenomenology, and emergent modeling. In the following paragraphs we explain this 
in more detail. 

Design research can be thought of as a combination of design and research aimed at 
developing both a sequence of instructional activities and a local instructional theory. 
A classroom teaching experiment forms the core element of this type of research 
(Gravemeijer, 1998). This consists of an interactive and cumulative process of 
designing and revising instructional activities. To this end, the designer conducts 
anticipatory thought experiments by envisioning both how proposed instructional 
activities might be realized in the classroom, and what students might learn as they 
engage in them. These instructional activities are tried out in the classroom. Then, 
new instructional activities are designed or redesigned on the basis of analyses of the 
actual learning processes. At the end of a cumulative process of designing and 
revising instructional activities, an improved version of the instructional sequence is 
constructed. After some design experiments, the rationale for the instructional 
sequence eventually acquires the status of a local instructional theory. 

The other core element of our instructional design strategy is the use of the three 
design heuristics that characterize the domain-specific instruction theory of RME. 
This educational theory originated in the Netherlands inspired by Freudenthal’s idea 
of mathematics as an activity of organizing or mathematizing. The first heuristic has 
to do with Freudenthal’s (1973) idea that students should be given the opportunity to 
experience a process similar to the process by which mathematics was invented, and 
is called guided reinvention through progressive mathematization. According to this 
heuristic, the designer takes both the history of mathematics and the students’ 
informal solution procedures as sources of inspiration (Streefland, 1990), and tries to 
formulate a provisional, potentially revisable learning route along which a process of 
collective reinvention (or progressive mathematization) might be supported.  

The second heuristic concerns the phenomenology of mathematics, and asks for a 
didactical phenomenological analysis. The developer looks at present-day 
applications in order to find the phenomena and tasks that may create the need for 
students to develop the mathematical concept or tool we are aiming for. The goal of a 
phenomenological investigation is, in short, to find problem situations that may give 
rise to situation-specific solutions that can be taken as the basis for vertical 
mathematization. 

In the instructional design we are reporting in this paper, the focus is on the emergent 
modeling heuristic (Gravemijer, 1999). Models in RME are related to the activity of 
modeling. This may involve making drawings, diagrams, or tables, or it can involve 
developing informal notations or using conventional mathematical notations. It is 
important that these notations have the context situation of the problem as starting 
point and are developed by the students as they attempt to come to grips with the 
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problem and find ways to solve it. The conjecture is that the emergence of the model 
is reflexively related to the construction of some new mathematical reality by the 
students, which may be labeled as more formal mathematics. Initially, the models 
refer to concrete or paradigmatic situations, which are experientially real for the 
students, and are therefore to be understood as context-specific models. On this level, 
the model should allow for informal strategies that correspond with situated solution 
strategies. As the student gathers more experience with similar problems, the model 
gets a more object-like character, becoming gradually more important as a base for 
mathematical reasoning than as a way of representing a contextual problem. The 
model of informal mathematical activity becomes a model for more formal 
mathematical reasoning.  

THE DESIGN TASK: (UN)JUSTIFIED PROPORTIONAL REASONING  
In the context of the research forum, we were asked to design a single task on 
proportional reasoning, while also addressing the issue of unjustified proportional 
reasoning. We chose a task on speed. Reasoning about speed in everyday-life 
situations asks students to coordinate pure proportional reasoning with realistic 
considerations on what may distort the proportionality in actual reality. The task we 
designed was a problem about two girls who make a bicycle trip. After 1 1/2 hour 
they pass a signpost telling them that they have already cycled a distance of 30 
kilometers, and they still have 45 kilometers to go. In the story one of them 
comments: ‘This is going well’, and the question the students have to answer is why 
she would say so. There were five more questions, but, in a sense, the first one covers 
them all; the other questions discuss the relevant points more explicitly. The remark 
‘This is going well’ is expected to raise a discussion about questions like: 

• Is 30 kilometers in one hour and a half an achievement one would be happy 
with? What would have been their speed, in terms of kilometers per hour, and 
would that be fast, or slow? 

• The girl might be happy because she sees that they have done a big part of their 
trip already. So what is the relation between the 30 kilometers and the distance 
the girls still have to cycle? Would it be possible to estimate how much time 
they need for the rest of their trip? 

• Will a calculation lead to an exact prediction, or are there other factors to take 
into account? 

Note that the numbers were chosen carefully as to make easy computations. The task 
was tested both in the Netherlands and in the UK; the English version was about a 
trip from Corby to Cambridge, with 18 miles done and 30 miles still to go. Note also 
that there are various ways to calculate the time needed for the second part of the trip. 
Students can compare 30 km and 45 km and conclude that the second part will take 1 
1/2 time as long, they might see that 30 km in 1 1/2 hour gives 10 km in half an hour 
and reason from this, or they might calculate the average speed in km per hour.  

The student activities that we anticipate are threefold: 
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• The students will (start to) reason proportionally in the context of speed. 
• The students’ explanations will allow the teacher to start a discussion about how 

to record proportional reasoning on paper. This could be a lead in to a 
discussion about the use of models like the double number line or the ratio 
table. 

• The students will realize that proportional reasoning does not predict the arrival 
time in a precise manner, but do realize that calculations are a useful tool in 
making estimations.  

Models for proportional reasoning, and therefore also for reasoning with average 
speed, are the double number line and the ratio table. They both offer a systematic 
way of writing down the relation between distance and time. On the double number 
line the position of points is meaningful, whereas the columns of the ratio table can 
be in any order. Both models can function as a tool, allowing one to break down 
complicated calculations into intermediate steps.  

         

   

 
 

time 1 1/2 h 1/2 h 2 hs 2 hs 15 min 
distance 30 km 10 km 40 km 45 km 

In our view students should be stimulated to reinvent these models; they should not 
be offered as a ready-made products. This does not mean that students are expected 
to reinvent the exact way numbers are written in rows and columns in the ratio table, 
but they should be stimulated to think about systematic forms of notations, and 
thereby learn to appreciate the ‘official’ ratio table as one of the possible forms. 

Following the emergent modeling perspective, the students’ activity with double 
number line and ratio table will be grounded initially in thinking about its contextual 
meaning. Doubling in the ratio table, for example, will be justified by thinking of 
traveling twice as long. Later the ratio table may be used for reasoning with linear 
relations. As we argued elsewhere, students may eventually start to use the ratio table 
in a semi-algorithmic manner to execute multiplications, without necessarily having 
to think of possible contextual meanings of the numbers involved (Gravemeijer, 
Boswinkel, Galen, & Heuvel-Panhuizen, 2004). 

SOME FINDINGS 
The task was tested twice, once with a small group of four students in England and 
once in a class with 10 to 12 year old students in the Netherlands. In the experiment 
in England the teacher introduces the problem by focusing heavily on exploring the 
situation and the circumstances that influence the time one needs to cycle from Corby 
to Cambridge. The situation is meaningful enough for the students to bring forward 

1/2 h                    1 1/2 h                        3 h                        2 1/4 h                        

30 km                        45 km                        60 km                        10 km                        
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many aspects that could influence the cycling time. They mention that the time to 
travel the whole distance could be influenced by the weather, the hills alongside the 
route, the breaks the girls take, etcetera. In this setting the students developed ideas 
on how much time it takes to cycle the whole tour, but the numbers they bring 
forward are mostly guesses. They agree that it should take the children at least two 
hours to ride the 30 miles from the road sign to Cambridge. Only two students 
replace their guesses about the time needed to cycle from Corby to Cambridge by 
calculations and schemes. 

The Dutch experiment also starts with an exploration of the context. As the students 
here are more familiar with a bike a means of transport, they easily bring forward 
what should be done if one undertakes a tour as mentioned in the task. When next the 
students receive the worksheet with the map and the road sign, they find little 
problem in interpreting the situation. The teacher here, like her English colleague, 
discusses one of the girls saying ‘This is going well’, when they arrive at the road 
sign. 

In the Dutch version of the task in took the children one and a half hours to cover the 
first 30 kilometer. At that point there is still 45 kilometer to go. The students 
formulate several arguments why 30 kilometer in one and a half hour is quite a 
distance for such a short time. 

The teacher frequently asks the students to explain their ideas. Therefore the 
discussion focuses more and more on mathematical arguments. One of the students 
for example claims that he cycles 3 kilometers in a quarter of an hour. He argues that 
in that speed it takes one and a half hours to cover 18 kilometers. 30 kilometer in one 
and a half hour therefore is fast cycling. 

Unlike her English colleague, the Dutch teacher at certain points redirected the 
discussion to the use of mathematical arguments. The Dutch students therefore all 
reasoned in terms of ratios to calculate the arrival time. Moreover, the arrival time is 
next discussed in terms of the context, where the students decide to add about an hour 
for breaks, flat tires and weather conditions. 

We were in the fortunate position to thus find two settings where the teachers both 
choose a different manner to guide the students. This enabled us to analyze the 
teacher’s role and to test (in this specific context) our ideas on this. We noticed that 
the Dutch students did not have any problem with putting their calculations into 
perspective. They could easily compute how much time would be needed for the next 
45 km, but it was also obvious to them that such calculations only give you a first 
approximation. In the English experiment the students were aware that one could 
only estimate the arrival time, but the setting did not stimulate them to further 
mathematize the problem. 
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CONCLUSION 
In Realistic Mathematics Education instructional design concerns series of tasks, 
embedded in a local instruction theory. This local instruction theory enables the 
teacher to adapt the task to the abilities and interests of the students, while 
maintaining the original end goals. The task we designed should be viewed from this 
perspective. In an educational setting it would not be an isolated task, but part of a 
longer learning route. Goals of such a learning route would be: 

• Students learn to reason proportionally. 
• They develop tools for proportional reasoning, tools that can also be used for 

calculations, like the double number line and the ratio table. 
• At the same time, however, they learn to see the relativity of their calculations; 

when making predictions other factors in the context may have to be taken into 
consideration.  

When our task was tested, the emphasis was on the third goal. Within a longer 
learning route, however, the challenge would be more to help students develop the 
right tools for proportional reasoning. Among other things, these tools would help 
children to discriminate between situations where proportional reasoning is, and is 
not justified. RME describes this process of developing mathematical tools as 
emergent modeling. 

In the test situations there was no discussion, or only a limited discussion about tools 
like the double number line and the ratio table. Within design cycles of testing and 
revising this could lead to the decision to make certain changes, in this case, for 
example, to change the numbers in such a way that students would not be able to do 
the calculations in their heads. But even when an activity, after some revisions, has 
found its definite form, success cannot be guaranteed, of course. This underscores the 
central role of the teacher in supporting the learning process. The teacher should be 
capable to make changes, like asking certain questions, focusing the discussion on 
certain topics, and so on. An essential condition to establish this is, that the teacher 
knows and understands the local instruction theory behind the activities. 

 

FOLDING PERIMETERS: 
DESIGNER CONCERNS AND STUDENT SOLUTIONS 

Alex Friedlander and Abraham Arcavi 

Weizmann Institute of Science, Israel 

In this paper we first describe some of the concerns and approaches that have 
influenced the process of designing the Folding Perimeters activity. Then, we will 
present several selected episodes from the actual solutions produced by two pairs of 
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12-year-old, higher ability students, in view of the design concerns that were 
encountered in the development of this activity. 

TASK CHARACTERISTICS 
Folding Perimeters was designed as the last and most advanced activity in a learning 
series on ratio and proportion. This section describes the main characteristics of the 
activity, and some considerations that led to its present design. 

 
 
 

Context. In this activity, students 
investigate the perimeters of an 
alternating sequence of squares and 
rectangles, during a process of repeated 
folding-in-two (Fig. 1). The use of 
context enables a constructivist path of  

Figure 1. Context of Folding 
Perimeters 

learning (Hershkowitz et al., 2002). When students start with a problem situation 
such as the above, they can rely on their acquaintance with its non-mathematical 
components and on their ability to observe, to experiment and to act on the situation 
itself. As indicated by Ainley and Pratt in this collection of papers, the characteristics 
of a task may also contribute to provide a sense of purpose and ownership. Moreover, 
a problem situation can also contribute to students' understanding of the need for 
constructing appropriate tools and concepts, first investigating the problem at an 
intuitive level and later on, analysing the newly formed tools and concepts in a more 
extended and mathematically formal manner. Tourniaire and Pulos (1985), in 
reviewing the research on proportional reasoning, concluded that context plays a 
crucial role in student performance and that use of a wide variety of contexts is 
needed in the teaching of this domain. In our case, we considered the context of paper 
folding to be simple and familiar, on the one hand, and to be rich in mathematical 
opportunities on the other hand. 

Mathematical content. The activity integrates various mathematical domains - for 
example, geometry (squares, rectangles, perimeters, opposite sides, measurement), 
arithmetic (numerical tables, operations, difference, ratio), and algebra (Excel 
formulas and pattern generalizations). The mathematical content is stated clearly 
throughout the activity, and is one of the factors that determine the sequence of tasks. 
The first three tasks in the activity require a more geometrical and visual 
investigation, there is a task that relates to the differences between the perimeters of 
two adjacent shapes, and the last two tasks focus respectively on the perimeter ratios 
of two adjacent, and of every other shape. However, some other tasks in the activity 
are less directive with regard to content or solution strategy open. More specifically, 
these tasks require students to find any patterns of perimeter change and justify them. 
Similarly to Dirk, Wim and Lieven’s task, the patterns of change in our activity do 
not constitute a classical and straightforward application of the idea of 
proportionality, common in many textbooks. 
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Multiple representations. The presentation of mathematical concepts and operations 
in various representations is central in investigative activities (Friedlander & Tabach, 
2001a). One of our reasons for using spreadsheets as a mathematical tool is their 
ability to simultaneously support work on various representations, and to present the 
algebraic representation as an efficient and meaningful means of constructing data. In 
our activity, students are specifically required to present perimeters and perimeter 
changes in actual paper, in drawing, in numerical tables, as algebraic formulas, in bar 
diagrams, and in verbal descriptions. Some of the tasks focus on the construction and 
use of a specific representation, whereas others leave this issue open to the students. 
Figure 2 presents a numerical and graphical representation of the data and some of 
the results obtained by the observed students, regarding the alternating sequence of 
shapes in the activity. Some of the algebraic formulas used by the observed students 
will be discussed in the next section. 

 

Figure 2. Spreadsheet representation of data and results in Folding Perimeters. 
 

Task sequencing. Investigative activities (including Folding Perimeters) frequently 
follow a flow pattern that is in many ways similar to the PCAIC investigative cycle 
(pose, collect, analyze, interpret, and communicate) proposed by Kader & Perry 
(1994). This cycle is adapted from the domains of data investigation and scientific 
research, and is inductive in nature. First, specific cases are collected, organized, and 
analyzed, and then general patterns are formed and conclusions are drawn, 
interpreted and applied. 

Generalization of patterns. Many activities associated with generalization – including 
ours, assume that the process of pattern generalization is inductive and based on a 
limited number of cases. In the next step, the discovered pattern is explained and 
justified (Friedlander et al., 1989). This flow pattern is frequently used in the design 
of generalization tasks. In our activity, this sequence of tasks is applied in several 
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cycles, with regard to any patterns of perimeter change, then regarding the difference, 
and finally regarding the ratio of perimeters of two consecutive shapes. 

Level of task openness. The process of task design is based on a constant state of 
tension that exists between the design of unstructured open tasks that do not require 
that the problem posed be solved by a specific method, a certain representation or an 
implicitly given sequence of steps, as opposed to a structured approach that poses 
specific requests with regard to the variables mentioned above. The open approach 
reflects the designers' striving to develop problem solving skills, to develop creative 
mathematical thinking, to provide opportunities for students to actually experience 
investigation, and to achieve a meaningful construction of knowledge. The structured 
approach enables students to pursue a more predictable and planned agenda in the 
domains of mathematical content and the processes of problem solving. The activity 
discussed here addresses this issue by presenting a sequence of tasks of both kinds. 
Open tasks require students to identify any properties of the presented sequence of 
shapes, make predictions, and then look for patterns that describe the change in 
perimeter. Tasks that are more directive require the student to collect data for the first 
ten shapes in the sequence, organize it in a spreadsheet table, present it as a diagram, 
investigate patterns of perimeter change by considering first the difference and then 
the ratio between pairs of adjacent shapes, and of shapes placed in the sequence at a 
distance of two steps. One may argue that leading students through a sequence of 
tasks, rather than presenting only a problem situation and a "big question", decreases 
in itself the extent of freedom in student work. We suggest, "walking a fine line" 
between opening and closing a task by directing students to some extent through a 
sequence of leading questions, within an open problem situation. This approach to 
task design supports a convergence towards a meaningful progress in the students' 
solution, without curtailing their sense of ownership of the task (in the sense of 
Ainley and Pratt in this collection of papers). Such a sense of ownership stems from 
the opportunity to observe, experiment and act on a "realistic" situation, and not 
necessarily from the task's degrees of freedom. 

Verbalization. Requests for descriptions of patterns, explanations, discussions of 
another (fictitious) student's solutions and reports of results are included in this, as 
well as many other activities. These requests are the result of designers' desire to 
develop communication and documentation skills, to make students consider verbal 
descriptions as mathematical representation, and to change the stereotypic view of 
mathematics as the exclusive domain of numerical and algebraic symbols only. 

Use of spreadsheets. Our experience of students working in a spreadsheet 
environment shows that spreadsheets can serve as a powerful tool, and allow for 
some of the design heuristics proposed by Gravemeijer and his colleagues in this 
collection of papers. They support students' processes of creating emergent models 
and their "vertical mathematization" of the problem situation. The use of this 
technological tool to support and promote processes of generalization and algebraic 
thinking has been amply discussed in terms of theory and investigated empirically 
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(for design considerations in spreadsheet activities, see for example, Hershkowitz et 
al., 2002; Friedlander & Tabach, 2001b). Because of space limitations, we will only 
briefly list the following considerations that led the designers to use spreadsheets in 
this particular activity: 

• they serve as a powerful tool for data collection, organization and 
representation, 

• they provide continuous and non-judgmental feedback throughout the solution 
process, 

• they present the concept of proportion dynamically, as a sequence of constant 
ratios obtained by applying the same rule to numerous pairs of numbers or 
quantities, 

• they enable the analysis of an extended collection of data, 
• they emphasize the meta-cognitive skills of monitoring and interpreting results, 
• they promote algebraic thinking and present algebraic formulas as a useful and 

meaningful tool. 

STUDENT SOLUTIONS 
As previously mentioned, two pairs of students (referred here by the initials of their 
first names as MS and MG) were observed by one of the authors as they worked on 
the Folding Perimeter activity, during a period of about 80 minutes for each pair. For 
the purpose of this paper, we will not distinguish between the two members of a pair, 
and will refer to each pair as an entity. The students had previous experience in using 
Excel in mathematical investigations, but had not pursued the learning sequence of 
ratio and proportion that included our activity. The interviewer's interventions were 
minimal and limited to occasional requests to clarify answers or to start working on 
the next item. The latter case included dealing with "unproductive" paths of solution 
– defined by Sutherland et al. (2004) as cases of "construction of idiosyncratic 
knowledge that is at odds with intended learning", and require the teacher's 
intervention in regular classroom situations. A systematic analysis of student work, 
according to the eight designer concerns described in the previous section is not 
possible, because of the space limitation. 

In general, the students followed the prescribed sequence of tasks and solved them in 
a mathematically rich and resourceful manner. However, we will focus here on some 
differences between the observed students' solution processes and the designers' plans 
and predictions. 

Contrary to our expectations (see the comments on task sequencing and 
generalization of patterns in the previous section), both pairs reached, at the initial 
stage of predictions, generalizations that were "scheduled" by the designers to be 
reached only later on, and on the basis of the collected data. By examining their 
folded paper square and the drawing of the folding process (Fig. 1), the students 
considered visual and global aspects regarding the sides that were "lost" through 
folding, and made the following predictions: 
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MG:  It [the perimeter] gets smaller by the length of the side that gets halved. 

MS:  In my opinion it [the perimeter] will be 3/4. The vertical lines will stay 
and the horizontal lines lose one half and one half – and that's a whole 
side. [After Interviewer asks "And what happens from the second to the 
third shape?"] It comes out 4/6 because we are left with 4 out of 6 halves 
[of the longer sides of the rectangle]. 

Both pairs produced general patterns at a very early stage of the activity - MG is 
reasoning additively, by looking at differences, whereas MS is thinking 
proportionally, by considering ratios. The issue of interest for designers and/or 
researchers is that the processes of pattern generalization can follow two routes: 

• inductive generalization based on the collection and analysis of data (as 
followed by the sequence of tasks in this activity), 

• deductive generalization based on a global analysis of the problem situation, 
and on general reasoning (as followed by the two pairs of students). 

We assume that both the students' mathematical ability and task design (e.g., the 
representation used in the initial description of the problem situation) affect the 
choice of the route. 

The use of spreadsheets was also a source of unexpected developments. The observed 
students did not encounter any technical difficulties with regard to the handling of the 
tool. They read, understood, and performed the computer-related instructions, and 
were familiar with the Excel syntax for writing formulas. However, the following 
three episodes observed during the students' work indicate that the spreadsheet’s 
intrinsic properties can provide opportunities for higher-level thinking, and help both 
the student and the teacher detect and relate to conceptual difficulties. 

a) MS:  They construct the spreadsheet table for the first ten shapes (see Fig. 2). 
They write in the first line of the perimeter column (for the perimeter of 
the original square) the formula =4*B2 and in the next line (for the 
perimeter of the rectangle produced by the first folding) =2*B3+2*C3. 

"But we can't drag down [two formulas]…Then let's change this [the first 
formula] into this [the second]". They rewrite the formula for the square 
as =2*B2+2*C2 and drag it down.  

b) MG:  They write for the length of sides (see Fig. 2) a formula (pattern) 
indicating the halving of the above-situated cell, and drag it down cell by 
cell – one cell at a time, hoping that this method would produce the 
desired sequence of pairs of identical numbers. 

c) MG:  They construct the column for the difference of adjacent perimeters (see 
Fig. 2) by writing in the first line the formula =D2-D3 and dragging it 
down to the last line. As a result, the last number shows an 
uncharacteristic increment in the difference sequence (….8, 8, 4, 4, 2, 2, 
4) – a result of the difference of the last perimeter (4) and the next empty 
cell that is interpreted by Excel as zero. They notice the outcome, retype 
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the same pattern (=D3-D4) in the second line and again drag it down to the 
last line –obtaining of course the same results as before. 

In episode (a), work on Excel provided an opportunity to perform a higher-level 
analysis for students without any background in formal algebra: they compared two 
algebraic expressions and identified one (4B) as a particular case of the other 
(2B+2C, when B=C). However, episodes (b) and (c) showed that the observed pair of 
students thought that changing the place or the physical handling of a pattern 
expressed as an algebraic formula will change its essence. 

CONCLUSIONS 
The considerations related to the design of the Folding Perimeter activity are closely 
connected to a wide variety of theories and research findings on student cognition, 
and on the use of technological tools for teaching mathematics. Our experience in 
implementing many similarly structured investigative activities indicates that they 
provide opportunities for meaningful learning of mathematical concepts. 

We also described here several episodes of student work on a particular activity to 
show that differences between a designer's planned actions and student work should 
be expected. Whether, and if so how, these differences should influence the design of 
this particular activity or the principles of task design remains an open question. 

 

THE DOLLS’ HOUSE CLASSROOM 
Janet Ainley and Dave Pratt 

Institute of Education, University of Warwick, UK 

The design of our task uses the framework of purpose and utility (Ainley & Pratt, 
2002, Ainley et al., forthcoming). Purpose reflects our concern to create tasks which 
are meaningful for pupils. One strand of research on which we draw is that of 
mathematics in out-of-school contexts (e.g., Nunes et al., 1993) which has 
highlighted the contrast between the levels of engagement of learners in 
mathematical activities in and out of school. In a PME plenary, Schliemann (1995) 
claimed ‘we need school situations that are as challenging and relevant for school 
children as getting the correct amount of change is for the street seller and his 
customers. And such situations may be very different from everyday situations.’ (p. 
57). We argue that setting school tasks in the context of ‘real world’ situations, for 
example through the use of word problems, is not sufficient to make them meaningful 
for pupils. Indeed, there is considerable evidence of the problematic nature of 
pedagogic materials which contextualise mathematics in supposedly real-world 
settings, but fail to provide a purpose that makes sense to pupils (see for example 
Ainley, 2000; Cooper & Dunne, 2000).  
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We see the purposeful nature of the activity as a key feature of out-of-school contexts 
which can be brought into the classroom through the creation of well designed tasks. 
Drawing partly on constructionism (Harel & Papert, 1991), we define a purposeful 
task as one which has a meaningful outcome for the learner in terms of an actual or 
virtual product, the solution of an engaging problem, or an argument or justification 
for a point of view (Ainley & Pratt, 2002; Ainley et al., forthcoming). This feature of 
purpose for the learner, within the classroom environment, is a key principle 
informing our pedagogic task design.  

The purpose of a task, as perceived by the learner, may be quite distinct from any 
objectives identified by the teacher, and does not depend on any apparent connection 
to a ‘real world’ context. The purpose of a task is not the ‘target knowledge’ within a 
didactical situation in Brousseau’s (1997) sense. Indeed it may be completely 
unconnected with the target knowledge. However, the purpose creates the necessity 
for the learner to use the target knowledge in order to complete the task, whether this 
involves using existing knowledge in a particular way, or constructing new meanings 
through working on the task. Movement towards satisfactory completion of the task 
provides feedback about the learner’s progress, rather than this being judged solely 
by the teacher (Ainley et al., forthcoming). Harel (1998) proposes the ‘necessity 
principle’, which addresses the issue of creating the need to learn particular things in 
a different way. In Harel’s terms an ‘intellectual need’ for a mathematical concept 
should be created before embarking on the teaching of the concept. However, 
intellectual need and purpose clearly differ, since intellectual need is related 
specifically to a mathematical concept, while the purpose of a task is not explicitly 
mathematical, but relates to the outcome of the specific task. The necessity principle 
perhaps relates more closely to the second construct within our framework: utility. 

UTILITY 
Understanding the utility of a mathematical idea is defined as knowing how, when 
and why that idea is useful. A purposeful task creates the need to use a particular 
mathematical idea in order reach the conclusion of the task. Because the mathematics 
is being used in a purposeful way, pupils have the opportunity not just to understand 
concepts and procedures, but also to appreciate how and why the mathematics is 
useful. This parallels closely the way in which mathematical ideas are learnt in out-
of-school settings. In contrast, within school mathematics ideas are frequently learnt 
in contexts where they are divorced from aspects of utility, which may lead to 
significantly impoverished learning. Utility thus has some similarity to Harel’s 
‘intellectual need’. However, Harel sees intellectual need as providing the motivation 
for learning a concept, whereas utility, why and how the concept is useful, is seen as 
an intrinsic, but frequently unacknowledged, facet of the concept itself. 
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THE DOLLS’ HOUSE CLASSROOM TASK 
The Dolls’ House Classroom task focuses on scaling, which is a key idea in 
proportional reasoning. The outcome of the task is a set of instructions for another 
group of children to make items for the dolls’ house classroom. The purposeful 
nature of the task would, of course, be increased if the pupils were involved in the 
actual manufacture of the product. We developed the idea for this task from the work 
of a primary school class who used a similar approach to building scenery for a play 
based on the Nutcracker ballet. There was a need to make the scenery large enough 
for the people to appear the size of rats. 

At the beginning of the task, each group of pupils is given an item from a dolls’ 
house which corresponds to something they will have in their own classroom (e.g., a 
chair, a table, a door, a computer). The activity of comparing this with its full-size 
equivalent will involve measuring and discussion, as pupils decide on which are the 
most important measurements to use. For example, although the particular design of 
chairs may vary, the height of the seat above the ground remains fairly constant.  

Once they have arrived at a pair of measurements for the full-size and dolls’ house 
items, they enter the most crucial part of the task: deciding how the use these in order 
to scale other measurements. The role of the spreadsheet is important here in 
allowing pupils to experiment with different ways of using the measurements, and 
applying them to other items which they decide to include. It is important that there is 
an opportunity here for the pupils to make decisions about which other classroom 
items they will use, as this adds to their ownership of the task. We note here a close 
affinity with Friedlander and Arcavi, who set out in this collection of papers some of 
the reasons why they also adopted spreadsheets. 

The above considerations reflect our practical research and teaching experience as 
well as our theoretical perspective. In order to illustrate some of the characteristic 
features of such a design approach in action, we gave the dolls’ house task to two 
pairs of eleven year old students (one pairs of boys and one of girls). It turned out that 
the girls needed considerably more support than the boys from the teacher/researcher. 
Interestingly, this had the effect of closing down the task for the girls, who followed a 
much more one-dimensional route through the problem, staying close to the 
suggestions of the teacher. In contrast the boys were more adventurous in their 
approach and were able to exploit the opportunities that the task offered. This 
contrast acts as a useful reminder that the notions of purpose and utility are design 
imperatives, which act as potentials for the students but how those potentials are 
realised will vary according to a range of personal attributes (knowledge, confidence 
and so on) brought to the situation by the children and the structuring resources of the 
setting, including inter alia the approach of the teacher. (Indeed, we note that all 
authors in this collection of papers found to a greater or smaller extent that there were 
discrepancies between the learning trajectory that they had envisaged and that which 
ensued in practice. We make further comment on this at the end of this section.) As a 
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result of this contrast between the boys and the girls, we focus below more on the 
activity of the boys, which better illustrates the implications of designing for purpose 
and utility. 

PURPOSE AND UTILITY IN ACTION 
We were struck by the relationship between the boys’ construction of purpose and 
utility and how the interplay between the two evolved during the 40 minute session. 
Initially the boys tried to relate the task to their own experiences. One boy told the 
teacher about how his grandfather used to make dolls’ furniture. The other talked 
about scaling in maps in response to the teacher’s mentioning of the term scale 
factor. From an early stage, the boys questioned the nature of the task that they had 
been set. (Figures in brackets indicate time elapsed in minutes.) 

[6:06] Is this real? Are a Year 6 class really going to do this? 

The researcher admitted that this was not actually going to happen. 
[6:35] Why can’t they just buy the dolls’ house? 

What do we make of these questions? Are they challenges that suggest the boys are 
resisting the invitation of the teacher to engage with the problem? If so, it would be 
hard to explain the subsequent activity, which was marked by the boys’ considerable 
intent and persistence. Rather, we believe that these questions indicate a process in 
which the boys were beginning to take ownership of the task, They were, in our 
opinion, delimiting the task, asking where are its boundaries with reality, recognising 
that is was important to appreciate the true nature of the task as this would later 
inform their strategies for its solution. 

The task itself continued to act as the arbitrator of the activity (in contrast, the girls 
required the teacher to direct their activity throughout the session). At one point one 
of the boys encouraged his partner to move on. 

[17:14] You can’t just keep doing the table; we’ve got to do something else. 

The boys recognised that there was an implication in the task to build a range of 
artefacts. It was not necessary to ask the teacher what they should do next. 

At times, the boys were even prepared to follow the path indicated to them by the 
task rather than that suggested by the teacher. Thus, at one point, the teacher asked 
how the boys would find the height of the little shelf for the dolls’ house. 

[13:40] Before we do that, won’t we have to do the width of this table first? 

When students take ownership of a task, the levels of engagement can be very high; it 
is our belief that the opportunity to make choices is influential in helping students to 
make a problem their own. Furthermore, a well-designed task will also enable 
students to follow up their own personal conjectures when they try to make sense of 
the task. Such personal conjectures might be seen by other researchers as 
misconceptions but our stance recognises the need, from the design point of view, for 
students to be given the opportunity to test out for explanatory power their own 
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meanings, in this case for proportion. Thus the boys’ spreadsheet shows several 
different attempts at ratio. In one set of cells, they divided the height of the real table 
by that of the supplied dolls’ table (68.5 / 4.3 = 15.93). But when it came to the width 
of the table, they divided the dolls’ table by the real table (5.5 / 134.2 = 
0.040983607). In another part of the spreadsheet, they divided the real shelf width by 
the real table width (75.5 / 134.2 = 0.562593). Each of these calculations has possible 
utility for their task but whether any particular approach has explanatory power 
depends on exactly how the boys wanted to use the result and what sense they could 
make of the feedback. The nature of the task allowed them to explore all three routes, 
rather than following a route defined prescriptively by the teacher. 

Such explorations enabled the boys to construct meanings for the divisions being 
carried out on the spreadsheet. The spreadsheet handled the calculations, allowing the 
boys to focus on whether the ratio was actually useful to them in their task. Even so, 
the technical demands of deciding what to divide by what could become so absorbing 
that the context could be temporarily forgotten. 

[13:20] So, this table [pause] the height of this table divided by the height of that table 
[pause] I’ve forgotten how this is going to help! 

Nevertheless, the boys recognised that there was a purpose to this technical effort and 
they were eventually able to reconstruct the reason behind that work. We see this 
statement and the subsequent activity as evidence that the boys were indeed linking 
the purpose of the task to a utility for comparing dimensions. The measurements 
enabled them to derive a scale factor, which could be used to calculate the 
dimensions of imaginary objects. The utility emphasises how the scale factor might 
be useful, admittedly in a situated narrative, rather than the technical aspects of how 
to calculate a scale factor. 

This utility was planned. However, when we design for purpose and utility, there is a 
strong likelihood of other utilities emerging in unpredictable ways. In well-designed 
tasks there should be a richness of possibilities. When we listened to the recording of 
the boys working on this task, we were able to identify unplanned opportunities to 
focus on a utility for rounding. Thus, consider again the occasion when the boys 
divided the width of the dolls’ table by the real table to obtain 0.040983607. 

[17:40] How do you shorten that down? 

The boys intuitively knew that it would be useful to reduce the length of the decimal. 
However, they did not know the technicalities of how to do this. Had the teacher been 
available at that point, there may have been an opportunity to focus on rounding in 
the context of making numbers more manageable. In the event the boys moved away 
from this calculation and considered an alternative approach. Nearly ten minutes later 
[26:50], another rounding opportunity appeared. On this occasion the numbers were 
easier and so the boys were able to round manually 8.0665 to 8.1. 

Another illustration of the richness of such tasks occurred when the boys were 
considering the area of the tables. 
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[13:50] We have to find the area of that (referring to the dolls’ table) and then the area 
of one of these tables and then combine the area of… 

One of the most difficult ideas in secondary level work on proportion is the notion of 
an area scale factor and how it relates to a linear scale factor. There was potential 
here for the students to explore the utility of area scale factors. 

FINAL COMMENTS 
We advocate stressing in task design how mathematical concepts might be useful in 
particular situations. Such utility does not imply real world relevance. The dolls’ 
house task is somewhat contrived if judged against such a criterion. Nevertheless, the 
boys took ownership of the task, partly because they were able to make choices of 
their own and partly because they were able to construct their own narrative for the 
task. As the activity evolved, the emphasis on making sense of the task itself by 
relating it to personal experiences and testing its boundaries transformed into creating 
solution strategies, guided by the purpose of task. In their efforts to construct 
meanings for the feedback from the spreadsheet, the boys constructed a utility for 
scale factor. At the same time, there was a richness in the task that is typical in our 
experience of tasks designed according to the constructs of purpose and utility. This 
richness manifested itself in the way that the boys followed numerous paths and 
stumbled into situations that offered potential for engagement with other 
mathematical utilities. 

We note with interest that all the authors in this collection of papers appear to have 
attempted to include some aspect of purpose or utility in their task designs, without of 
course seeing what they did in precisely those terms. Word problems in themselves 
can appear dry, even hackneyed, but in Dirk, Wim and Lieven’s task, the problem 
was transformed. The children had to work on the word problems at a meta level, 
deciding which problems were like which others. As De Bock, Van Dooren and 
Verschaffel subsequently observed, the task proved to be rather challenging but we 
too have seen in the past that this type of transformation can imbue a sense of 
purpose to the task for many children. In Koeno, Frans and Ronald’s task, there was 
an attempt to connect children’s thinking to their experiences of journeys. The 
approach seemed to offer the children the opportunity to construct a utility for 
proportion in relation to planning such journeys. In Alex and Abraham’s task, we saw 
the potential for practical activity, which might even have been opened up further by 
considering other aspects of paper folding that can lead to other interesting 
proportions. 

Finally, and almost as a cautionary tale, we remind you (and ourselves) that the girls 
working on our own task went down a much narrower predictable pathway than did 
the boys. One level of response to this result is simply to argue that no task can offer 
rich pathways for all children. On the other hand, perhaps there are lessons to be 
learned, not just from the boys’ work, but also from that of the girls. Gravemeijer, 
van Galen and Keijzer have explained how they see the demands of this research 
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forum as at variance to some extent with their normal activity. The principle of 
progressive mathematization, utilised by designers in the Realistic Mathematics 
Education school, is not one that sits easily with designing a single task in one shot. 
We too see task design in terms of design research and, in that spirit, would interpret 
all these efforts at task design as “bootstrapping” or first exploratory attempts. 
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