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ON SPECIAL 4-PLANAR MAPPINGS OF ALMOST HERMITIAN
QUATERNIONIC SPACES
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ABSTRACT. In the paper special 4-planar mappings of almost Hermitian quater-
nionic spaces are studied. Fundamental equations of these mappings are expressed
in linear Cauchy form. Our results improve results of I.N. Kurbatova [9].

4-quasiplanar mappings of an almost quaternionic space have been studied in [5], [9]
and [14]. These mappings generalize the geodesic, quasigeodesic and holomorphically
projective mappings of Riemannian and Ké#hlerian spaces, see [4], [12], [13], [15], [17],
[18], [19]. Similar problems are studied on complex manifolds in [3]. Anti-quaternionic
spaces which were studied e.g. in [11], [16] have some properties similar to those of
quaternions [1]. This fact can be used in the study of 4-planar mappings.

I.N. Kurbatova studied a special kind of 4-planar mappings (called 4-quasiplanar,
see [9]) from a Riemannian space V, onto another Riemannian space V,, where an
almost quaternionic structure on V,, is Hermitian and it satisfies additional conditions
so that V, a V,, are Apt spaces.

Analyzing the results of [9] (theorems 2 — 6) we noticed that the space V, is implic-
itly supposed to be Hermitian and this assumption is essential. Hermitian structure
of V,, is more important than Hermitian structure of V,, and, moreover, it simplifies
fundamental equations of 4-planar mappings. In this paper we do not assume V,, to
be Hermitian.

1. A well-known definition says that an almost quaternionic space is a differentiable
1 2
manifold M,, with almost complex structures F' and F' satisfying

1hlac h 2h2a h 1h2a 2h1a
FoFP= =06 F Fy=-6" F F+F F=0, (1)
where 6! is the Kronecker symbol, see e.g. [1], [4].
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3 1 2
The tensor F!=F*F! defines an almost complex structure, too. The relations

12 3
among the tensors F, F', F' are the following
1 2 3 3 2. 2. 3 1 1 3, 3 12 2 1
Fz‘h:Fz‘aFg:_FiaFo}f; Fih:FiaFg:_FiaFo’f; Fz‘h:FiaFo}cL:_FiaFg' (2)

1 2 3
Any two of the above three structures F', F', F' define the same almost quaternionic
structure.

1 2 3
Let A, = (M,,T, F,F,F ) be an almost quaternionic space with a torsion-free
affine connection I'.

Definition 1 A curve £: 2" = z"(t) in A, is called 4-planar if the tangent vector
A" = dzh /dt being parallely transported along this curve, remains in the linear 4-
dimensional space generated by the tangent vector \* and the corresponding vectors

1 2 3
Fa FM\* and Fie.
A curve is 4-planar if and only if the equations

d\"
o 4Th
a e

3
S
PNV =D P Fux
s=0
0
hold, where F' ' = 6" is the Kronecker symbol, F’Oﬁ/j are components of the affine
connection on A, and p =p (¢t) (s =0,...,3) denote functions of the parameter ¢.

Any geodesic curve is a special case of a 4-planar curve where p; = p, = p3 = 0.

Consider two spaces A, and A, with the same underlying manifold M, and the
1 2 3
same almost quaternionic structure (F, F, F') but with two different torsion-free affine

connection I' and T, respectively.

Definition 2 A diffeomorphism f: A, — z_ﬁin is called a 4-planar mapping, if it maps
any geodesic of A, to a 4-planar curve of A,.

Remark. In the following we shall attach to each local map ¢ around a point
p € A, the local map po f~! around the point f(p) € An. This means that any point
x € A, and the corresponding point f(z) € A, will have the same local coordinates.

The following theorem holds [5]:

Theorem 1. A diffeomorphism of A, onto A, is a 4-planar mapping if and only if
in every local coordinate system x = (z',2?,...,x") the conditions

h

3
Ty(@) =Th(@) + >, F)) (3)
s=0 §



SPECIAL 4-PLANAR MAPPINGS 267

hold, where F?j and f?j are components of the affine connections T’ and T, respectively,
Y .(z), s=0,...,3, are covectors, and (i j) denotes a symmetrization of indices.
S

Using Theorem 1 one can prove the all 4-planar curves of A, are mapped onto
4-planar curves of A, (LN. Kurbatova [9] defined 4-quasiplanar mappings preserving
almost-quaternionic structure by the conditions (3)).

Finally, we will consider a special case of A,, namely an almost quaternionic Rie-

_ 1 2 3 _
mannian space V,, = (M, g, F, F, F') in which I" denote the Levi-Civita connection
of g.

The following theorem holds (see [5]).

Theorem 2. A diffeomorphism f: A,— V, is a 4-planar mapping if and only if the
metric tensor G;j(x) satisfies the following equations:

3
Jij e = Z (1/1 RN i lsb (i 9 F;?) (4)

s=0 s
where comma denotes the covariant derivative in A,.
Recall that the covariant derivative of g in A, is zero.

The proof follows from the fact that formulas (3) and (4) are equivalent in our
special case.

2. Now we shall prove the following two lemmas.
Consider the spaces A,, 4, and let ”,” or ”|” before an index denote a covariant
derivative w.r. to the corresponding local variable on A,, and V,,, respectively.

Lemma 1. Let a 4-planar mapping A, — A, be given and let Y, denote the corre-

sponding covectors from (3). Then

Fe =Ff,  s=1,23 (5)

o

holds if and only if the covectors ¢ . are expressed by formulas
S

¢i:_ n4¢a Fz'aa 8:132’33 % Elﬁz (6)
s - 0

n
The proof of the above Lemma 1 is a consequence of (5) and fundamental equations
of 4-planar mappings (3). We use also algebraic properties of quaternionic structures

(1) and (2).

A manifold with an affine connection I and an almost complex structure F'is said to
be an Apt space (see [2], [4], [9], or nearly Kdhlerian space or Tachibana space [4], [6],
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1 2 3
[7], [8], [10], [20]) if its structure [ satisfies F%, = 0. A space A, = (M,,I', F, F, F)
to be an almost quaternionic Apt space if

S
F7,=0, s=1,2,3.
Lemma 1 implies that an Apt spaces A, is 4-planarly mapped on an Apt space

A, iff (6) holds. Evidently Kéahlerian spaces are Apt spaces and also quaternionic
Kahlerian spaces are Apt spaces.

Contracting (3) with respect to h and j we got the lemma

Lemma 2. If for a 4-planar mapping A, — A, the formulae (6) hold and the spaces
A, and A,, are equiaffine, then the vector ; is a gradient, i.e. there exists a function
Y such that 1; = ;.

3. Now we shall show that if a 4-planar mapping from A, onto a Riemannian
space Vj, is given, then the formulae (3) and (4) are both equivalent to the following
formula: ,

L. s . s .
== (1/} NS FE RN F,?) )
s=0 5 5
where §¥ is th_e inverse matrix of metric tensor g;;. In fact, (7) is a consequence of
the identity g, = —gagrg*'g".
In what follows we shall asumme a quaternionic structure on V,, which is Hermitian,

i.e. we have
S S

Gia Fj'+ Gjo F{*=0, s=1,2,3. (8)
(8) is equivalent with
g Fl+ g F!=0, s=1,2,3, 9)
or with .,
g*P FFI=g¥, s=1,2,3. (10)

Using (9) the equations of 4-planar mappings are simplified to
3
g% = 297 =Y v, g*0 F) (11)
s=0 °

Suppose now that the covector 1); is a gradient, i.e. 1; =1 ; = ¥ where ¢ is a
0

function. We define the tensor
a'l = g,

Then (11) can we rewritten in the form

3
=2 A" FL, (12)

s=0
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where

i\iz—qpag‘“’. (13)

S

By the definition of the tensor a” (10) is equivalent with
s .5 . ..
a®? FI Fi=qa¥, s=1,2,3. (14)

Due to the fact that V,, is Hermitian and using (13) we see that the formula (6) is
equivalent with

n

o pi —1.9 =y 1
n—4/\ o s=1,2,3, A A (15)

3
i‘ =

Now we come back to the affine case. Let a space A,, be given as before and let the
system of equations (12), (14) and (15) has a solution for a regular matrix function a*
and a vector function A\*. Then one can prove that the inverse matrix ||g;;|| = [|a¥|| !
defines a Riemannian metric g on M,, and the covector A®g,; is a gradient grady. By
the conformal change g;; = € §;; we obtain a new metric g for which A, becomes a
Hermitian almost quaternionic space V,,. Moreover, there exists a 4-planar mapping
A, > V,.

This results coincides with the result by N.S. Sinyukov for geodetic mappings and
the results by V.V. Domashev and J. Mike§ for holomorphically projective mappings
of Kéhlerian spaces etc., see [12], [13], [18], [19]. Now we can conclude the above
results with

Theorem 3. Under the condition (5) an equiaffine space A, admits a 4-planar map-

ping on a Hermitian quaternionic space V, if and only if there exists a regular tensor
a’ on A, satisfying (12), (14), and (15).

The result analogous to Theorem 3 was proved by L.N. Kurbatova [9] under the
assumption that A, is Hermitian and from the proof it is evident that also V,, is
supposed the be Hermitian.

4. Analysing the equation of I.N. Kurbatova [9] analogous to (12) we can modify
this equation as a system of linear differential equations of Cauchy type. In what
follows we give more simple modification which uses also conditions (14).

We consider covariant derivatives of (14) in A,, i.e.

rT.r .. T o, r.r . ..
a®f FLF)+a* FL Fl+a* FLF],=d”,, r=1,23.

Putting (12) into the above equation we get

3
> (/\ CF)- )\ FiF] ,f) =a*? F,F). (16)
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For r =1, using (1), (2) and (15) we have

L 1,1, —4 1, 1.
NG =X PEF]) = == a B{, F) (17)
and contracting (17) with respect to j and & we have the following expression of the

vector \%:
NPTt e (p Fl+ FiFY (18)
 n(2n+1) YT pT et o)
It implies that A\* can be expressed as a linear functions in a”. It implies

Theorem 4. Under the condition (5) an equiaffine space A, admits a 4-planar map-
ping onto a Hermitian almost quaternionic space V,, if and only if the following system
of differential equations of Cauchy type is solvable with respect to the unknown func-
tions a:

3
o’y =3 A"F), (19)
s:OS
where
; n s . ) n—4 1. 1 1.1
= A F? =1,23 N=— ¥ (F F4+FF]
i\ n_4 ) S ) 4y Iy n(2n+1)a ( a,y ﬁ+ a ﬁ,'y)

and the matriz (a¥) should satisfying addition |a®| # 0 and the algebraic condition
a®? F!FI=qg¥, s=1,2,3.

The system (19) does not have more than one solution for the initial Cauchy con-
ditions a”(z,) =a* under the conditions (20). Therefore the general solution of (19)
o

does not depend on more than N, = (n/2)? parameters. The question of existence
of a solution of (19) leads to the studium of integrability conditions, which are linear
equations w.r. to the unknowns a”(z) with coefficients from the space A,,.
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