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SUB-REPRESENTATION OF POSETS

M. K. GORMLEY AND T. B. M. MCMASTER

Abstract. We define a property sub-representability and we give a
complete characterisation of sub-representability of posets.

1. Introduction

Definition 1.1. Given an ordered set E and a topological space X, we say
that E can be realised within X [see [1]] if there is an injection j from E into
the class of (homeomorphism classes of) subspaces of X such that, for x, y
in E, x ≤ y if and only if j(x) is homeomorphically embeddable into j(y).

The question of which spaces have the ‘converse’ of this property of realis-
ability appears difficult in general, but we are able to handle the principal T0

case. What we shall now do therefore is to try to represent the family of sub-
posets of a partially ordered set P , ordered by embeddability, within that
family ordered by inclusion. However, we additionally want the representa-
tion to be such that each sub-poset is represented by an embeddability-wise
equivalent poset. That is, we wish to sub-represent the poset.

Definition 1.2. Whenever P1 and P2 are posets, we shall say that P1 ↪→ P2

if and only if P1 is isomorphic to a subset of P2.

Definition 1.3. We shall say that P is sub-representable if and only if there
exists a map g from P(P ) to P(P ) such that for all P1, P2 ∈ P(P ):

(i) P1 ↪→ P2 if and only if g(P1) ⊆ g(P2), and
(ii) P1 ↪→ g(P1) ↪→ P1.

Example 1.4. Figure 1 details a sub-representation of a four-point poset.
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Figure 1

Theorem 1.5. Suppose that P1 ⊆ P . If P1 is not sub-representable, then
P is not sub-representable.

Proof. Suppose that P was sub-representable and g is as in Definition 1.3.
Now g(P1) embeds into P1 by a map h. Then it is clear that if g∗ = g|P1

,
then h ◦ g∗ will sub-represent P1. �

Definition 1.6. The posets whose Hasse diagrams are given in Figure
2 shall be known as a vee, a wedge, and a diamond, respectively.
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Figure 2

Example 1.7.

• All two-point posets are (trivially) sub-representable.
• All three-point posets are (trivially) sub-representable.
• Not all four-point posets are sub-representable: see Example 1.8.
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Example 1.8. The poset P in Figure 3 is not sub-representable for the
following reasons. Suppose that P were sub-representable. Since P contains
a wedge, the wedge must be sub-represented by either {1, 3, 4} or {2, 3, 4}. A
two-point chain must then be mapped to {1, 3}, {3, 4} or {2, 3}; not to {1, 2}.
However, in all three cases we see that there is no other point incomparable
with the chain, and hence the disjoint union {1, 2, 4} of a two-point chain
and a single point cannot be sub-represented: a contradiction.

v1
v2
v3
v4

J
J
JJ

Figure 3
Figure 4 gives all four-point posets that cannot be sub-represented, as

may be verified by simple arguments like that of above.
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Figure 5 gives all four-point posets (likewise identified) that can be sub-

represented.
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Example 1.8 shows that we do not have universal sub-representability,
even among finite posets. We seek to identify which posets are sub-represent-
able.

Note 1.9. Let x ∈ P . We shall use the following notation (note the strict-
ness of the inequalities):
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• U(x) = {y ∈ P : y > x}
• D(x) = {y ∈ P : y < x}.

Definition 1.10. A linear ordering A is called a
• well-ordering if every non-empty subset B of A has a least element,
• well-ordering* if every non-empty subset B of A has a greatest

element.

Definition 1.11. We shall call P a
• flower if and only if there exists x ∈ P such that D(x) is a well-

ordered* chain, U(x) is an antichain (with |U(x)| > 1) and D(x) ∪
U(x) ∪ {x} = P
• co-flower if and only if there exists x ∈ P such that U(x) is a

well-ordered chain, D(x) is an antichain (with |D(x)| > 1) and
D(x) ∪ U(x) ∪ {x} = P .

Note 1.12. Note that the dual of a flower is a co-flower and vice versa.
Also every flower contains a vee and every co-flower contains a wedge.

Theorem 1.13. Suppose that P contains both a vee and a wedge. Then P
is not sub-representable.

Proof. Suppose that P is sub-representable but contains both a vee and
a wedge. Suppose that a vee, {1, 2, 3 : 1 < 2, 1 < 3}, is represented by
{a, b, c : b < a, b < c}. Then we must have the two-point antichain embedded
as {a, c}. The wedge {4, 5, 6 : 4 < 6, 5 < 6} would then partially embed as
follows: {4, 5} → {a, c}, and hence we would have a diamond {a, b, c, d : b <
a, b < c, a < d, c < d} contained in P . By Example 1.8, any space containing
a diamond is not sub-representable: a contradiction. �

Theorem 1.14. Suppose that P contains one of the posets in Figure 6.
Then P is not sub-representable.
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Proof. Suppose that P contains poset A but that P is sub-representable.
Notice that A contains a copy of N. Then a two-point antichain must be
represented by {x, y} and hence a singleton must be represented by either
{x} or {y}. In either case we have that the representative of N would have
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a maximal element: a contradiction, and hence P is not sub-representable.
A similar contradiction arises if P contains B. �

Theorem 1.15. If P is sub-representable then P is a flower or a co-flower
or a disjoint union of chains.

Proof. Suppose that P is neither a flower nor a co-flower nor a disjoint union
of chains. Since it is not a disjoint union of chains it contains a vee or a
wedge. By Theorem 1.13 if it contains both then it is not sub-representable.
Suppose then that P contains a vee but not a wedge. Since it is not a flower
it must contain one of the following:

v
v

�
��

@
@@
v v

A

v
v���

�
��

v
@
@@
v

B

v
v

�
��

@
@@
v

vv
vv.
..
..

C
Figure 7

However, A and B are not sub-representable by Example 1.8 and C is
not sub-representable by Theorem 1.14. Hence P is not sub-representable
either. Dually, suppose that P contains a wedge but not a vee. Since it is
not a co-flower it must contain one of the following:
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However, D and E are not sub-representable by Example 1.8 and F is
not sub-representable by Theorem 1.14. Hence neither is P . �

Example 1.16. Let P =
⋃
k∈N{Pk} where Pk is the k-point chain. Then P

is not sub-representable.

Proof. Suppose that this poset is sub-representable. Then there exist values
of k and m such that Pk is represented by being mapped into Pm(m ≥ k).
We then have that Pm+1 must map into more than one Pk, since it must
contain the image of Pk whereas Pm contains only m points: this yields the
desired contradiction. �
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Note 1.17. Let P be a finite poset. Recall that the height of P , denoted by
ht(P ), is the largest cardinality of a chain in P , and that the width of P ,
denoted by wd(P ), is the largest cardinality of an antichain in P .

Theorem 1.18. Suppose that P is finite. If P is either a flower or a co-
flower or a disjoint union of chains then P is sub-representable.

Proof. Suppose that P is a flower with ht(P ) = n and wd(P ) = k. The
family of subsets of P consists of flowers of height m and width r for all
1 < m ≤ n, 1 < r ≤ k, together with chains of size ≤ n and antichains of size
≤ k. Label the points of P in the maximal antichain as x1, x2, ..., xk. There
exists a point x such that P = D(x)∪U(x)∪ {x}. Label x as xk+1 and the
points of D(x) as xk+2, xk+3, ..., xk+n−1 where xk+2 > xk+3 > ... > xk+n−1

as in Figure 9. Our isomorphism is defined as follows: map a singleton to x1;
map each chain of size m > 1 to {x1, xk+1, ..., xk+m−1}; map each antichain
of size r > 1 to {x1, ..., xr}; map each flower of height m and width r to
{xj : k < j ≤ k + m − 1} ∪ {xj : 1 ≤ j ≤ r}. It is clear that P has been
sub-represented.
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Figure 9

The case where P is a co-flower is precisely dual to the preceding discus-
sion. Now suppose that P is a disjoint union of chains. Arrange the chains
in descending order of cardinality. That is, denote P as

⋃
{Pk : k ≤ n} where

ht(Pk) ≥ ht(Pk+1). Label the points of each Pk as {xkm : 1 ≤ m ≤ ht(Pk)}
as in Figure 10.
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Let S be a subset of P , and suppose that S intersects each of the posets
{Pk1 , Pk2 , ..., Pkt} where |S ∩ Pkq | ≥ |S ∩ Pkq+1 | for all 1 ≤ q ≤ t − 1. For
each r ≤ t map S ∩Pkr to {xrm : m ≤ |S ∩Pkr |}. The poset P has now been
sub-represented. �

Corollary 1.19. Let P be a finite poset. Then P is sub-representable if and
only if P is either a flower or a co-flower or a disjoint union of chains.

Example 1.20. Consider Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}, the set of inte-
gers with their usual ordering. Then Z is not sub-representable.

Proof. Suppose that Z is sub-representable. Let the image of the equivalence
class of the natural numbers, i.e. θ([N]), be the set {0′, 1′, 2′, 3′, ...}. Let
θ([−N]) be the set {(−0)′, (−1)′, (−2)′, (−3)′, ...}. Since a singleton must be
mapped into both θ([N]) and θ([−N]), we know that |θ([N]) ∩ θ([−N])| > 0.
Suppose that p′ is the least point of θ([N])∩θ([−N]), that is, p′ = (−q)′, which
implies that |θ([N]) ∩ θ([−N])| ≤ q + 1. Then θ([{0, 1, 2, 3..., q, q + 1}]) must
be a subset of θ([N]) and also a subset of θ([−N]). This is a contradiction,
since |θ([N]) ∩ θ([−N])| ≤ q + 1. �

Corollary 1.21. By Corollary 1.5 we then have that Q,R and R \ Q (as
ordered sets) cannot be sub-represented.

Corollary 1.22. If P contains a copy of N and a copy of −N then it cannot
be sub-represented.

Note 1.23. If P is a chain which is not well-ordered then it contains a copy
of −N, and if P is a chain which is not well-ordered* then it contains a copy
of N.

Corollary 1.24. If P is a chain which is not well-ordered and not well-
ordered* then it cannot be sub-represented.

Theorem 1.25. Every well-ordered set can be sub-represented.

Proof. Let P be a well-ordered chain of order-type α. It suffices to show
that α itself is sub-representable. Let S ⊆ α and suppose that S is order-
isomorphic to β < α. We map [S] to β where β is a proper initial segment of
α. On the other hand, if S is order-isomorphic to α, map [S] to α itself. �

Theorem 1.26. Every well-ordered* set can be sub-represented.

Proof. Let P be a well-ordered* chain. Let P ∗ denote the dual of P . Then
P ∗ is, without loss of generality, an ordinal α. If S ⊆ P then S∗ is order-
isomorphic to some β ≤ α, and so map [S] to the final segment of α∗ of
order-type β∗. �

Theorem 1.27. Let P be a flower or a co-flower. Then P is sub-represent-
able.

Proof. Suppose that P is a flower. Then P = D(x) ∪ U(x) ∪ {x}. Suppose
that |U(x)| = δ. Label the points of U(x) as {xβ : β < δ}. By definition,
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D(x) ∪ {x} ∪ {x0} is a well-ordered* chain. Label the points of U(x) \ {x0}
as {x′β : β < δ′}. Let S ⊆ P . If S is a copy of α∗ for some ordinal α,
map S to the final segment α∗ of D(x) ∪ {x} ∪ {x0}. Otherwise S contains
a copy of α∗ for some ordinal α (such that it does not contain a copy of
γ∗ for some γ > α) together with an antichain of cardinality ζ. Map S to
{x′β : β < ζ} together with the final segment α∗ of D(x) ∪ {x} ∪ {x0}. We
have now sub-represented P . The case where P is a co-flower is similar. �

Theorem 1.28. Let P be the disjoint union of finitely many well-ordered
sets. Then P is sub-representable.

Proof. Suppose that P =
⋃
k≤n

⋃
s≤mk{

sωk} where sωk is a copy of an ordi-
nal ωk. Then (up to order-isomorphism) P is a copy of n∗ =

∑
kmk many

ordinals. So let us consider P as
⋃
n≤n∗{ωn} where ωn ≥ ωn+1 for all n ≤ n∗.

Let Y ⊆ P meet each of ωn1 , ωn2 , ..., ωnt where |Y ∩ ωnp | ≥ |Y ∩ ωnp+1 | for
all 1 ≤ p ≤ t− 1. Now Y ∩ ωnp is a copy of an ordinal αp. So map Y ∩ ωnp
to αp ∈ ωp and hence P has been sub-represented. �

Corollary 1.29. A similar proof gives the result that a disjoint union of
finitely many well-ordered* sets is sub-representable.

Let us examine further the question of which disjoint unions of ordinals
can be sub-represented. Let P be a disjoint union of ordinals. If P contains
a copy of the disjoint union of the family of ordinals {1, 2, 3, 4, ...} then by
Example 1.16 and Corollary 1.5, P cannot be sub-represented. Hence P
must contain copies of only finitely many distinct ordinals and only finitely
many copies of each relevant infinite ordinal. If we have only finitely many
copies of each ordinal then by Theorem 1.28, P is sub-representable. So all
that remains to consider is the case where there are infinitely many copies
of one or more finite ordinals. It will be seen — although the demonstration
requires considerably more effort than earlier proofs in this paper — that
this case also is sub-representable.

2. Sub-representation of pinboards

Definition 2.1. A pinboard is a finite set of ordered pairs

{(hi, fi) : 1 ≤ i ≤ k}

in which, for each value of i, hi (the height) is an ordinal, fi (the frequency)
is a cardinal, and not both hi, fi can be infinite. We recall that a cardinal is
merely an initial ordinal (or equivalently, the least one of a given cardinality).

Definition 2.2. A simple pinboard is a pinboard of the form

{(β, n), (m, γ)}

where β and γ are infinite cardinals, and m and n are finite cardinals.
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Definition 2.3. The poset of a pinboard {(hi, fi) : 1 ≤ i ≤ k} is the disjoint
union of fi-many copies of hi for 1 ≤ i ≤ k. For example, if the pinboard
was {(ω2, 5), (ω1, 2), (6, ω), (3, 1)}, then the poset is as suggested by Figure
11.

ω2

ω1

6

3
0 1 2 3 4 5 6 7 8 ω0. . . . . . .

Figure 11
Our aim is to sub-represent the poset of an arbitrary pinboard. However,

it is easy to see that the poset of any pinboard is a subset of the poset of a
simple pinboard. Hence, by Theorem 1.5, if every simple pinboard’s poset
is sub-representable, then every pinboard’s poset is sub-representable.

Let P be the poset of a simple pinboard {(β, n), (m, γ)}. We shall repre-
sent P by the set

X = {(β, i, α) : α < β, i < n} ∪ {(m,α, j) : j < m,α < γ},
that is, an isomorphic copy of β over each (β, i) and an isomorphic copy of
m over each (m,α). We note that the ordinal ⊕mγ has the same cardinality
as the set

F = {(β, i) : i < n} ∪ {(m,α) : α < γ}
which underlies X. We can therefore choose an injection λ : ⊕mγ → F such
that the first n terms of its domain map onto {(β, i) : i < n}. We now have
labelled the columns of X in a ⊕mγ-sequence such that the first n columns
are those of the infinite ordinals.

Let Y be a subset of the simple pinboard above. Then Y consists of at
most n ordinals that exceed m and at most γ-many copies of each of the
ordinals m,m−1, ..., 2, 1. We can assume that for each term (h, f) in Y there
does not exist a term (h′, f ′) in Y , where f ′ is infinite, such that h′ < h and
f ′ < f : for, if there was such a term (h′, f ′), the elimination of (h′, f ′) would
not affect the embeddability class of Y . Therefore we can consider Y to be
of the following form:

Y = {(β1, n1), (β2, n2), ..., (βk, nk), (m, γm), (m− 1, γm−1), ..., (1, γ1)},
where β1 > β2 > ... > m.

We note that the ordinal sum

n1 ⊕ n2 ⊕ · · · ⊕ nk ⊕ γm ⊕ · · · ⊕ γ1 ≤ n⊕ (⊕mγ) = ⊕mγ
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and hence we can find a ‘remainder’ ordinal γ0 such that

n1 ⊕ n2 ⊕ · · · ⊕ nk ⊕ γm ⊕ · · · ⊕ γ1 ⊕ γ0 = ⊕mγ.

We now apply our injection λ and hence associate a copy of β1 with the first
n1-many columns of X, a copy of β2 with the next n2-many columns and so
on. Our subset θ(Y ) of X associated with Y is now formed by taking the
desired initial segments of the associated columns, and it is clear that θ(Y )
is an isomorphic copy of Y .

Theorem 2.4. Let Y, Y ′ be subsets of X. Then Y ↪→ Y ′ if and only if
θ(Y ) ⊆ θ(Y ′).

Proof. Suppose that Y ↪→ Y ′. Let us denote Y ′ as

{β′1, n′1), (β′2, n
′
2), . . . , (β′l, n

′
l), (m, γ

′
m), (m− 1, γ′m−1), . . . , (1, γ′1)},

where β′1 > β′2 > · · · > β′l > m. Let θ(Y ′) be generated as above. We pro-
ceed to show that θ(Y ) ⊆ θ(Y ′). Consider the ordinals (without repetitions)
comprising Y and Y ′, and denote this set arranged in decreasing order as

{ζ1, ζ2, . . . , ζq,m,m− 1, . . . , 1}.

It is clear that a single column of Y must embed into a single column of Y ′

and hence the ordinal ζ1 is in fact β′1. We can now assume that Y and Y ′

are of the following form where some of the frequencies may be zero:

Y = {ζ1, r1), (ζ2, r2), . . . , (ζq, rq), (m, γm), (m− 1, γm−1), . . . , (1, γ1)},

Y ′ = {ζ1, r
′
1), (ζ2, r

′
2), . . . , (ζq, r′q), (m, γ

′
m), (m− 1, γ′m−1), . . . , (1, γ′1)}.

The proof now proceeds as follows:
Stage 1: Any column of Y of height ζ1 must embed into a column of Y ′ of
that height, and so it follows that r1 ≤ r′1. That is to say, the columns of
θ(Y ) of height ζ1 are contained in θ(Y ′).
Stage 2: Any column of height ζ1 or ζ2 must embed into a column of Y ′ of
height ζ1 or ζ2, and hence r1 + r2 ≤ r′1 + r′2. It follows that the columns of
Y of height ζ2 are contained in θ(Y ′).
The obvious iteration process will now yield, in a finite number of stages,
θ(Y ) ⊆ θ(Y ′). �

Example 2.5. Suppose that P is the poset of the simple pinboard {(ℵ2, 12),
(7,ℵ3)} and we have a labelling map λ : ⊕7ℵ3 → F where F = {(ℵ2, i) :
i < 12} ∪ {(7, α) : α < ℵ3}, such that {λ(0), .., λ(11)} are the base points
of the infinite columns. Let Y be a subset of P whose columns have the
following ordinalities: {ω1⊕1, ω1, ω0⊕5, ω0⊕5, ω0, 30, 30, 20} together with
ℵ0 copies of 5 and ℵ0 copies of 3. As before, we can disregard the ℵ0

copies of 3 since these do not affect the embeddability class of Y . The
remaining frequencies (in decreasing order of corresponding height) are as
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follows: {1, 1, 2, 1, 2, 1,ℵ0}. We then have that θ(Y ) consists of the following
initial segments:

θ(Y ) =



ω1 ⊕ 1 of column λ(0),
ω1 of column λ(1),
ω0 ⊕ 5 of columns λ(2) and λ(3),
ω0 of column λ(4),
30 of columns λ(5) and λ(6),
20 of column λ(7),
5 of columns λ(8⊕ t) for all t < ℵ0,

0 otherwise.

Let Y ′ be another subset of P whose columns have the following ordi-
nalities: {ω2, ω2, ω1 ⊕ 10, ω1, ω0, 60, 40, 30, 20} together with ℵ1 copies of 6.
We note that Y ↪→ Y ′. The frequencies (in decreasing order of correspond-
ing height) are as follows: {2, 1, 1, 1, 1, 1, 1, 1,ℵ1}. We then have that θ(Y ′)
consists of the following initial segments:

θ(Y ′) =



ω2 of columns λ(0) and λ(1),
ω1 ⊕ 10 of column λ(2),
ω1 of column λ(3),
ω0 of column λ(4),
60 of column λ(5),
40 of column λ(6),
30 of column λ(7),
20 of column λ(8),
6 of columns λ(9⊕ t) for all t < ℵ1,

0 otherwise,

and we observe that θ(Y ) ⊆ θ(Y ′).

Definition 2.6. A co-pinboard is a finite set of ordered pairs {(hi, fi) : 1 ≤
i ≤ k} such that {(h∗i , fi) : 1 ≤ i ≤ k} is a pinboard.

Result 2.7. Let P be a poset. Then P is sub-representable if and only if P
is either:

(i) a flower, or
(ii) a co-flower, or
(iii) the poset of a pinboard, or
(iv) the poset of a co-pinboard.

Note 2.8. We could similarly define sub-representation of an arbitrary topo-
logical space as follows: Let (X, T ) be a topological space. We shall say that
(X, T ) is sub-representable if and only if there exists a map g from P(X) to
P(X) such that for all Y , Z ∈ P(X):
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(i) (Y, T|Y ) ↪→ (Z, T|Z) if and only if g(Y ) ⊆ g(Z), and
(ii) (Y, T|Y ) ↪→ (g(Y ), T|g(Y )) ↪→ (Y, T|Y ).

It then follows that we have already characterised all principal T0 spaces
which are sub-representable. The question of which other topological spaces
are sub-representable remains open.
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