957-26-48 **Peter A. Loeb*** (loeb@math.uiuc.edu), Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, and Erik Talvila (etalvila@math.ualberta.ca), Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta T6G 2E2, Canada. *Covering Theorems and Lebesgue Integration.*

We use the Morse Covering Theorem to show how the Lebesgue integral can be obtained as a Riemann sum. That is, Let X be a finite dimensional normed space; let μ be a Radon measure on X and let $\Omega \subseteq X$ be a μ -measurable set. For $\lambda \ge 1$, a μ -measurable set $S_{\lambda}(a) \subseteq X$ is a λ -Morse set with tag $a \in S_{\lambda}(a)$ if there is r > 0 such that $B(a, r) \subseteq S_{\lambda}(a) \subseteq B(a, \lambda r)$ and $S_{\lambda}(a)$ is starlike with respect to all points in the closed ball B(a, r). Given a gauge $\delta : \Omega \to (0, 1]$ we say $S_{\lambda}(a)$ is δ -fine if $B(a, \lambda) \subset B(a, \delta(a))$. If $f \ge 0$ is a μ -measurable function on Ω then $\int_{\Omega} f d\mu = F \in \mathbb{R}$ if and only if for some $\lambda \ge 1$ and all $\varepsilon > 0$ there is a gauge function δ so that $|\sum_{n} f(x_n) \mu(S(x_n)) - F| < \varepsilon$ for all sequences of disjoint λ -Morse sets that are δ -fine and cover all but a μ -null subset of Ω . This procedure can be applied separately to the positive and negative parts of a real-valued function on Ω . (Received June 12, 2000)