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We use the Morse Covering Theorem to show how the Lebesgue integral can be obtained as a Riemann sum. That is, Let

X be a finite dimensional normed space; let µ be a Radon measure on X and let Ω ⊆ X be a µ-measurable set. For λ ≥ 1,

a µ-measurable set Sλ(a) ⊆ X is a λ-Morse set with tag a ∈ Sλ(a) if there is r > 0 such that B(a, r) ⊆ Sλ(a) ⊆ B(a, λr)

and Sλ(a) is starlike with respect to all points in the closed ball B(a, r). Given a gauge δ : Ω → (0, 1] we say Sλ(a) is

δ-fine if B(a, λ) ⊂ B(a, δ(a)). If f ≥ 0 is a µ-measurable function on Ω then
∫

Ω
f dµ = F ∈ R if and only if for some

λ ≥ 1 and all ε > 0 there is a gauge function δ so that |
∑

n f(xn)µ(S(xn))−F | < ε for all sequences of disjoint λ-Morse

sets that are δ-fine and cover all but a µ-null subset of Ω. This procedure can be applied separately to the positive and

negative parts of a real-valued function on Ω. (Received June 12, 2000)
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