
ON THE C-INTEGRAL

BENEDETTO BONGIORNO

Let F : [a, b] → R be a differentiable function and let f be its
derivative. The problem of recovering F from f is called problem
of primitives. In 1912, the problem of primitives was solved by
A. Denjoy with an integration process (called totalization) that
includes the Lebesgue integral and the Riemann improper integral.
Two years later, a second solution was obtained by O. Perron
with a method based on the notions of major function and minor
function. A third solution, based on a generalization of Riemann
integral, is due to J. Kurzweil (1957) and R. Henstock (1963).

It is surprising that, nevertheless the three integration processes
are completely different, they produce the same integral (i.e. they
have the same space of integrable functions and satisfy the same
properties).

In 1986, A.M. Bruckner, R.J. Fleissner and J. Foran [9] re-
marked that the solution provided by Denjoy, Perron, Kurzweil
and Henstock possesses a generality which is not needed for this
purpose. In fact the function

(1) F (x) =

{
x sin 1

x2 , 0 < x ≤ 1
0 , x = 0

is a primitive for the Denjoy-Perron-Kurzweil-Henstock integral
(more precisely, F is a primitive for the Riemann improper inte-
gral), but it is neither a Lebesgue primitive, neither a differentiable
function, nor a sum of a Lebesgue primitive and a differentiable
function (see [9] for details).

The question of providing a minimal constructive integration
process which includes the Lebesgue integral and also integrates
the derivatives of differentiable functions was solved by the follow-
ing Riemann-type integral:
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Definition 1. Given a function f : [a, b]→ R we say that f is C-
integrable on [a, b] if there exists a constant A such that for each
ε > 0 there is a gauge δ on [a, b] with

(2)

∣∣∣∣∣
p∑
i=1

f(xi)|Ii| − A

∣∣∣∣∣ < ε ,

for each δ-fine McShane-partition {(I1, x1), . . . , (Ip, xp)} of [a,b]
satisfying the condition

(3)

p∑
i=1

dist(xi, Ii) < 1/ε.

Here by “gauge” on [a, b] we mean a positive function δ defined
on [a, b], and by “δ-fine McShane-partition of [a, b]” we mean a col-
lection {(I1, x1), . . . , (Ip, xp)} of pairwise nonoverlapping intervals
Ii ⊂ [a, b] and points xi ∈ [a, b] such that Ii ⊂ (xi−δ(xi), xi+δ(xi))
and

∑p
i=1 |Ii| = b− a.

The number A is called the C-integral of f on [a, b], and we set

A = (C)
∫ b
a
f .

The mentioned minimality of the C-integral as a constructive
integration process which includes the Lebesgue integral and also
integrates the derivatives of differentiable functions follows by the
following theorem.

Theorem 2. ([5, Main Theorem]) A function f : [a, b] → R is
C-integrable on [a, b] if and only if there exists a derivative h such
that f − h is Lebesgue integrable.

1. Relations between the C-integral and the

Lebesgue integral, the Henstock-Kurzweil

integral, and the Riemann-improper integral

It is well known that the Lebesgue integral is equivalent to the
McShane integral ([16], [17]); consequently, by Definition 1 it fol-
lows that each Lebesgue integrable function is C-integrable with
the same value of the integral.

Notice also that if f is C-integrable on [a, b], then f is Henstock-
Kurzweil integrable on [a, b] with the same value of the integral. In
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fact, condition (2) holds for each collection {(I1, x1), . . . , (Ip, xp)}
of pairwise nonoverlapping intervals Ii ⊂ [a, b] and points xi ∈
[a, b] such that Ii ⊂ (xi − δ(xi), xi + δ(xi)) and xi ∈ Ii, i =
1, 2, . . . , p.

Now we prove that both inclusions are proper.

Proposition 3. The Lebesgue integral is properly contained into
the C-integral; i.e. there is a C-integrable function f such that f
is not Lebesgue integrable.

Proof. Let us consider the function f on [0, 1] given by

f(x) = 2x sin
1

x2
− 2

x
cos

1

x2
, with f(0) = 0.

A primitive of f is the function F given by F (x) = x2 sin(1/x2),
F (0) = 0. It is easy to check that F is not absolutely continuous
on [0, 1]; hence f is not Lebesgue integrable on [0, 1]. Now remark
that F is differentiable everywhere in [0, 1] with derivative F ′(x) =
f(x), x ∈ [0, 1]. So f is C-integrable, by the following proposition.

Proposition 4. Each derivative is C-integrable.

Proof. Let F be an everywhere differentiable function on [a, b], and
let f(x) = F ′(x) for each x ∈ [a, b]. Given 0 < ε < 1/(b − a) and
x ∈ [a, b], by definition of derivative, there exists δ(x) > 0 such
that

(4)

∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ < ε2

4
,

for each y ∈ [a, b] with |y − x| < δ(x).
Given an interval I = (α, β) we set F (I) = F (β) − F (α) and
|I| = β − α. If I is a subinterval of (x − δ(x), x + δ(x)), then by
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(4) we have

|F (I)− f(x)|I||
≤ |F (β)− F (x)− f(x)(β − x)|

+|F (α)− F (x)− f(x)(α− x)|(5)

<
ε2

4
|β − x|+ ε2

4
|α− x|

≤ ε2

2
(dist(x, I) + |I|).

Therefore, if {(I1, x1), · · · , (Ip, xp)} is a δ-fine McShane-partition
of [a, b] satisfying the condition

∑p
i=1 dist(xi, Ii) < 1/ε, then by

(5) we get∣∣∣∣∣
p∑
i=1

f(xi)|Ii| − (F (b)− F (a))

∣∣∣∣∣
≤

p∑
i=1

|f(xi)|Ii| − F (Ii)| <
ε2

2

p∑
i=1

(dist(xi, Ii) + |Ii|)

<
ε

2
+
ε

2
= ε.

Thus f is C-integrable on [a, b]. �

Proposition 5. The C-integral is properly contained into the Hen-
stock-Kurzweil integral; i.e. there is a Henstock-Kurzweil inte-
grable function f such that f is not C-integrable.

Proof. Let us consider the function (1) and define f = F ′ in (0, 1]
and f(0) = 0. It is easy to see that f is Riemann improper in-
tegrable on [0, 1], hence f is Henstock-Kurzweil integrable. To
prove that f is not C-integrable we need the following extension
of classical Henstock’s lemma:

Lemma 6. If a function f : [a, b] → R is C-integrable on [a, b],
then given ε > 0 there exists a gauge δ on [a, b] so that

(6)

p∑
i=1

∣∣∣∣f(xi)|Ii| − (C)

∫
Ii

f

∣∣∣∣ < ε ,
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for each δ-fine partial McShane-partition {(I1, x1), . . . , (Ip, xp)} in
[a, b] with

∑p
i=1 dist(xi, Ii) < 1/ε.

Here by “δ-fine partial McShane-partition {(I1, x1), . . . , (Ip, xp)}
in [a, b]” we mean a collection {(I1, x1), . . . , (Ip, xp)} of pairwise
nonoverlapping intervals Ii ⊂ [a, b] and points xi ∈ [a, b] such that
Ii ⊂ (xi − δ(xi), xi + δ(xi)) and

∑p
i=1 |Ii| < b− a.

The proof of this lemma follows easily by a simple adaptation
of standard technics (see [13, Lemma 9.11]).

Assume, by contradiction, that f is C-integrable on [0, 1]. Given
ε > 0, take a gauge δ according with Lemma 6, and let ah =
(π+2hπ)−1/2, bh = (π/2+2hπ)−1/2. It is easy to see that

∑
h ah =∑

h bh = ∞, and that the intervals (ah, bh), h = 1, 2, . . . , are
pairwise disjoint. Moreover, by (1) we have F (ah) = 0, F (bh) = bh,
for each h ∈ N. Take natural numbers n, p such that

(an+i, bn+i) ⊂ (0, δ(0)), i = 1, · · · , p , and ε <

p∑
1

an+i <
1

ε
.

Hence
∑p

1 bn+i >
∑p

1 an+i > ε. Now define I1 = (an+1, bn+1), · · · ,
Ip = (an+p, bn+p). Then {(I1, 0), . . . , (Ip, 0)} is a δ-fine partial
McShane-partition in [0, 1], and

∑p
i=1 dist(0, Ii) =

∑p
i=1 ai < 1/ε.

Moreover
p∑
i=1

∣∣∣∣f(0)|Ii| − (C)

∫
Ii

f

∣∣∣∣ =

p∑
i=1

|F (bn+i)−F (an+i)| =
p∑
i=1

bn+i > ε,

in contradiction with (6). Thus f is not C-integrable on [0, 1]. �

Remark, moreover, that the function (1) is Riemann improper
integrable on [0, 1]. Hence next proposition is also proved.

Proposition 7. The C-integral doesn’t contain the Riemann im-
proper integral.

2. The variational measure VCF

A first descriptive characterization of the C-primitives was ob-
tained by A.M. Bruckner et al. [9]. They proved that a function
F is a C-primitive if and only if F is the limit in variation of a
sequence of absolutely continuous functions.
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Note that, in general, F is not a function of bounded variation;
however, its associate variational measure is absolutely continuous
with respect to the Lebesgue measure. This follows from the ob-
servation that a C-primitive is also a Henstock-Kurzweil primitive
and by [6, Theorem 3].

In fact the last mentioned theorem gives a characterization of
Henstock-Kurzweil primitives. The idea of considering appropriate
variational measures to characterize the primitives of some inte-
gral has been also used in [4, 10, 11] for many multidimensional
integrals and in [7] for the Henstock-dyadic integral and for the
Henstock-symmetric integral.

Given a function F on [a, b], a gauge δ on [a, b], a subset E of
[a, b], and a positive ε, we denote by Vε(F, δ, E) the supremum
of all sums

∑
i |F (Ii)| where {(I1, x1), . . . , (Ip, xp)} runs into the

class of δ-fine partial McShane-partitions of [a, b] with xi ∈ E,
i = 1, 2, · · · p, and

∑p
i=1 dist(xi, Ii) < 1/ε.

It is clear that

(7) Vε1(F, δ, E) ≤ Vε2(F, δ, E), for ε1 > ε2.

Then we define

VCF (E) = supε infδ Vε(F, δ, E).

By the same argument used in [20] for proving Theorem 3.7
and Theorem 3.15, we can show that the extended real-valued set
function VCF is a Borel regular measure in [a, b].

Theorem 8. [2, Theorem 4.1] F is an indefinite C-integral if and
only if the variational measure VCF is absolutely continuous with
respect to the Lebesgue measure.

This characterization is used to prove the following theorem.

Theorem 9. [2, Theorem 4.2] Every BV function is a multiplier
for the C-integral; i.e. if g is a BV function on [a, b] and f is
C-integrable on [a, b], then fg is also C-integrable on [a, b].

Here by BV function we mean a function g : [a, b] → R such
that there exists a function of bounded variation g̃ : [a, b] → R

with g = g̃ almost everywhere in [a, b].
It is known that the product of two derivatives may be not a

derivative. A simple consequence of Theorem 9 show that



ON THE C-INTEGRAL 7

Theorem 10. [2, Theorem 4.3] The product between a derivative
and a BV function is a derivative modulo a Lebesgue integrable
function of arbitrarily small L1-norm; i.e. if f is a derivative and
g is a BV function, then there is a sequence {φn} of derivatives
such that ‖fg − φn‖1 → 0.

3. ACGC Functions

Definition 11. A function F : [a, b]→ R is said to be C-absolutely
continuous on a set E ⊂ [a, b] (br. ACC(E)) whenever for each
ε > 0 there exist a constant η > 0 and a gauge δ on E such that

(8)
∑
i

|F (Ii)| < ε

for each δ-fine partial McShane-partition {(I1, x1), · · · , (Ip, xp)} in
[a, b] satisfying the following conditions:

(α1) xi ∈ E, i = 1, 2, . . . , p ;
(α2)

∑p
i=1 dist(xi, Ii) < 1/ε;

(α3)
∑

i |Ii| < η.

Definition 12. A function F : [a, b]→ R is said to be C-generalized
absolutely continuous on [a, b] (br. ACGC [a, b]) whenever

(β) there exist measurable sets E1, E2, . . . such that [a, b] =⋃
nEn and F is ACC(En), n = 1, 2, . . . .

According with R.A. Gordon [12] a function F : [a, b] → R is
said to be ACδ(E) whenever condition (8) is satisfied for each
δ-fine partial McShane-partition {(I1, x1), · · · , (Ip, xp)} satisfying
conditions (α1), (α3), and

(α2
′)
∑p

i=1 dist(xi, Ii) = 0.

Moreover F is said to be ACGδ[a, b] whenever

(β ′) there exist measurable sets E1, E2, . . . such that [a, b] =⋃
nEn and F is ACδ(En), n = 1, 2, . . . .

Therefore each ACC-function is ACδ, and each ACGC-function
is ACGδ.
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Lemma 13. If F is ACGC [a, b], and E ⊂ [a, b] with |E| = 0, then
for each ε > 0 there is a gauge δ on E such that

p∑
i=1

|F (Ii)| < ε,

for each δ-fine partial McShane-partition {(I1, x1), · · · , (Ip, xp)} in
[a, b] satisfying the following conditions

(α1) xi ∈ E, i = 1, 2, . . . , p ;
(α2)

∑p
i=1 dist(xi, Ii) < 1/ε.

Theorem 14. A function F is ACGC [a, b] if and only if there is
a C-integrable on [a, b] function f such that

(9) F (x)− F (a) = (C)

∫ x

a

f(t) dt, for each x ∈ [a, b].

Proof. Assume that F is ACGC [a, b]. Since F is ACGδ[a, b], by
[12, Theorem 6] and by [19, Chapter VII, Theorem 7.2], F is dif-
ferentiable almost everywhere in [a, b]. Let E be the set of points
x ∈ [a, b] such that F is not differentiable at x. Then |E| = 0. So,
by Lemma 13, given 0 < ε ≤ 1/(b− a) there is a gauge τ on [a, b]
such that

p∑
i=1

|F (Ii)| <
ε

4
,

for each τ -fine partial McShane-partition {(J1, x1), · · · , (Jp, xp)}
in [a, b] with

∑p
i=1 dist(xi, Ii) < 1/ε and xi ∈ E, i = 1, 2, . . . .

If F is differentiable at y then, by (5) we can find a positive
constant γ(y) such that

|F (I)− F ′(y)|I| | < ε2

2
(dist(y, I) + |I|),

for each interval I ⊂ (y − γ(y), y + γ(y)).
Define

δ(y) =

{
τ(y) if y ∈ E,
γ(y) if y 6∈ E,

and

f(y) =

{
0 if y ∈ E,
F ′(y) if y 6∈ E.
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Given x ∈ [a, b] let {(I1, x1), · · · , (Ip, xp)} be a δ-fine McShane-
partition of [a, x] such that

∑p
i=1 dist(xi, Ii) < 1/ε. Then we have∣∣∣∣∣

p∑
i=1

f(xi)|Ii| − (F (x)− F (a))

∣∣∣∣∣
≤

p∑
i=1

|f(xi)|Ii| − F (Ii)|

<
∑
xi∈E

|F (Ii)|+
∑
xi 6∈E

|F ′(xi)|Ii| − F (Ii)|

<
ε

2
+
∑
xi 6∈E

ε2

4
(dist(xi, Ii) + |Ii|)

<
ε

2
+
ε

4
+
ε

4
ε(b− a) ≤ ε.

Thus f is C-integrable on [a, x] and (9) holds. Taking x = b we
see that f is C-integrable on [a, b].

Now assume that f is C-integrable on [a, b] and let F be the
C-primitive of f . For each natural number n we define En = {x ∈
[a, b] : |f(x)| ≤ n}. Then [a, b] =

⋃
nEn. To complete the proof it

is enough to show that F is ACC on En, for each n. By Lemma
6, given ε > 0 there is a gauge δ on [a, b] such that

p∑
i=1

|f(xi)|Ii| − F (Ii)| <
ε

2
,

for each δ-fine partial McShane-partition {(I1, x1), · · · , (Ip, xp)} in
[a, b] with

∑p
i=1 dist(xi, Ii) < 1/ε. Assume that xi ∈ En, i =

1, 2, . . . , and
∑

i |Ii| < ε/2n. Then

p∑
i=1

|F (Ii)|

≤
p∑
i=1

|f(xi)|Ii| − F (Ii)|+
p∑
i=1

|f(xi)| · |Ii|

<
ε

2
+ n

∑
i

|Ii| < ε.
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So F is ACC(En), and the proof is complete. �

4. Convergence Theorems.

Let f be Lebesgue (resp. Henstock-Kurzweil) integrable on

[a, b]. We denote by (L)
∫ b
a
f (resp. (HK)

∫ b
a
f) the Lebesgue

(resp. Henstock-Kurzweil) integral of f on [a, b].

Monotone convergence theorem. Let f1 ≤ f2 ≤ · · · ≤ fn · · ·
be a sequence of C-integrable functions on [a, b] such that the limit

limn(C)
∫ b
a
fn exists finite. Then the function f(x) = limn fn(x) is

C-integrable on [a, b] and we have

(C)

∫ b

a

f(x) dx = lim
n→∞

(C)

∫ b

a

fn(x) dx.

Proof. Since each C-integrable function is Henstock-Kurzweil in-
tegrable, by [18, Corollary 6.3.5] each nonnegative C-integrable
function is Lebesgue integrable, and by [18, Theorem 6.3.3] each
C-integrable function is Lebesgue measurable. Then we can ap-
ply the Lebesgue monotone convergence theorem to the following
sequence

0 ≤ f2 − f1 ≤ f3 − f1 ≤ · · · fn − f1 ≤ · · ·

Hence

(10) (L)

∫ b

a

{f(x)− f1(x)} dx = lim
n→∞

(L)

∫ b

a

{fn(x)− f1(x)} dx.

Now for each n ∈ N we have

(L)

∫ b

a

{fn(x)− f1(x)} dx

= (C)

∫ b

a

{fn(x)− f1(x)} dx

= (C)

∫ b

a

fn(x) dx− (C)

∫ b

a

f1(x) dx.
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Therefore, since limn(C)
∫ b
a
fn exists finite, we can use (10) to infer

that f − f1 is Lebesgue integrable; hence f = (f − f1) + f1 is
C-integrable. Moreover

(C)

∫ b

a

f(x) dx

= (C)

∫ b

a

{f(x)− f1(x)} dx+ (C)

∫ b

a

f1(x) dx

= lim
n→∞

(C)

∫ b

a

fn(x) dx− (C)

∫ b

a

f1(x) dx+ (C)

∫ b

a

f1(x) dx

= lim
n→∞

(C)

∫ b

a

fn(x) dx.

�

Dominated convergence theorem. Let f1, f2, · · · , fn · · · be a
sequence of measurable functions such that

(i) fn(x)→ f(x) almost everywhere in [a, b];
(ii) g(x) ≤ fn(x) ≤ h(x), almost everywhere in [a, b], with g

and h C-integrable on [a, b];

then f is C-integrable on [a, b] and

(C)

∫ b

a

f(x) dx = lim
n→∞

(C)

∫ b

a

fn(x) dx.

Proof. By (ii) we have 0 ≤ fn − g ≤ h− g, almost everywhere in
[a, b]. Moreover h−g is Lebesgue integrable, since non negative and
C-integrable. Then, by Lebesgue dominated convergence theorem,
f − g is Lebesgue integrable on [a, b] with

(L)

∫ b

a

{f(x)− g(x)} dx = lim
n→∞

(L)

∫ b

a

{fn(x)− g(x)} dx.
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Therefore, by f = (f − g) + g we infer that f is C-integrable on
[a, b] with

(C)

∫ b

a

f(x) dx = (C)

∫ b

a

{f(x)− g(x)} dx+ (C)

∫ b

a

g(x) dx

= (L)

∫ b

a

{f(x)− g(x)} dx+ (C)

∫ b

a

g(x) dx

= lim
n→∞

(C)

∫ b

a

fn(x) dx− (C)

∫ b

a

g(x) dx+ (C)

∫ b

a

g(x) dx

= lim
n→∞

(C)

∫ b

a

fn(x) dx.

�

Definition 15. Let E be a subset of [a, b] and let {Fn} be a
sequence of real valued functions defined on [a, b]. It is said that
{Fn} is uniformly ACC(E) if for each ε > 0 there exist a constant
η > 0 and a gauge δ such that

sup
n

∑
i

|Fn(Ii)| < ε,

for each δ-fine partial McShane-partition {(I1, x1), · · · , (Ip, xp)} in
[a, b], satisfying conditions (α1), (α2), (α3).

Definition 16. A sequence {Fn} is said to be uniformlyACGC [a, b]
if there exist measurable sets E1, E2, . . . such that [a, b] =

⋃
k Ek

and {Fn} is uniformly ACC(Ek), k = 1, 2, . . . .

Analogously we define the notions of sequence uniformlyACδ(E)
and uniformly ACGδ[a, b]. It is easy to see that if a sequence {Fn}
is uniformly ACGC [a, b] then {Fn} is uniformly ACGδ[a, b].

Controlled convergence theorem. Let {fn} be a sequence of
C-integrable on [a, b] functions such that

(i) fn(x)→ f(x) almost everywhere in [a, b];
(ii) the sequence Fn(x) = (C)

∫ x
a
fn(t) dt is uniformly ACGC [a, b].

Then f is C-integrable on [a, b] and
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(11) (C)

∫ b

a

f(x) dx = lim
n→∞

(C)

∫ b

a

fn(x) dx.

Proof. Since each C-integrable function is Henstock-Kurzweil in-
tegrable and since each uniformly ACGC sequence is uniformly
ACGδ, then by [3, Theorem 4.1] f is Henstock-Kurzweil integrable
on [a, b] and

(12) (HK)

∫ x

a

f(t) dt = lim
n→∞

(HK)

∫ x

a

fn(t) dt,

for each x ∈ [a, b]. Now, by (ii), there exist a sequence of measu-
rable sets {Eh} such that

• [a, b] =
⋃
hEh,

• for each ε > 0 and each h there exist a constant ηh > 0 and a
gauge δh such that

(13) sup
n

∑
i

|Fn(Ii)| < ε,

for each δh-fine partial McShane-partition {(I1, x1), · · · , (Ip, xp)}
in [a, b], satisfying conditions (α1), (α2), (α3), with Eh for E.

Set F (x) = (HK)
∫ x
a
f(t) dt. Since

Fn(x) = (C)

∫ x

a

fn(t) dt = (HK)

∫ x

a

fn(t) dt,

by (12) we have F (x) = limn Fn(x), for each x ∈ [a, b]. Con-
sequently, by (13), for each h ∈ N and for each δh-fine partial
McShane-partition {(I1, x1), · · · , (Ip, xp)} in [a, b] satisfying con-
ditions (α1), (α2), (α3), with Eh for E, we have

p∑
i=1

|F (Ii)| = lim
n→∞

p∑
i=1

|Fn(Ii)| ≤ ε.

Thus F is ACGC [a, b] and by Theorem 14, F (x) = (C)
∫ x
a
f(t) dt

for each x ∈ [a, b]. In conclusion (11) follows easily by (12). �
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