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Abstract

It is shown that if (Xn)n is a Bochner integrable stochastic process
taking values in a Banach lattice E, the convergence of f(Xn) to f(X)
where f is in a total subset of E∗ implies the a.s. convergence. For any
Banach space E-valued stochastic process of Pettis integrable strongly
measurable functions (Xn)n, the convergence of f(Xn) to f(X) for each
f in a total subset of E∗ implies the convergence in the Pettis norm. Also
convergence theorems of Mc-Shane integrable martingales are given.

1. Introduction

In [4] and [7] it is proved that if (Xn)n is a stochastic process of Bochner
integrable functions taking values in a Banach space E, the convergence of f(Xn)
to f(X) where f is in a total subset of E∗, implies the scalar convergence of
Xn to X. The same result is extended to stochastic processes taking values in
a Banach lattice E.

It is known that the weak Radon-Nikodym property is equivalent to the
convergence in Pettis norm of a uniformly integrable martingale (see [10]). If this
property does not hold, we ask for which class T of functionals f the convergence
of the real valued stochastic process f(Xn) to f(X) implies the convergence of
Xn to X in Pettis norm. In section 4 we prove that for Pettis-integrable strongly
measurable martingales, T can be a total subset of E∗ (Theorem 3).
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In the last section we shall deal with martingales of McShane integrable
functions and the analogous of Theorem 3 is proved (see Theorem 8).

2. Preliminaries

Let E be a Banach space with norm || · ||, B(E) its unit ball and E∗ its dual.
A subset T of E∗ is called a total set over E if f(x) = 0 for each f ∈ T implies
x = 0.
Throughout (Ω,F , P ) is a probability space and (Fn)n∈IN a family of sub-σ-
algebras of F such that Fm ⊂ Fn if m < n. Moreover, without loss of generality,
we will assume that F is the completion of σ(∪nFn).
Let F0 be a sub-σ-algebra of F , then a function X : Ω→ E is called weakly F0

-measurable if the function f(X) is F0-measurable for every f ∈ E∗. A weakly
F-measurable function is called weakly measurable. A function X : Ω → E is
said to be Pettis integrable if f(X) is Lebesgue integrable on Ω for each f ∈ E∗
and there exists a set function ν : F → E such that

fν(A) =
∫
A

fX

for all f ∈ E∗ and A ∈ F . In this case we write ν(A) = P
∫
A
X and we call

ν(Ω) the Pettis integral of X over Ω and ν is the indefinite Pettis integral of X.
The space of all E-valued Pettis integrable functions is denoted by P(E). The
Pettis norm of a Pettis integrable functions is:

|X|P = sup
{∫

Ω

|f(X)| : f ∈ B(E∗)
}
.

The pair (Xn,Fn) is called a stochastic process of Pettis integrable functions if,
for each n ∈ IN , Xn : Ω→ E is Pettis integrable, Xn is weakly Fn-measurable
and the Pettis conditional expectation E(Xn|Fm) of Xn exists for all n ≥ m.
It should be noted that, in general, if X is only Pettis integrable, even it is
strongly measurable, there is no Pettis conditional expectation of X with respect
to a sub-σ-algebra of F . The stochastic process (Xn,Fn) is called a martingale
if E(Xn|Fm) = Xm for n ≥ m.
A martingale (Xn,Fn) is

(i) convergent in P(E) if there exists a function X ∈ P(E) such that

lim
n→∞

|Xn −X|P = 0;

(ii) variationally bounded if supn |νn|(Ω) < ∞ where νn(A) = P
∫
A
Xn and

|νn| denotes the variation of νn;

(iii) uniformly continuous if limP (A)→0 P
∫
A
Xn = 0 uniformly with respect to

n;

(iv) uniformly integrable if it is variationally bounded and uniformly conti-
nuous.
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3. Banach lattice valued stochastic processes

In this section we consider stochastic processes consisting of strongly mea-
surable Bochner integrable random variables taking values in a Banach lattice
(see [5], Chapter VIII). For an element x ∈ E we denote by x+ the least upper
bound between x and 0. The Banach lattice E is said to have the order conti-
nuous norm or, briefly, to be order continuous, if for every downward directed
set {xα}α in E with ∧αxα = 0, then limα ||xα|| = 0. The norm on a Banach
space has the Kadec-Klee property with respect to a set D ⊂ E∗ if whenever
limn f(xn) = f(x) for every f ∈ D and limn ||xn|| = ||x||, then limn xn = x
strongly. If D = E∗ we say that the norm has the Kadec-Klee property. It was
proved in [3] the following renorming Theorem for Banach lattices.

Theorem 1 A Banach lattice E is order continuous if and only if there is an
equivalent lattice norm on E with the Kadec-Klee property.

It is obvious that if E is separable, the equivalent norm has the Kadec-Klee
property with respect to a countable set of functionals.
A stopping time is a map τ : Ω → IN ∪ {∞} such that, for each n ∈ IN ,
{τ ≤ n} = {ω ∈ Ω : τ(ω) ≤ n} ∈ Fn. We denote by Γ be the collection of all
simple stopping times (i.e. taking finitely many values and not taking the value
∞), then Γ is a set filtering to the right. A stochastic process (Xn,Fn) is called
a subpramart if for each ε > 0 there exists τ0 ∈ Γ such that for all τ and σ in Γ,
τ, σ ≥ τ0 then

P ({||(Xσ − E(Xτ |Fσ))+|| > ε}) ≤ ε.
If (Xn,Fn) is a positive supramart, then for each f ∈ (E∗)+, where (E∗)+

denotes the nonnegative cone in E∗, (f(Xn),Fn) and (||Xn||,Fn) are real valued
positive subpramarts ([5], Lemma viii.1.12)
If E has the Radon-Nikodym property each L1-bounded subpramart converges
strongly a.s.. Without assuming this property we ask which class of functionals
has the property that the scalar convergence of f(Xn) to f(X) for each f in
the class implies the strong convergence. We are able to prove the following
theorem.

Theorem 2 ([8], Theorem 3.8) Let E be an order continuous Banach lattice,
which is weakly sequentially complete and let T be a total subset of E∗. Let
(Xn,Fn) be a positive subpramart with an L1-bounded subsequence and let X
be a strongly measurable random variable. Assume that, for each f ∈ T , f(Xn)
converges to f(X) a.s. (the null set depends on f). Then Xn converges to X
strongly a.s..

Proof. Since (Xn) and X are strongly measurable it is possible to assume that
E is separable. By a decomposition theorem ([5], Lemma viii.1.17) and the fact
that a subsequence of (Xn)n, still denoted by (Xn)n, is L1-bounded we can also
assume that

Xnk = Ynk + Znk
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where Ynk and Znk are Fnk -measurable, (Ynk)k is uniformly integrable and
limk Znk = 0, a.s.. For each f ∈ (E∗)+, f(Xn)n is a real valued subpramart with
an L1-bounded subsequence, then it converges a.s. to a real random variable
Xf . Also f(Ynk) converges to Xf a.s. and in L1. In particular for each f ∈ T ,
limk f(Ynk) = f(X). So for A ∈ σ(∪nFn)

lim
k

∫
A

f(Ynk)

exists in IR. Hence (
∫
A
Ynk)k is weakly Chauchy. Since the Banach lattice E is

weakly sequentially complete, let for every A ∈ σ(∪nFn)

µ(A) = w − lim
k

∫
A

Ynk .

Then µ is a measure of bounded variation and it is absolutely continuous with
respect to P . For each f ∈ T we have

f(µ(A)) = lim
k

∫
A

f(Ynk) =
∫
A

f(X).

Let An = {||X|| ≤ n}, then XIAn is Bochner integrable and

f(µ(An)) =
∫
An

f(X) = f

∫
An

X.

Since T is a total set it follows that

µ(An) =
∫
An

X.

Moreover the uniform integrability of (Ynk)k implies that∫
An

||X|| = ||µ||(An) ≤ sup
k

∫
Ω

Ynk , (1)

and since X is strongly measurable, P (∪n(||X|| ≤ n)) = 1. Letting n → ∞ in
(1), we get that X is Bochner integrable and for each A ∈ σ(∪nFn)

µ(A) =
∫
A

X.

It follows that ∫
A

f(X) = f(µ(A)) = lim
k

∫
A

f(Ynk) =
∫
A

Xf ,

for each f ∈ (E∗)+ and A ∈ ∪nFn. Hence f(X) = Xf a.s. and for each
f ∈ (E∗)+, f(Xn) converges to f(X) a.s.. Let ||| · ||| denote the Kadec-Klee norm
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equivalent to || · ||, as in Theorem 1, and let D ∈ (E∗)+ be a countable nor-
ming subset. Applying ([5], Lemma viii.1.15) to the sequence {(f(Xn),Fn), n ∈
IN, f ∈ D} it follows that limn |||Xn||| = |||X|||, a.s.. Now invoking again Theorem
1 we get the strong convergence of Xn to X and the assert follows. 2

Considering that if a Banach space E does not contain c0, it is order conti-
nuous and weakly sequentially complete, the following corollary holds.

Corollary 1 Let E be a Banach lattice not containing c0 as an isomorphic
copy and let T be a total subset of E∗. Let (Xn,Fn) be a positive subpramart
with an L1-bounded subsequence and let X be a strongly measurable random
variable. Assume that, for each f ∈ T , f(Xn) converges to f(X) a.s. (the null
set depends on f). Then Xn converges to X strongly a.s..

4. Convergence of Pettis integrable stochastic processes

In this section we consider Pettis integrable stochastic processes.

Theorem 3 Let (Xn,Fn) be an uniformly integrable martingale of Pettis inte-
grable strongly measurable functions, X a weakly measurable function. Let T be
a total subset of X∗, and assume that f(Xn) converges to f(X) a.s. for each
f ∈ T (the null set depends on f). Then X ∈ P(E) and Xn converges to X in
the Pettis norm.

Proof. By Pettis measurability Theorem we can assume that E is separable,
then since T is closed and weak∗-dense, the assert follows from [9] Theorem 1.

2

Remark 1 Since in Theorem 3 we can suppose E separable, the weak measu-
rability of X can be replaced by the measurability of the functions f(X) for all
f ∈ T (see [2]).

We will extend Theorem 3 to more general stochastic processes (Xn,Fn).

Definition 1 A stochastic process (Xn,Fn) of Bochner integrable functions is
said to be L1-bounded if supn

∫
Ω
||Xn|| <∞.

Definition 2 A stochastic process (Xn,Fn) of strongly measurable functions is
said to be a game which becomes fairer with time (briefly a P -martingale), if
for each ε > 0

lim
n

sup
m≥n

P (||E(Xm|Fn)−Xn|| > ε) = 0.
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If for each ε > 0

lim
n

sup
m≥n

P ( sup
n≤q≤m

||E(Xm|Fq)−Xq|| > ε) = 0

the sequence (Xn,Fn) is called a mil.

Definition 3 A stochastic process (Xn,Fn) of Pettis integrable functions is
σ-bounded if there exists an increasing sequence (Bn)n, Bn ∈ Fn, such that
limn P (Bn) = 1 and the sequence (Xn) restricted to each Bm, m = 1, 2, . . . , is
L1-bounded.

For more details and the proofs of the following Theorems see [9].

Theorem 4 Let (Xn,Fn) be a σ-bounded P -martingale of Pettis integrable
functions and X a weakly measurable function. Let T be a total subset of E∗,
and assume that f(Xn) converges to f(X) a.s. for each f ∈ T (the null set
depends on f). Then Xn converges to X in probability (i.e. for every ε > 0 we
have limn→∞ P (|Xn −X| > ε) = 0).

Theorem 5 Let (Xn,Fn) be a σ-bounded mil of Pettis integrable strongly mea-
surable functions and X a weakly measurable function. Moreover let T be a total
subset of E∗, and assume that f(Xn) converges to f(X) a.s. for each f ∈ T (the
null set depends on f). Then Xn converges to X a.s. in the strong topology.

As we noted in Remark 1 the hypothesis of weak measurability of X in Theorems
4 and 5 can be substituted by the measurability of the functions f(X) for all
f ∈ T .
Assuming a weaker strong measurability condition on the martingale (Xn,Fn),
in Theorem 3 we obtain:

Theorem 6 Let (Xn,Fn) be an uniformly integrable martingale of Pettis inte-
grable functions such that the indefinite integrals of all Xn have norm relatively
compact range and let X be a weakly measurable function. Assume that there
exists an increasing sequence of measurable sets (Bm)m, Bm ∈ Fm, such that
limm P (Bm) = 1 and that the function Xn restricted to each Bm is strongly
measurable, n = 1, 2, . . .. Assume, moreover, that for each f ∈ T , where T is
a total set, f(Xn) converges to f(X) a.s. (the null set depends on f). Then
X ∈ P(E) and Xn converges to X in the Pettis norm.

Theorem 3 and Theorem 6 hold also for amarts, changing the proofs as in
[13] Theorem 2.
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5. Martingale of McShane integrable functions

In this section we consider stochastic processes of McShane integrable func-
tions.
Let (Ω,A,F , P ) be a probability space which is a quasi-Radon, outer regular
and compact probability space. A Mc-Shane partition of Ω is a set {(Si, ωi), i =
1, . . . , p} where (Si)i is a disjoint family of measurable sets of finite measure,
P (Ω \ ∪pi=1Si) = 0 and ωi ∈ Ω for each i = 1, . . . , p. A gauge on Ω is a
function ∆ : Ω→ A such that ω ∈ ∆(ω) for each ω ∈ Ω. A Mc-Shane partition
{(Si, ωi), i = 1, . . . , p} is subordinate to a gauge ∆ if Si ⊂ ∆(ωi) for i = 1, . . . , p.
A function f : Ω → E is McShane integrable (briefly M -integrable), with Mc-
Shane integral z ∈ E if for each ε > 0 there exists a gauge ∆ : Ω → A, such
that ∣∣∣∣∣

∣∣∣∣∣
p∑
i=1

P (Si)f(ωi)− z

∣∣∣∣∣
∣∣∣∣∣ < ε

for each McShane partition {(Si, ωi) : i = 1, . . . , p} subordinate to ∆.
It is known that if f : Ω→ E is M -integrable, then νf (Ω) =

{
(M)

∫
A
f : A ∈ F

}
is totally bounded (see [1], Theorem B and [6], Corollary 3E), hence it is norm
relatively compact. Denote by M(E) the set of all M -integrable functions en-
dowed with the seminorm

|X|M = sup
{∫

Ω

|f(X)| : f ∈ B(E∗)
}
,

which is equivalent to the seminorm ([11])

sup
{∣∣∣∣∣∣∣∣M∫

A

X

∣∣∣∣∣∣∣∣ : A ∈ F
}
.

If G is a sub-σ-algebra of F , X is McShane integrable and Y is McShane inte-
grable on (Ω,A,G, P ), then Y is called the McShane conditional expectation of
X with respect to G if

(i) Y is weakly G-measurable;

(ii) for every A ∈ G, M
∫
A
Y = M

∫
A
X.

The symbol Y = EM (X|G) will denote the McShane conditional expectation of
X with respect to G.
We say that (Xn,Fn) is a stochastic process of M -integrable functions, if for
each n ∈ IN , Xn is M -integrable, Xn is weakly measurable with respect to
Fn and the McShane conditional expectation EM (Xn|Fm) of Xn exists for all
n ≥ m. Also we observe that the conditional expectation of a M -integrable
function does not always exist, indeed the same is true for strongly measurable
Pettis integrable functions and a strongly measurable Pettis integrable function
is McShane integrable.
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As in case of a stochastic process of Pettis integrable functions, we say that
(Xn,Fn) is a martingale if Xn is a M -integrable function for each n, and if for
all n ≥ m EM (Xn|Fm) = Xm or equivalently for all A ∈ Fm

M

∫
A

Xm = M

∫
A

Xn.

If X is M -integrable and EM (X|Fn) exists for all n, then Xn = EM (X|Fn) is
called a closed martingale. Since aM -integrable function is Pettis integrable and
νf (Ω) =

{
(M)

∫
A
f : A ∈ F

}
is norm relatively compact, there exists a sequence

of simple functions fn : Ω→ E, converging to f in | · |M , i.e. lim |fn− f |M = 0.
The following proposition is an extension of Lemma 1.4 of [12] to a martingale
of McShane integrable functions. The proof follows with suitable changes.

Proposition 1 Let (Xn,Fn) be a martingale of M -integrable functions. Then
the following are equivalent:

(i) there exists a M -integrable function X such that Xn is | · |M convergent
to X;

(ii) there exists a M -integrable function X such that EM (X|Fn) = Xn for
each n ∈ IN ;

(iii) there exists a M -integrable function X such that for each A ∈ ∪nFn

lim
n
M

∫
A

Xn = M

∫
A

X.

The condition (ii)⇒ (i) in the previous Proposition says that a closed martin-
gale is | · |M convergent. We have the following:

Proposition 2 Let (Xn,Fn) be a martingale of M -integrable functions. Then,
for all A ∈ ∪nFn, the set function µ(A) = limnM

∫
A
Xn is absolutely continuous

and has norm relatively compact range if and only if the martingale (Xn,Fn) is
| · |M Chauchy.

Proof. First we prove the necessary part.
Since µ has norm relatively compact range, by Hoffman-Jorgensen Theorem for
each ε > 0 there exists a function Hε : Ω→ E such that Hε =

∑k
i=1 xiIAi , with

Ai ∈ ∪nFn and xi ∈ E, so that

sup
{∣∣∣∣∣∣∣∣µ(A)−

∫
A

Hε

∣∣∣∣∣∣∣∣ : A ∈ ∪nFn
}
< ε.

Take ε > 0 and let H = Hε/4, there exists m0 for which Ai ∈ Fm0 , for i =
1, . . . , k. Since µ(A) = limnM

∫
A
Xn there is m0 such that

∣∣∣∣µ(A)−M
∫
A
Xn

∣∣∣∣ <
ε
4 for n > m0. Let n,m ≥ m0.
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We have

sup
{∣∣∣∣M∫

A
(Xn −Xm)

∣∣∣∣ : A ∈ ∪nFn
}

≤ sup
{∣∣∣∣M∫

A
(Xn −H)

∣∣∣∣ : A ∈ ∪nFn
}

+ sup
{∣∣∣∣M∫

A
(H −Xm)

∣∣∣∣ : A ∈ ∪nFn
}

≤ sup
{∣∣∣∣M∫

A
Xn − µ(A)

∣∣∣∣ : A ∈ ∪nFn
}

+ sup
{∣∣∣∣µ(A)−M

∫
A
H
∣∣∣∣ : A ∈ ∪nFn

}
+ sup

{∣∣∣∣M∫
A
Xm − µ(A)

∣∣∣∣ : A ∈ ∪nFn
}

+ sup
{∣∣∣∣µ(A)−M

∫
A
H
∣∣∣∣ : A ∈ ∪nFn

}
< ε

4 + ε
4 + ε

4 + ε
4 = ε.

Then |Xn −Xm|M < ε for n,m ≥ m0.
Conversely choose ε > 0 and find m0 such that if n,m ≥ m0 then |Xn−Xm|M <
ε. If µn(A) = M

∫
A
Xn for A ∈ ∪Fn then

||µn(A)− µm(A)||M ≤ |Xn −Xm|M < ε.

So the sequence of measures µn is Chauchy, therefore limn µn(A) = µ(A) exists.
The functions Xn are M -integrable, then µn has a norm relatively compact
range and since the convergence is uniform in A ∈ ∪nFn, it follows that µ is
absolutely continuous and has a norm relatively compact range. 2

Proposition 1 and Proposition 2 hold also for M -integrable martingales indexed
by a directed set.
We will prove now two convergence theorems for a M -integrable martingale.

Theorem 7 Let (Xn,Fn) be an uniformly integrable martingale of M -integrable
functions and suppose that there exists a weakly measurable function X : Ω→ E
such that f(Xn) converges to f(X) a.s.. Then Xn is | · |M convergent to X.

Proof. Since (Xn)n is uniformly integrable the set function ν : ∪nFn → E
defined as

ν(A) = lim
n
M

∫
A

Xn

is an absolutely continuous measure of bounded variation and it can be extended
to the whole F to an absolutely continuous measure of bounded variation. Mo-
reover for each ω /∈ N with P (N) = 0, f(Xn(ω)) converges to f(X(ω)) for each
f ∈ E∗. Hence it follows from [6] Theorem 4A that X is M -integrable and
ν(Ω) = M

∫
Ω
X. Then for each A ∈ ∪nFn

lim
n
M

∫
A

Xn = M

∫
A

X

and the assert follows from Proposition 1. 2
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Definition 4 A function X : Ω → E is called weakly asymptotically measu-
rable with respect to an increasing family (Fn)n of sub-σ-algebras of F if there
exists an integer N such that for all n > N and for all f ∈ E∗ f(X) is Fn-
measurable.

Theorem 8 Let (Xn,Fn) be an uniformly integrable martingale of M -integrable
functions and let T be a weak∗-sequentially dense subset of E∗. Assume that
there exists a weakly measurable function X : Ω → E such that X is weakly
asymptotically measurable with respect to (Fn) and such that, for each f ∈ T ,
f(Xn) converges to f(X) a.s. (the null set depends on f). Then Xn is | · |M
convergent to X.

Proof. Since each McShane integrable function is Pettis integrable it follows
by [9] Theorem 1 that X is Pettis integrable, (Xn) converges to X in the Pettis
norm and

µ(A) = lim
n
M

∫
A

Xn = P

∫
A

X

for all A ∈ ∪nFn. We want to prove that X is M -integrable. Since X is
weakly asymptotically measurable there exists N ∈ IN such that X is weakly
FN -measurable, then

E(X|FN ) = X (2)

and also
E(X|FN ) = XN . (3)

Then (2) and (3) implies that X = XN a.s. and X is M -integrable. Therefore
the assert follows from Proposition 1. 2
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