A NONABSOLUTELY CONVERGENT INTEGRAL DEFINED BY PARTITIONS OF THE UNITY *

Giuseppa Riccobono - Dipartimento di Matematica - Universitá di Palermo - Via Archirafi, 34 - 90123 Palermo - Italy—E-mail:ricco@dipmat.math.unipa.it

Abstract.

In a compact metric measure space with measure μ , we define an integral by partitions of the unity such that a μ -integrable function is also integrable and a function which is integrable but it is not μ -integrable is constructed in a suitable non Euclidean space.

Keywords: Lebesgue measure, partition of unity,(PU)*-integral Classification: 28A25

Introduction

In [5], a type of integral defined by partitions of the unity (PU-integral) is defined on an abstract compact metric measure space and it is proved that a PU-integrable function is μ -integrable and that the μ -integral is equivalent to the PU-integral. Moreover an example of a non Euclidean space on which is defined this type of integral is given. The PU-integral is obtained by approximations of type Riemann sums. The advantage to use a such integral is that it does not use the geometry of the space so it can be defined in any abstract space.

In this paper X denotes a compact metric space, \mathcal{M} a σ -algebra of subsets of X such that each open set is in \mathcal{M} , μ a non-atomic, finite, complete Radon measure on \mathcal{M} such that:

- α) each ball U(x,r) centered at x with radius r has a positive measure,
- β) for every x in X there is a number $h(x) \in \Re$ such that $\mu(U[x, 2r]) \le h(x) \cdot \mu(U[x, r])$ for all r > 0 (where U[x, r]) is the closed ball),
 - γ) $\mu(\partial U(x,r)) = 0$ where $\partial U(x,r)$ is the boundary of U(x,r).

Definition 1 A partition of unity (PU-partition) in X is, by definition, a finite collection $P = \{(\theta_i, x_i)\}_{i=1}^p$ where $x_i \in X$ and θ_i are non negative, μ -measurable and μ -integrable real functions on X such that $\sum_{i=1}^p \theta_i(x) = 1$ a.e. in X.

The PU-partition is a PU*-partition if $x_i \in S_{\theta_i} = \{x \in X : \theta_i(x) \neq 0\}.$

Definition 2 If δ is a positive function on X, a PU-partition $P = \{(\theta_i, x_i)\}_{i=1}^p$ is said to be δ -fine if $S_{\theta_i} \subset U(x_i, \delta(x_i))$ (i = 1, 2, ..., p).

Definition 3 A real function f on a compact set $A \subseteq X$ is said to be (PU)-integrable on A if there exists a real number I with the property that, for every

^{*} This work was supported by M.U.R.S.T.

given $\epsilon > 0$, there is a positive function δ such that $|\sum_{i=1}^p f(x_i) \cdot \int_A \theta_i d\mu - I| < \epsilon$ for each δ -fine (PU)-partition $P = \{(\theta_i, x_i)\}_{i=1}^p$ in A.

The number I is called the (PU)-integral of f on A and we write $I=(PU)\int_A f$.

For $(PU)^*$ -partitions, we have the $(PU)^*$ -integral and set $I = (PU)^* \int_A f$.

Main results

Proposition 1 If δ is a positive function on a compact set $A \subseteq X$ then there is a δ -fine PU*-partition in A.

Proof. See the Proof of Proposition 1.1 in [5].

Denoting by $\mathcal{PU}^*(A)$ the family of all the PU*-integrable real functions on A, the following Proposition is an immediate consequence of the Definition 4.

Proposition 2 If $A \subseteq X$ is compact, then:

- 1) $\mathcal{P}\mathcal{U}^*(A)$ is a linear space and the map $f \to (PU)^* \int_A f$ is a non negative linear functional on $\mathcal{P}\mathcal{U}^*(A)$;
- 2) if $k \in \Re$ and f(x) = k for each $x \in A$ then $f \in \mathcal{PU}^*(A)$ and $(PU)^* \int_A f = k\mu(A)$.
 - 3) if f, $g \in \mathcal{PU}^*(\mathcal{A})$ and $f \leq g$ then $(PU)^* \int_A f \leq (PU)^* \int_A g$. If $P = \{(\theta_i, x_i)\}_{i=1}^n$ is a partition in A, set $\sigma(f, P) = \sum_{i=1}^n f(x_i) \int_A \theta_i d\mu$.

Proposition 3 If A is a compact subset of X and if $f \in \mathcal{PU}^*(X)$ then $f \in \mathcal{PU}^*(A)$.

Proof . See Proposition 1.3 in [5].

Proposition 4 If f is a real function on a compact set $A \subseteq X$, then $f \in \mathcal{PU}^*(A)$ if and only if for each $\epsilon > 0$ there is a positive function δ on A such that $|\sigma(f,P) - \sigma(f,Q)| < \epsilon$ for every $P = \{(\theta_i,x_i)\}_{i=1}^n$ and $Q = \{(\theta_i',x_i')\}_{i=1}^p$ δ -fine PU*-partitions in A.

Proof . See proposition 1.2 in [5].

Proposition 5 If f is μ -measurable and μ -integrable on X, then $f \in \mathcal{PU}^*(X)$ and $(PU)^* \int_X f = \int_X f d\mu$.

Proof. It follows by the equivalence between the PU-integral and the μ -integral (see [5]) and because a PU*-partition is also a PU-partition.

Proposition 6 A PU*-integrable function is μ -measurable. **Proof** It is analogue to that used in [5] Propositions 2.3 and 2.4.

Proposition 7 If f, g are two real functions on X and f = g a.e. in X then g is $(PU)^*$ -integrable if and only if f is $(PU)^*$ -integrable and the two integral coincide.

Proof If f is $(PU)^*$ -measurable then by Proposition 6 it is μ -measurable and by completeness of measure also g is μ -measurable, then f-g=0 a.e. and it is μ -measurable, μ -integrable and (PU)*-integrable with $(PU)^* \int_X (f-g) = 0$. So g = f - (f - g) is (PU)*-integrable.

Lemma 1 If f is a real μ -integrable function on X, A, $B \in \mathcal{M}$, with $A \subset B$, and if $c \in \Re$ and $\int_A f d\mu \leq c \leq \int_B f d\mu$ then there exists a μ -measurable set C such that $A \subset C \subset \overline{B}$ and $\int_C f d\mu = c$.

Proof Consider the σ -algebra $\mathcal{D} = \{D \in \mathcal{M} : D \subset B - A\}$ and the signed

measure $\alpha: D \to \int_D f d\mu$ for $D \in \mathcal{D}$. By Liapounoff theorem (see [7]), the set $\{\alpha(D): D \in \mathcal{D}\}$ is a compact interval.

$$\alpha(\emptyset) = 0 < c - \int_A f d\mu < \int_{B-A} f d\mu$$

and exists $D_1 \in \mathcal{D}$ such that

$$\int_{D_1} f d\mu = c - \int_A f d\mu$$

$$c = \int_{A \cup D_1} f d\mu, \quad A \subset A \cup D_1 \subset B.$$

Proposition 8 If f is a μ -measurable and PU*-integrable function on X, then for each $\epsilon > 0$ there is a μ -measurable set E such that $\mu(X - E) < \epsilon$, f is μ -integrable on E and $\int_{E} f d\mu = (PU)^* \int_{X} f$. **Proof** Suppose that f be not μ -integrable; set

$$E_n = \{x \in X : n-1 \le f(x) < n\}, \quad F_n = \{x \in X : -n \le f(x) < -n+1\} \quad n = 1, 2, 3, ...,$$

then

$$X = \bigcup_{n=1}^{\infty} (E_n \cup F_n) = \bigcup_{n=1}^{\infty} (\bigcup_{i=1}^{n} (E_i \cup F_i)) = \bigcup_{n=1}^{\infty} H_n,$$

where $H_n = \bigcup_{i=1}^n (E_i \cup F_i)$ is an increasing sequence of measurable sets.

By a property of the measure, it results $\lim_{n\to\infty} \mu(H_n) = \mu(X)$ and for each $\epsilon > 0$ there is $\bar{n} \in N$ such that for $n_0 > \bar{n}$ it is

$$\mu(X) - \mu(H_{n_0}) = \mu(X - H_{n_0}) < \epsilon$$
 (*)

f is bounded on H_{n_0} so it is μ -integrable on H_{n_0} . Suppose that $\int_{H_{n_0}} f d\mu < (PU^*) \int_X f$; since f is not μ -integrable, then the series $\sum_n \int_{E_n} f d\mu$ and $\sum_n \int_{F_n} f d\mu$ are divergent to $+\infty$ and to $-\infty$ respectively. In fact, if $\sum_n \int_{E_n} f d\mu = +\infty$ and $\sum_n \int_{F_n} f d\mu > -\infty$, consider the functions

$$f_1(x) = f(x)$$
 if $x \in \bigcup_n E_n$ and $f_1(x) = 0$ elsewhere,

$$f_2(x) = f(x)$$
 if $x \in \bigcup_n F_n$ and $f_2(x) = 0$ elsewhere,

then $f_2(x)$ is μ -integrable and hence (PU)*-integrable and $f_1(x) = f(x) - f_2(x)$ is (PU)*-integrable, but it is also μ -integrable with integral $+\infty$ and this is impossible. So for $\epsilon > 0$ there exists $K > n_0$ such that

$$\int_{H_{n_0}} f d\mu + \int_{E_{n_0+1}} f d\mu + \dots + \int_{E_{n_0+k}} f d\mu > (PU)^* \int_X f d\mu$$

and set $H = H_{n_0} \cup E_{n_0+1} \cup \cup E_{n_0+k}$, it results

$$\int_{H_{n_0}} f d\mu < (PU)^* \int_X f < \int_H f d\mu.$$

By Lemma 1 there exists a μ -measurable set E with $H_{n_0} \subset E \subset H$ such that $\int_E f d\mu = (PU)^* \int_X f$ and by relation (*) we have:

$$\mu(X - E) \le \mu(X - H_{n_0}) < \epsilon.$$

Lemma 2 If f is μ -measurable and there exists finite $\int_X f d\mu$, given $\epsilon > 0$ there is a positive function δ on X such that

$$\sum_{i} |(f(x_i) \int_X \theta_i d\mu - \int_X f \theta_i d\mu)| < \epsilon$$

for each δ -fine (PU)*-partition $P = \{(\theta_i, x_i)\}$ in X.

Proof See Proposition 3.1 in [5]

Proposition 9 A μ -measurable function f is (PU)*-integrable on X if and only if given $\epsilon > 0$ there is a positive function δ on X and a μ -measurable set E such that $\mu(E^C) < \epsilon$, f is μ -integrable on E and $|\sum_i f\chi_{E^C}(x_i) \int_X \theta_i d\mu| < \epsilon$ for each δ -fine (PU)*-partition $P = \{(\theta_i, x_i)\}$. Moreover $\int_E f d\mu = (PU)^* \int_X f$. We have set $E^C = X - E$.

Proof If f is $(PU)^*$ -integrable, by previous Proposition, let $\epsilon > 0$ there is $E \in \mathcal{M}$ such that $\mu(E^C) < \epsilon$, f is μ -integrable on E and $\int_E f d\mu = (PU)^* \int_X f$; so $f\chi_E$ is μ -integrable and hence $(PU)^*$ -integrable and

$$(PU)^* \int_X f \chi_E = \int_X f \chi_E d\mu = \int_E f d\mu = (PU)^* \int_X f.$$

By the (PU)*-integrability of f and $f\chi_E$, at correspondence of $\epsilon > 0$ there is a positive function δ on X such that for each δ -fine (PU)*-partition $\{(\theta_i, x_i)\}$, it results

$$\left|\sum_{i} f(x_i) \int_{X} \theta_i d\mu - (PU)^* \int_{X} f\right| < \frac{\epsilon}{2}$$

and

$$\sum_{i} f(x_i) \chi_E \int_X \theta_i d\mu - (PU)^* \int_X f| < \frac{\epsilon}{2}.$$

So we have

$$\left|\sum_{i} f(x_i)\chi_{E^C} \int_X \theta_i d\mu\right| = \left|\sum_{i} f(x_i) \int_X \theta_i d\mu - \sum_{i} f(x_i)\chi_E \int_X \theta_i d\mu\right| \le$$

$$\leq |\sum_{i} f(x_i) \int_X \theta_i d\mu - (PU)^* \int_X f| + |\sum_{i} f \chi_E(x_i) \int_X \theta_i d\mu - (PU)^* \int_X f| < \epsilon.$$

Conversely, for $\epsilon>0$ let E be a $\mu-$ measurable and $\mu-$ integrable set with $\mu(E^C)<\epsilon$ and let δ be a positive function on X such that $|\sum_i f\chi^C_E(x_i)\int_X \theta_i d\mu|<$ $\frac{\epsilon}{2}$ for each δ -fine (PU)*-partition P in X.

By the μ -integrability of f on E, then also the function $f\chi_E$ is μ -integrable and, by lemma 2, there is a positive function δ_1 on X such that

$$\left|\sum_{i} f\chi_{E}(x_{i}) \int_{X} \theta_{i} d\mu - \int_{X} f\chi_{E} d\mu\right| < \frac{\epsilon}{2}$$

If $\bar{\delta}(x) = \min(\delta(x), \delta_1(x))$ for each $x \in X$, then for each $\bar{\delta}$ -fine (PU)*partition P consider:

$$\begin{split} |\sum_{i} f(x_{i}) \int_{X} \theta_{i} d\mu - \int_{E} f d\mu| &\leq |\sum_{i} f \chi_{E}(x_{i}) \int_{X} \theta_{i} d\mu - \int_{E} f d\mu| + \\ + |\sum_{i} f \chi_{E}^{C}(x_{i}) \int_{X} \theta_{i} d\mu| &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

So f is (PU)*-integrable and $(PU)^* \int_X f = \int_E f d\mu$. **Proposition 10** If f and |f| are (PU)*-integrable then f is μ -integrable. **Proof** If f and |f| are $(PU)^*$ -integrable, consider the bounded sequence $f_n = |f| \land n$ for each $n \in N$ it converges increasing to |f| and it is μ -integrable

$$\int_X |f| d\mu = \lim_n \int_X f_n d\mu = \lim_n (PU)^* \int_X f_n \le (PU)^* \int_X |f| < +\infty.$$

So |f| and f are μ -integrable.

If $(f_n)_n$ is an increasing sequence of $(PU)^*$ -integrable functions converging to f pointwise and $\lim_n (PU)^* \int_X f_n < \infty$ then f is $(PU)^*$ integrable and $(PU)^* \int_X f = \lim_n (PU)^* \int_X f_n$.

Consider the increasing sequence $(f_n - f_1)_n$ converging to $f - f_1$; since the functions $(f_n - f_1)_n$ are non negative, then by Proposition 10, they are μ -integrable and

$$\lim_{n} \int_{X} (f_{n} - f_{1}) d\mu = \lim_{n} (PU)^{*} \int_{X} (f_{n} - f_{1}) =$$

$$= \lim_{n} (PU)^{*} \int_{X} f_{n} - (PU)^{*} \int_{X} f_{1} < +\infty.$$

So by the monotone theorem for the μ -integrable functions, the function $(f - f_1)$ is μ -integrable and hence (PU)*-integrable. Therefore $f = (f - f_1) + f_1$ is (PU)*integrable.

Proposition 12 If $(f_n)_n$ is a sequence of $(PU)^*$ integrable functions converging to f and such that there are two functions h and g (PU)*-integrable with $h \leq f_n \leq g$ for each $n \in N$ then f is $(PU)^*$ -integrable and $(PU)^* \int_X f =$ $\lim_{n} (PU)^* \int_X f_n.$ **Proof** C

Consider the sequence $(f_n - h)_n$; it is non negative and $(PU)^*$ integrable, so it is μ -integrable and results:

$$0 \le (f_n - h) \le (g - h).$$

Since the function g-h is non negative and (PU)*-integrable, it is μ -integrable and by the dominate convergent theorem, the sequence of functions $(f_n - h)$ converges to f - h which is a μ -integrable function and hence (PU)*-integrable. By the equality f = (f - h) + h it follows the (PU)*-integrability of f.

Proposition 13 If f is μ -measurable and exists finite $\int_X f d\mu$ but $\int_X |f| d\mu = +\infty$ then f is $(PU)^*$ -integrable and $\int_X f d\mu = (PU)^* \int_X f$. **Proof** If $\epsilon > 0$, by lemma 2, there is positive function δ on X such that if $P = \{(\theta_i, x_i)\}\$ is a (PU)*-partition in X, then we have:

$$\epsilon > |\sum_{i} (f(x_i) \int_X \theta_i d\mu - \int_X f \theta_i d\mu)| = |\sum_{i} f(x_i) \int_X \theta_i d\mu - \sum_{i} f \theta_i d\mu| =$$
$$= |\sum_{i} (f(x_i) \int_X \theta_i d\mu - \int_X f d\mu)|.$$

An example of a function which is PU*-integrable but it is not PUintegrable.

Consider the space $X = \{0,1\}^N$. Let $\bar{\alpha} = \alpha_1 \alpha_2 ... \alpha_k$ be a finite string of 0 and 1; consider the set $A_{\bar{\alpha}} = [\bar{\alpha}]_k = \{ \gamma \in X : \gamma = \bar{\alpha}\beta, \text{ for some } \beta \in X \}$, it is a clopen set (i.e. an open and closed set) with respect to the topology induced by the metric ρ so defined:

if $\alpha, \beta \in X$ $\rho(\alpha, \beta) = \frac{1}{2^n}$ if $\alpha \neq \beta$ and $\alpha_1 = \beta_1, ..., \alpha_n = \beta_n, \alpha_{n+1} \neq \beta_{n+1}$ $\rho(\alpha, \alpha) = 0$.

With respect to this metric ρ , $X = \{0,1\}^N$ is a complete, separable and compact metric space (see [3]). Define on the family $\{A_{\bar{\alpha}}\}$ the following set function m:

$$m(A_{\bar{\alpha}}) = \frac{1}{2^k}$$

and let m^* be the outer measure induced by m on the family of all the subsets of X. If \mathcal{M} is the σ -algebra of all the subsets of X m^* -measurable in the Caratheodory sense, then the space (X, \mathcal{M}, m^*) satisfies the conditions $\alpha), \beta), \gamma)$ (see [3] and [5]).

Define on X the following real function

$$f(\alpha) = \begin{cases} a_1 & if \ \alpha_1 = 0 \\ a_2 & if \ \alpha_1 = 1, \alpha_2 = 0 \\ a_n & if \ \alpha_1, \alpha_2, \dots \alpha_{n-1} = 1, \alpha_n = 0 \\ \dots \\ \vdots & \vdots \\ \vdots & \vdots$$

$$f(1111...111..) = 0$$

where $\alpha = (\alpha_1, \alpha_2, ...) \in \{0, 1\}^N$ and $a_n = (-1)^n \frac{2^n}{n}$. Then, by Proposition 13, we have:

$$\int_{X} f dm = \sum_{n=1}^{\infty} a_n \frac{1}{2^n} = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} = (PU)^* \int_{X} f,$$

so f is PU*-integrable but |f| is not μ -integrable so it is not also (PU)-integrable.

References

- [1] S.I.Ahmed and W.F.Pfeffer, A Riemann integral in a locally compact Hausdorff space, J.Australian Math.Soc., (series A) 41 (1986) 115-137
- [2] A.M.Bruckner, Differentiation of integrals, Americ. Math. Monthly, V.78(9) (1971)
- [3] G.A.Edgar, Measure, topology and fractal geometry, Springer-Verlag, (1990)
- [4] W.F.Pfeffer, The Riemann approach to integration, Cambridge University Press (1993)
- [5] G.Riccobono, A PU-Integral on an abstract metric space, Mathematica Bohemica 122 (1997) 83-95
- [6] G.Riccobono, Convergence theorems for the PU-integral, Mathematica Bohemica 125 (2000) 77-86
- [7] W.Rudin, Functional Analysis, McGraw-Hill, N.York (1973)
- [8] W.Rudin, Principles of Mathematical Analysis, McGraw-Hill, N.York (1976)