Tenth International Conference on Geometry, Integrability and Quantization June 6–11, 2008, Varna, Bulgaria Ivaïlo M. Mladenov, Gaetano Vilasi and Akira Yoshioka, Editors Avangard Prima, Sofia 2009, pp 183–196

REMARK ON THE INTEGRALS OF MOTION ASSOCIATED WITH LEVEL k REALIZATION OF THE ELLIPTIC ALGEBRA $U_{q,p}(\widehat{\mathfrak{sl}_2})^*$

TAKEO KOJIMA and JUN'ICHI SHIRAISHI †

Department of Mathematics, College of Science and Technology, Nihon University Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

[†]Graduate School of Mathematical Science, University of Tokyo Komaba, Megro-ku, Tokyo, 153-8914, Japan

Abstract. We give one parameter deformation of level k free field realization of the screening current of the elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}}_2)$. By means of these free field realizations, we construct infinitely many commutative operators, which are called the nonlocal integrals of motion associated with the elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}}_2)$ for level k. They are given as integrals involving a product of the screening current and elliptic theta functions. This paper give level k generalization of the nonlocal integrals of motion given in [1].

1. Introduction

One of the results in Bazhanov, Lukyanov and Zamolodchikov [4] is construction of field theoretical analogue of the commuting transfer matrix $\mathbf{T}(z)$, acting on the highest weight representation of the Virasoro algebra. Their commuting transfer matrix $\mathbf{T}(z)$ is the trace of the image of the universal *R*-matrix associated with the quantum affine symmetry $U_q(\widehat{\mathfrak{sl}}_2)$. This construction is very simple and the commutativity $[\mathbf{T}(z), \mathbf{T}(w)] = 0$ is direct consequence of the Yang-Baxter equation. They call the coefficients of the Taylor expansion of $\mathbf{T}(z)$ the nonlocal integrals of motion. The higher-rank generalization of [4] is considered in [5,6]. The elliptic deformation of the nonlocal integrals of motion is considered in [1]. Bazhanov, Lukyanov and Zamolodchikov [4] constructed the continuous transfer matrix $\mathbf{T}(z)$ by taking the trace of the image of the universal *R*-matrix associated with $U_q(\widehat{\mathfrak{sl}}_2)$.

^{*}Reprinted from JGSP 14 (2009) 35-49.