Fifth International Conference on Geometry, Integrability and Quantization June 5–12, 2003, Varna, Bulgarla Ivaïlo M. Mladenov and Allen C. Hirshfeld, Editors SOFTEX, Sofia 2004, pp 169–177

CURVATURE PROPERTIES OF SOME THREE-DIMENSIONAL ALMOST CONTACT MANIFOLDS WITH B-METRIC II

GALIA NAKOVA† and MANCHO MANEV‡

†Department of Algebra and Geometry, University of Veliko Tarnovo 1, Theodosij Tarnovsky Str., 5000 Veliko Tarnovo, Bulgaria

Abstract. The curvature tensor on a 3-dimensional almost contact manifold with B-metric belonging to two main classes is studied. These classes are the rest of the main classes which were not considered in the first part of this work. The dimension 3 is the lowest possible dimension for the almost contact manifolds with B-metric. The corresponding curvatures are found and the respective geometric characteristics of the considered manifolds are given.

1. Preliminaries

Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be a (2n+1)-dimensional almost contact manifold with B-metric, i.e. (φ, ξ, η) is an almost contact structure and g is a metric on M such that:

$$\varphi^2=-\mathrm{id}+\eta\otimes\xi,\quad \eta(\xi)=1,\quad g(\varphi X,\varphi Y)=-g(X,Y)+\eta(X)\eta(Y)$$
 where $X,Y\in\mathcal{X}M$.

Both metrics g and its associated $\tilde{g}(X,Y) = g^*(X,Y) + \eta(X)\eta(Y)$ are indefinite metrics of signature (n,n+1) [1], where it is denoted $g^*(X,Y) = g(X,\varphi Y)$.

Further, X, Y, Z, W will stand for arbitrary differentiable vector fields on M (i.e. the elements of $\mathcal{X}M$) and x, y, z, w are arbitrary vectors in the tangential space $T_pM, p \in M$.

Let $(V^{2n+1}, \varphi, \xi, \eta, g)$ be a (2n+1)-dimensional vector space with almost contact structure (φ, ξ, η) and B-metric g. It is well known the orthogonal decomposition $V = hV \oplus vV$ of $(V^{2n+1}, \varphi, \xi, \eta, g)$, where $hV = \{x \in V; \ x = hx = -\varphi^2x\}$, $vV = \{x \in V; \ x = vx = \eta(x)\xi\}$. Denoting the restrictions of g and φ on hV by the same letters, we obtain the 2n-dimensional almost complex vector space

[‡]Faculty of Mathematics and Informatics, University of Plovdiv 236, Bulgaria Blvd., 4003 Plovdiv, Bulgaria

 $\{hV, \varphi, g\}$ with a complex structure φ and B-metric g. Then for arbitrary $x \in V$ we have $x = hx + \eta(x)\xi$. The basis $\{e_1, \ldots, e_n, \varphi e_1, \ldots, \varphi e_n, \xi\}$, where $-g(e_i, e_j) = g(\varphi e_i, \varphi e_j) = \delta_{ij}$, $g(e_i, \varphi e_j) = 0$, $\eta(e_i) = 0$, $i, j = 1, \ldots, n$, is said to be an adapted φ -basis of V.

A decomposition of the class of the almost contact manifolds with B-metric with respect to the tensor $F: F(X,Y,Z) = g((\nabla_X \varphi)Y,Z)$ is given in [1], where eleven basic classes \mathcal{F}_i $(i=1,\ldots,11)$ are defined. The Levi-Civita connection of g is denoted by ∇ . The special class $\mathcal{F}_0: F=0$ is contained in each of classes \mathcal{F}_i . The following 1-forms are associated with $F: \theta(x) = g^{ij}F(e_i,e_j,x)$, $\theta^*(x) = g^{ij}F(e_i,\varphi e_j,x)$, $\omega(x) = F(\xi,\xi,x)$, where $\{e_i,\xi\}$ $(i=1,\ldots,2n)$ is a basis of T_pM and (g^{ij}) is the inverse matrix of (g_{ij}) .

In this paper we consider two of the main classes engendered by the main components of F:

$$\mathcal{F}_{1}: F(x, y, z) = \frac{1}{2n} \{ g(x, \varphi y) \theta(\varphi z) + g(x, \varphi z) \theta(\varphi y) + g(\varphi x, \varphi y) \theta(\varphi^{2} z)$$

$$+ g(\varphi x, \varphi z) \theta(\varphi^{2} y) \}$$

$$\mathcal{F}_{11}: F(x, y, z) = \eta(x) \{ \eta(y) \omega(z) + \eta(z) \omega(y) \}.$$

The subclasses \mathcal{F}_1^0 , \mathcal{F}_{11}^0 are defined [2] by:

$$\mathcal{F}_1^0 = \{ M \in \mathcal{F}_1; d\theta = d\theta^* = 0 \}, \quad \mathcal{F}_{11}^0 = \{ M \in \mathcal{F}_{11}; d\omega \circ \varphi = 0 \}.$$

An almost contact manifold with B-metric in the class \mathcal{F}_i we call an \mathcal{F}_i -manifold (i = 0, 1, 2, ..., 11) in short.

The curvature tensor R for ∇ is defined as ordinary by $R(X,Y,Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$. The corresponding tensor of type (0,4) is denoted by the same letter and is given by R(X,Y,Z,W) = g(R(X,Y,Z),W). The Ricci tensor ρ and the scalar curvature τ of R are given by $\rho(y,z) = g^{ij}R(e_i,y,z,e_j), \tau = g^{ij}\rho(e_i,e_j)$, where $\{e_i\}$ $(i=1,2,\ldots,2n+1)$ is a basis of T_pM .

A tensor L of type (0,4) is said to be a curvature-like tensor if it satisfies the conditions:

$$L(X,Y,Z,W) = -L(Y,X,Z,W) = -L(X,Y,W,Z), \underbrace{O}_{(X,Y,Z)} L(X,Y,Z,W) = 0.$$

A curvature-like tensor L is said to be a Kähler tensor if it satisfies the Kähler property $L(X,Y,Z,W)=-L(X,Y,\varphi Z,\varphi W)$.

Let S be a tensor of type (0,2). We use the following tensors, invariant under the action of the structural group $(GL(n,\mathbb{C}) \cap O(n,n)) \times I$:

$$\begin{split} \psi_1(S)(x,y,z,w) &= g(y,z)S(x,w) - g(x,z)S(y,w) + g(x,w)S(y,z) \\ &- g(y,w)S(x,z) \\ \psi_2(S)(x,y,z,w) &= \psi_1(S)(x,y,\varphi z,\varphi w) \\ \psi_3(S)(x,y,z,w) &= -\psi_1(S)(x,y,\varphi z,w) - \psi_1(S)(x,y,z,\varphi w) \\ \psi_4(S)(x,y,z,w) &= \psi_1(S)(x,y,\xi,w)\eta(z) + \psi_1(S)(x,y,z,\xi)\eta(w) \\ \psi_5(S)(x,y,z,w) &= \psi_1(S)(x,y,\xi,\varphi w)\eta(z) + \psi_1(S)(x,y,\varphi z,\xi)\eta(w). \end{split}$$

It is well known, that the tensors $\pi_i=\frac{1}{2}\psi_i(g)$ $(i=1,2,3),\,\pi_i=\psi_i(g)$ (i=4,5)are curvature-like tensors and $\pi_1 - \pi_2 - \pi_4$, $\pi_3 + \pi_5$ are Kähler tensors.

A decomposition of the space of curvature tensors \mathcal{R} over $(V^{2n+1}, \varphi, \xi, \eta, g)$ into 20 mutually orthogonal and invariant under the action of the structural group factors is obtained in [6]. It is valid the partial decomposition $\mathcal{R} = h\mathcal{R} \oplus v\mathcal{R} \oplus w\mathcal{R}$, where $h\mathcal{R}=\omega_1\oplus\cdots\oplus\omega_{11}, v\mathcal{R}=v_1\oplus\cdots\oplus v_5, w\mathcal{R}=w_1\oplus\cdots\oplus w_4$. The characteristic conditions of the factors ω_i $(i = 1, ..., 11), v_i$ (j = 1, ..., 5) w_k (k = 1, ..., 4) are given in [6]. Following [7], an almost contact manifold with B-metric is said to be in one of the classes ω_i , v_i , w_k if R belongs to the corresponding component.

Let $(M^3, \varphi, \xi, \eta, g)$ be a 3-dimensional almost contact manifold with B-metric. According to [1] the class of these manifolds is $\mathcal{F}_1 \oplus \mathcal{F}_4 \oplus \mathcal{F}_5 \oplus \mathcal{F}_8 \oplus \mathcal{F}_9 \oplus \mathcal{F}_{10} \oplus \mathcal{F}_{$ \mathcal{F}_{11} . From the decomposition of \mathcal{R} it follows that a 3-dimensional almost contact manifold with B-metric cannot belong to the factors ω_i (i = 1, 2, 3, 4, 9, 10, 11), $v_i (j = 4, 5).$

Let us recall that we have

Proposition 1.1 ([4]). The curvature tensor on every 3-dimensional almost contact manifold with B-metric has the form $R = \psi_1(\rho) - \frac{\tau}{2}\pi_1$.

Proposition 1.2 ([4]). Every 3-dimensional almost contact manifold with B-metric belongs to the class $\omega_5 \oplus v_1 \oplus w\mathcal{R}$.

Lemma 1.1 ([4]). Every Kähler curvature-like tensor on a 3-dimensional almost contact manifold with B-metric is zero.

The curvature properties of a 3-dimensional \mathcal{F}_i^0 -manifold (i = 4, 5) are studied in [4]. In this paper we consider analogous problems for a 3-dimensional \mathcal{F}_i manifold (i = 1, 11). The present work completes the above mentioned investigations on the main classes of the considered manifolds. The curvature tensor identities for \mathcal{F}_i^0 -manifold (i=1,11) are found in [3]. It is not difficult to verify that these identities are valid for the classes \mathcal{F}_i (i=1,11), too.

2. Curvature Properties on a 3-dimensional \mathcal{F}_1 -manifold

Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be an \mathcal{F}_1 -manifold. Then its curvature tensor R satisfies the properties:

$$R(x, y, \xi) = 0 \tag{1}$$

$$R(x, y, \varphi z, \varphi w) = -R(x, y, z, w) - \left\{ \frac{1}{2n} \{ \psi_1 + \psi_2 - \psi_4 \} (H) - \frac{1}{8n^2} \{ \psi_1 + \psi_2 - \psi_4 \} (P) - \frac{\theta(Q)}{4n^2} \{ \pi_1 + \pi_2 - \pi_4 \} \right\} (x, y, z, w)$$
 (2)

where

$$H(y,z) = -(\nabla_y \theta)\varphi z - \frac{1}{4n} \{\theta(y)\theta(z) - \theta(\varphi y)\theta(\varphi z)\}$$

$$= (\nabla_y \theta^*)z - \frac{1}{2n} \{\theta(Q)g(\varphi y, \varphi z) + \theta^*(Q)g(y, \varphi z)\}$$

$$+ \frac{1}{4n} \{\theta(y)\theta(z) + 3\theta^*(y)\theta^*(z)\}$$

and Q is the corresponding vector field of θ with respect to g, i.e. $\theta = g(Q, \cdot)$

$$P(y, z) = \theta(y)\theta(z) + \theta(\varphi y)\theta(\varphi z).$$

From (1) it follows $\rho(y,\xi)=\rho(\xi,y)=0$. Obviously for the tensor fields H and P we have

$$H(y,\xi) = 0$$
, $\operatorname{Tr} H = \operatorname{Tr}(\nabla \theta^*) + \frac{1}{2}\theta(Q)$, $\operatorname{Tr} H^* = \operatorname{Tr}(\nabla \theta) + \frac{1}{2}\theta^*(Q)$ (3)

where $H^*(y, z) = H(y, \varphi z)$;

$$P(y,z) = P(z,y), \quad P(\varphi y, \varphi z) = P(y,z), \quad P(y,\xi) = P(\xi,y) = 0$$

$$\operatorname{Tr} P = \operatorname{Tr} P^* = 0$$
(4)

where $P^*(y,z) = P(y,\varphi z)$.

Remark 2.1. If $(M^{2n+1}, \varphi, \xi, \eta, g) \in \mathcal{F}_1^0$, then both 1-forms θ , θ^* are closed and consequently the tensor field H has the properties: H(y, z) = H(z, y), $H(\varphi y, \varphi z) = -H(y, z)$ [3].

Lemma 2.1. Let $(M^3, \varphi, \xi, \eta, g)$ be an \mathcal{F}_1 -manifold. Then $\psi_1(P) = \psi_4(P)$ and $\psi_2(P) = 0$.

Proof: Let $\{e_1, \varphi e_1, \xi\}$ be a φ -basis of T_pM , $p \in M$. For arbitrary $x \in T_pM$ we have the decomposition $x = x^1e_1 + x^2\varphi e_1 + \eta(x)\xi$. Taking into account (4) by direct computations we obtain immediately $\psi_1(P) = \psi_4(P)$ and $\psi_2(P) = 0$.

From Lemma 1.1 it follows that the Kähler tensor $\pi_1 - \pi_2 - \pi_4$ on $(M^3, \varphi, \xi, \eta, g)$ is zero. Using (2), Lemma 2.1 and $\pi_1 - \pi_2 - \pi_4 = 0$ for the curvature tensor of a 3-dimensional \mathcal{F}_1 -manifold we have

$$R(x, y, \xi) = 0 \tag{5}$$

$$R(x, y, \varphi z, \varphi w) = -\left\{R + \frac{1}{2}\{\psi_1 + \psi_2 - \psi_4\}(H) - \frac{\theta(Q)}{2}\pi_2\right\}(x, y, z, w).$$

Proposition 1.1 and the last equality imply

$$\psi_1(\rho) + \psi_2(\rho) = -\frac{1}{2} \{ \psi_1 + \psi_2 - \psi_4 \}(H) + \frac{\tau}{2} \pi_1 + \frac{1}{2} \{ \tau + \theta(Q) \} \pi_2.$$
 (6)

After a contraction of (6) we obtain

$$2\rho(y,z) = \rho(\varphi y, \varphi z) - \frac{1}{2} \{ \tau + \theta(Q) - \text{Tr } H \} g(\varphi y, \varphi z) - \frac{1}{2} \{ 2\tau'' + \text{Tr } H^* \} g(y, \varphi z) + \frac{1}{2} \{ H(\varphi y, \varphi z) - H(y, z) - \eta(y) H(\xi, z) \}$$
(7)

where $\tau'' = g^{ij}\rho(e_i, \varphi e_i)$.

By the substitution $y = \xi$ in (7) we find $H(\xi, z) = 0$. Having in mind $H(\xi, z) = 0$ $H(z,\xi) = 0$ and the decomposition $x = x^1 e_1 + x^2 \varphi e_1 + \eta(x) \xi$ for arbitrary $x \in T_nM$ we establish the truthfulness of the following

Lemma 2.2. Let $(M^3, \varphi, \xi, \eta, g)$ be an \mathcal{F}_1 -manifold. Then we have:

- i) $\psi_2(H) = \text{Tr } H\pi_2$;
- ii) $\psi_1(H) = \psi_4(H) + \text{Tr } H\pi_2$;
- iii) $H(\varphi y, \varphi z) H(y, z) = \operatorname{Tr} H g(\varphi y, \varphi z) + \operatorname{Tr} H^* g(y, \varphi z).$

The property iii) from Lemma 2.2 implies $H(\varphi y, \varphi z) - H(y, z) = H(\varphi z, \varphi y)$ H(z,y). In the last equality we substitute φz for z and using the definitions of H and $d\theta (d\theta(y, z) = (\nabla_y \theta)z - (\nabla_z \theta)y)$ we have

Corollary 2.1. For every 3-dimensional \mathcal{F}_1 -manifold we have $(d\theta) \circ \varphi = d\theta$.

Theorem 2.1. The curvature tensor, the Ricci tensor and the scalar curvature on a 3-dimensional \mathcal{F}_1 -manifold are given respectively by:

$$R(x, y, z, w) = \frac{\tau}{2} \pi_2(x, y, z, w)$$
 (8)

$$\rho(y,z) = -\frac{\tau}{2}g(\varphi y, \varphi z) \tag{9}$$

$$\tau = -\operatorname{Tr} H + \frac{\theta(Q)}{2} = -\operatorname{Tr}(\nabla \theta^*). \tag{10}$$

Proof: Taking into account the equalities i) and ii) from Lemma 2.2, the equality (6) gets the form

$$\psi_1(\rho) + \psi_2(\rho) = \frac{\tau}{2}\pi_1 + \frac{1}{2}\{\tau + \theta(Q) - 2\operatorname{Tr} H\}\pi_2.$$
 (11)

After the substitution $y=w=\xi$ in (11) and because of $\rho(\xi,z)=0$ we obtain (9). Then Proposition 1.1 and (9) imply (8). Finally, using (9) and (11) we compute the scalar curvature τ of R.

The equality iii) of Lemma 2.2 and Remark 2.1 imply the following form of the tensor H on a 3-dimensional \mathcal{F}_1^0 -manifold

$$H(y,z) = -rac{1}{2}\{\operatorname{Tr} Hg(\varphi y, \varphi z) + \operatorname{Tr} H^*g(y, \varphi z)\}.$$

3. Curvature Properties on a 3-dimensional \mathcal{F}_{11} -manifold

Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be an \mathcal{F}_{11} -manifold. Then the curvature tensor R on $(M^{2n+1}, \varphi, \xi, \eta, g)$ satisfies the properties:

$$R(x, y, \xi) = \psi_4(S_{11})(x, y, \xi) \tag{12}$$

$$R(x, y, \varphi z, \varphi w) = -R(x, y, z, w) + \psi_4(S_{11})(x, y, z, w)$$
(13)

where

$$S_{11}(y,z) = (\nabla_y \omega)\varphi z - \omega(\varphi y)\omega(\varphi z) + \eta(y)\eta(z)\omega(\Omega) = (\nabla_y \tilde{\omega})z - \tilde{\omega}(y)\tilde{\omega}(z)$$
$$\tilde{\omega} = \omega \circ \varphi$$

and Ω is the corresponding vector field of ω with respect to g, i.e. $\omega = g(\Omega, \cdot)$. From (12) it follows $\rho(y, \xi) = \rho(\xi, y) = \eta(y) \operatorname{Tr}(\nabla \tilde{\omega})$ and for the tensor field S_{11} we have

$$S_{11}(\xi, y) = (\nabla_{\xi}\omega)\varphi y + \eta(y)\omega(\Omega), \ S_{11}(y, \xi) = \eta(y)\omega(\Omega), \ S_{11}(\xi, \xi) = \omega(\Omega)$$
$$\operatorname{Tr} S_{11} = \operatorname{Tr}(\nabla\tilde{\omega}) + \omega(\Omega), \quad \operatorname{Tr} S_{11}^* = -\operatorname{Tr}(\nabla\omega)$$

where $S_{11}^*(y, z) = S_{11}(y, \varphi z)$.

Remark 3.1 ([3]). If $(M^3, \varphi, \xi, \eta, g) \in \mathcal{F}_{11}^0$, then the 1-form $\omega \circ \varphi$ is closed and consequently the tensor field S_{11} is symmetric.

Let $(M^3, \varphi, \xi, \eta, g)$ be an \mathcal{F}_{11} -manifold. Then from Proposition 1.1 and (13) we obtain

$$\{\psi_1 + \psi_2\}(\rho) = \frac{\tau}{2} \{\pi_1 + \pi_2\} + \psi_4(S_{11})$$
 (14)

After two contractions of (14) we find the following two equalities:

$$2\rho(y,z) = \rho(\varphi y, \varphi z) - \tau'' g(y, \varphi z) - \frac{\tau}{2} g(\varphi y, \varphi z) + 2 \operatorname{Tr}(\nabla \tilde{\omega}) \eta(y) \eta(z) + S_{11}(y,z) - \eta(y) S_{11}(\xi,z)$$
(15)

$$\rho(y,\varphi z) + \rho(\varphi y,z) = \tau'' g(y,z) - \operatorname{Tr} S_{11}^* \eta(y) \eta(z) + \operatorname{Tr}(\nabla \tilde{\omega}) g(y,\varphi z). \tag{16}$$

From (16) we compute $\tau'' = \operatorname{Tr} S_{11}^*$. Substituting τ'' and $y = \varphi y$ in (16) we have

$$\rho(\varphi y, \varphi z) = \rho(y, z) + \operatorname{Tr} S_{11}^* g(y, \varphi z) - \frac{\tau}{2} g(y, z)$$
(17)

Lemma 3.1. Let $(M^3, \varphi, \xi, \eta, g)$ be an \mathcal{F}_{11} -manifold. The tensors $\psi_1(S_{11})$ and $\psi_4(S_{11})$ are related as follows

$$\psi_1(S_{11})(x, y, z, w) = \psi_4(S_{11})(x, y, z, w) + \psi_1(S_{11}(\eta \otimes \xi, \cdot))(x, y, z, w) + \operatorname{Tr}(\nabla \tilde{\omega}) \pi_2(x, y, z, w).$$
(18)

The proof is a straightforward calculation using formula (3).

Theorem 3.1. The curvature tensor, the Ricci tensor and the scalar curvature on a 3-dimensional \mathcal{F}_{11} -manifold are,

$$R(x, y, z, w) = \psi_4(S_{11})(x, y, z, w)$$
(19)

$$\rho(y,z) = hS_{11}(y,z) + \frac{\tau}{2}\eta(y)\eta(z)$$
 (20)

respectively, where

$$hS_{11}(y,z) = S_{11}(hy,hz), \quad \tau = 2\operatorname{Tr}(\nabla \tilde{\omega}).$$
 (21)

Proof: From (15) and (17) we find $\tau = 2 \operatorname{Tr}(\nabla \tilde{\omega})$ and

$$\rho(y,z) = S_{11}(y,z) - \eta(y)S_{11}(\xi,z) + \frac{\tau}{2}\eta(y)\eta(z). \tag{22}$$

For arbitrary $x \in T_pM$ we have $x = hx + \eta(x)\xi$ and it is easy to check $S_{11}(y,z)$ — $\eta(y)S_{11}(\xi,z)=hS_{11}(y,z).$ From the last equality and (22) we obtain (20). Finally, Proposition 1.1, Lemma 3.1 and (20) imply (19).

Because of $\rho(y, z) = \rho(z, y)$ and (20) it is valid the following

Proposition 3.1. For every 3-dimensional \mathcal{F}_{11} -manifold we have

$$hS_{11}(y,z) = hS_{11}(z,y).$$

The statement of the last proposition implies immediately

Corollary 3.1. The 1-form ω of a 3-dimensional \mathcal{F}_{11} -manifold satisfies the following equality

$$(\nabla_{\varphi^2 y} \omega) \varphi z = (\nabla_{\varphi^2 z} \omega) \varphi y.$$

4. Geometric Characteristics of the 3-dimensional \mathcal{F}_i -manifolds (i=1,11)

According to the decomposition of \mathcal{R} [6], from Theorem 2.1 and Theorem 3.1 we have

Proposition 4.1. The class of the 3-dimensional \mathcal{F}_i -manifolds for i=1 and i=11 is ω_5 and $w\mathcal{R}$, respectively.

Let us recall from [4] that an almost contact manifold with B-metric is said to be a φ -Einstein manifold, or a v-Einstein manifold if $\rho = -\alpha g(\varphi \cdot, \varphi \cdot)$, $\rho = \gamma \eta \otimes \eta$ ($\alpha, \gamma \neq \text{const}$), respectively.

Having in mind the form of the Ricci tensor from Theorem 2.1 and Theorem 3.1, the following propositions are valid

Proposition 4.2. A 3-dimensional \mathcal{F}_1 -manifold is φ -Einstein iff $\operatorname{Tr}(\nabla \theta^*) = \operatorname{const.}$

Proposition 4.3. A 3-dimensional \mathcal{F}_{11} -manifold is v-Einstein iff $hS_{11} = 0$ and $\operatorname{Tr}(\nabla \tilde{\omega}) = \operatorname{const.}$

The sectional curvature $K(x,y)=\frac{R(x,y,y,x)}{\pi_1(x,y,y,x)}$ with respect to g and R for every nondegenerate section α with a basis $\{x,y\}$ in T_pM is known. The following special sections in T_pM , $\dim M=2n+1$: a ξ -section (i.e. $\{\xi,x\}$), a φ -holomorphic section (i.e. $\alpha=\varphi\alpha$) and a totally real section (i.e. $\alpha\perp\varphi\alpha$) are introduced in [5]. Note that totally real sections do not exist in the 3-dimensional case.

Using Theorem 2.1 and Theorem 3.1 we compute the sectional curvatures of a ξ -section and a φ -holomorphic section on a 3-dimensional \mathcal{F}_i -manifold (i = 1, 11):

• i = 1

$$K(\xi, x) = 0, \quad K(\varphi x, \varphi^2 x) = \frac{\tau}{2} = -\frac{\operatorname{Tr}(\nabla \theta^*)}{2}$$
 (23)

• i = 11

$$K(\xi, x) = -\frac{S_{11}(hx, hy)}{g(\varphi x, \varphi y)}, \quad K(\varphi x, \varphi^2 x) = 0.$$
 (24)

Formulas (23) and (24) imply

Proposition 4.4. Let $(M^3, \varphi, \xi, \eta, g)$ be an \mathcal{F}_i -manifold (i = 1, 11). Then we have:

- i = 1
 - i) The sectional curvatures of the ξ -sections are zero
 - ii) M has constant φ -holomorphic sectional curvatures iff M is a φ -Einstein manifold

- i = 11
 - iii) The φ -holomorphic sectional curvatures are zero
 - iv) The sectional curvatures of the ξ -sections are zero iff M is a v-Einstein manifold.

References

- [1] Ganchev G., Mihova V. and Gribachev K., Almost Contact Manifolds with B-metric, Math. Balkanica 7 (1993) 262-276.
- [2] Manev M., Properties of Curvatures Tensors on Almost Contact Manifolds with Bmetric, Proc. of Jubilee Sci. Session of V. Levsky Higher Military School, V. Tarnovo **27** (1993) 221-227.
- [3] Manev M., On the Conformal Geometry of Almost Contact Manifolds with B-metric, PhD Thesis, Plovdiv, 1998 (in Bulgarian).
- [4] Manev M. and Nakova G., Curvature Properties of Some Three-dimensional Almost Contact B-metric Manifolds, Plovdiv Univ. Sci. Works, Ser. Math. 34 (2003) (to appear).
- [5] Nakova G. and Gribachev K., Submanifolds of Some Almost Contact Manifolds with B-metric with Codimension Two I, Math. Balkanica 12 (1998) 93-108.
- [6] Nakova G., Curvature Tensors on Almost Contact Manifolds with B-metric. In: Trends in Complex Analysis, Differential Geometry and Mathematical Physics, S. Dimiev and K. Sekigawa (Eds), World Scientific, Singapore, 2003, pp 145-158.
- [7] Nakova G., Curvature Tensors in the Basic Classes of Real Isotropic Hypersurfaces of a Kähler Manifold with B-metric. In: Trends in Complex Analysis, Differential Geometry and Mathematical Physics, S. Dimiev and K. Sekigawa (Eds), World Scientific, Singapore, 2003, pp 159-167.