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Abstract. The curvature tensor on a 3-dimensional almost contact manifold
with B-metric belonging to two main classes is studied. These classes are
the rest of the main classes which were not considered in the first part of
this work. The dimension 3 is the lowest possible dimension for the almost
contact manifolds with B-metric. The corresponding curvatures are found
and the respective geometric characteristics of the considered manifolds are
given.

1. Preliminaries

Let (M2"+1 ¢, £,1,g) be a (2n + 1)-dimensional almost contact manifold with
B-metric, i.e. (¢, &,n) is an almost contact structure and g is a metric on M such
that:

P =—id+nRE 0l =1 geX,¢Y)=—g(X.Y)+n(X)n(Y)
where X, Y € X M.
Both metrics ¢ and its associated g(X,Y) = ¢*(X,Y) + n(X)n(Y") are indefinite
metrics of signature (n,n + 1) [1], where it is denoted ¢*(X,Y) = g(X, ¢Y).
Further, X, Y, Z, W will stand for arbitrary differentiable vector fields on M (i.e.
the elements of X M) and z, y, 2z, w are arbitrary vectors in the tangential space
T,M,p e M.
Let (V2n+1 5 £, m,g) be a (2n + 1)-dimensional vector space with almost contact
structure (p, &, n) and B-metric g. It is well known the orthogonal decomposition
V = hV @ oV of (V21 p €. n,9), where bV = {x € V; z = hx = —¢?z},
vV ={z € V; z = vz = n(x){}. Denoting the restrictions of g and ¢ on hV
by the same letters, we obtain the 2n-dimensional almost complex vector space
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{hV, ¥, g} with a complex structure ¢ and B-metric g. Then for arbitrary z €
V we have z = hz + n(z)¢. The basis {e1,...,e,, pe1,...,pe,, £}, where
—glei,ej) = glpei,pe;) = 65, glei, pej) = 0,n(e;) = 0,4,5 = 1,...,n,is
said to be an adapted -basis of V.

A decomposition of the class of the almost contact manifolds with B-metric with
respect to the tensor F' : F(X|Y,Z) = g((Vxp)Y, Z) is given in [1], where
eleven basic classes F; (+ = 1,...,11) are defined. The Levi-Civita connection
of g is denoted by V. The special class 7o : F' = 0 is contained in each of
classes 7;. The following 1-forms are associated with F: 0(z) = ¢"/ F(e;, e;, z),

0*(z) = g”F(ez,goeJ, z), w(z) = F(&,& x), where {e;,{} i = 1,...,2n)is a
basis of T, M and (g*) is the inverse matrix of (g;;).

In this paper we consider two of the main classes engendered by the main compo-
nents of F':

F1: F(z,y,2) =—{g(:f 0y)0(pz) + gz, 02)0(py) + glpz, Py)0(p°2)

)
+ glpz, 02)0(0%y)}
Fi1: Fz,y, 2) = (@) {n(y)w(z) + n(z)w(y)}.

The subclasses FV, F7, are defined [2] by:
Fy={MeF;do=do* =0}, FY ={MeFu; dwoyp =0}

An almost contact manifold with B-metric in the class F,; we call an F;-manifold
(t=0,1,2,...,11) in short.

The curvature tensor R for V is defined as ordinary by R(X,Y,Z) = VxVyZ —
VyVxZ — V|xy}Z- The corresponding tensor of type (0,4) is denoted by the
same letter and is given by R(X,Y, Z, W) = g(R(X,Y, Z), W). The Ricci tensor
p and the scalar curvature 7 of R are given by p(y,2) = ¢ R(ei,y,2,e;), T =
g p(es, e;), where {e;} (1 = 1,2,...,2n + 1) is a basis of T, M.

A tensor L of type (0,4) is said to be a curvature-like tensor if it satisfies the
conditions:

L(X,Y,Z,W)=—L(Y, X, Z,W)=— L(X,Y,W, Z), o qZ)L(X, Y,Z, W)=

A curvature-like tensor L is said to be a Kihler tensor if it satisfies the Kihler
property L(X,Y, Z, W) = —L(X,Y, pZ, oW).
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Let S be a tensor of type (0,2). We use the following tensors, invariant under the
action of the structural group (GL(n,C) N O(n,n)) x I:

1(9)(z,y, z,w) = g(y, 2)S(z, w) — g(x, 2)S(y,w) + g(z,w)S(y, 2)
-9y, w)S(z, 2)

¢2(S)(x,y,z,w) = ¢1(S)($,y, SOZaSD’w)
¢3(S)($ayazaw) = —¢1(S)($ay,¢2aw) - !bl(S)(if’?JaZasow)
¢4(S)($ayazaw) = ¢1(S)(xaya§aw)n(z) +¢1(S)($ay,2,5)77(w)

¢5(S)($ayasz) = ¢1(S)(xayafa¢w)n(z) + ¢1(5)(1’,y, @Zaf)n(w)

It is well known, that the tensors m; = %m(g) (1=1,2,3), 7 = i(g) (i =4,5)
are curvature-like tensors and m; — w9 — w4, w3 + 75 are Kihler tensors.

A decomposition of the space of curvature tensors R over (V"1 & 5, g) into
20 mutually orthogonal and invariant under the action of the structural group fac-
tors is obtained in [6]. It is valid the partial decomposition R = AR & vR & wR,
where AR = w1 @ P wi, VR =v1 B --- Bvs, wR = wy & --- & wy. The
characteristic conditions of the factors w; (z = 1,...,11), v; ( = 1,...,5) wy
(k = 1,...,4) are given in [6]. Following [7], an almost contact manifold with
B-metric is said to be in one of the classes w;, v;, wy, if R belongs to the corre-
sponding component.

Let (M 3.0,6m, g) be a 3-dimensional almost contact manifold with B-metric.
According to [1] the class of these manifoldsis F1 8 Fu & Fs B Fs B Fo B Fio P
F11. From the decomposition of R it follows that a 3-dimensional almost contact
manifold with B-metric cannot belong to the factors w; (2 = 1,2,3,4,9,10,11),
v; (J = 4,5).

Let us recall that we have

Proposition 1.1 ([4]). The curvature tensor on every 3-dimensional almost contact

T

manifold with B-metric has the form R = {1(p) — 7™

Proposition 1.2 ([4]). Every 3-dimensional almost contact manifold with B-metric
belongs to the class ws & v1 & wWR.

Lemma 1.1 ([4]). Every Kdhler curvature-like tensor on a 3-dimensional almost
contact manifold with B-metric is zero.

The curvature properties of a 3-dimensional ]-",L-O—manifold (z = 4,5) are studied
in [4]. In this paper we consider analogous problems for a 3-dimensional F;-
manifold ( = 1,11). The present work completes the above mentioned inves-
tigations on the main classes of the considered manifolds. The curvature tensor
identities for ]—'ZO -manifold (¢ = 1,11) are found in [3]. It is not difficult to verify
that these identities are valid for the classes F; (z = 1, 11), too.
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2. Curvature Properties on a 3-dimensional F;-manifold

Let (M M+l 0 En, g) be an Fj-manifold. Then its curvature tensor R satisfies
the properties:

R(z,y,§) =0 9]

R(l’,y, SOZaSDW) = —R(x,y,z,w) - {%{"bl + P — ¢4}(H)
0(Q)

4n?

~ gt v ) (P) - {mﬂz—m}}(x,y,z,w) @)

where
H(y.2) = ~(Vf)pz — 7-{00)0(=) — 0(o)6(52))
= (Vy0°)7 — 5 {0(@aloy.02) + 0" (Qaly, 0)}

1 * *
+ - 10(y)0(=2) + 3607(y)0" (=)}
and @ is the corresponding vector field of 6 with respect to g, i.e. = g(Q,-)
Py, z) = 0(y)0(2) + 0(py)0(pz).
From (1) it follows p(y,&) = p(§,y) = 0. Obviously for the tensor fields H and
P we have
1 1

H(y,€) =0, TeH=Te(V8)+0(Q), TeH'=TH(V0)+0'(Q) )

where H*(y, 2) = H(y, p2);

P(y,z) = P(2,y), P(py,pz) =Ply,z), Py,§) =Py =0

_mepr )
TtP=TrP* =0

where P*(y, z) = P(y, ¢z).

Remark 2.1. I]‘(M2n+1,<p,§,n,g) € ]—'10, then both 1-forms 0, 0* are closed
and consequently the tensor field H has the properties: H(y,z) = H(z,y),

Lemma 2.1. Let (M3, ¢,£,n, g) be an Fy-manifold. Then 1 (P) = 4(P) and
o (P) = 0.

Proof: Let {e;, pe;, &} be a @-basis of T,M, p € M. For arbitrary x € T,M we
have the decomposition z = z'e; + 22pe; + n(x)¢. Taking into account (4) by
direct computations we obtain immediately ¢ (P) = ¥4(P) and ¢2(P) = 0.
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From Lemma 1.1 it follows that the Kihler tensor 1 — o — 74 on (M3, ¢, €, 7, g)
is zero. Using (2), Lemma 2.1 and m; — wy — wy = 0 for the curvature tensor of a
3-dimensional F7-manifold we have

R(z,y,6) =0 5)

9(Q)
2

R(z,y, 0z, pw) = — {R+ %{?ﬁl + P — Pu}(H) — 7T2} (z,y,2z,w).

Proposition 1.1 and the last equality imply

Yi(0) + va(p) = — 301 + v — Y} () + Tmi + S+ 0@ ©

After a contraction of (6) we obtain

2p(y, 2) = plpy, pz) — %{T +0(Q) — Tr H}g(py, pz)
2 T Yoy, 02) + S {H pw.92) ~ Hu,2) — @) H(E D)) ()

where 77 = g" p(e;, pe;).

By the substitution y = £ in (7) we find H(&, z) = 0. Having in mind H (&, z) =
H(z,€) = 0 and the decomposition z = z'e; + x%pe; + n(x)¢ for arbitrary
x € T, M we establish the truthfulness of the following

Lemma 2.2. Let (M3, ¢,£,n,g) be an Fy-manifold. Then we have:
1) ¢2(H) = TI“Hﬂ'Q;
i) Y1 (H) = ¢4(H) + Tr Hry;
iii) H(py,2) — H(y,z) = Tr Hg(py, pz) + Tr H*g(y, p2).
The property iii) from Lemma 2.2 implies H(py, pz) — H(y, z) = H(pz, py) —

H(z,y). In the last equality we substitute ¢z for z and using the definitions of H
and df (df(y, z) = (V,0)z — (V.0)y) we have

Corollary 2.1. For every 3-dimensional F1-manifold we have (d0) o p = dé.

Theorem 2.1. The curvature tensor, the Ricci tensor and the scalar curvature on
a 3-dimensional JF1-manifold are given respectively by:

R(z,y, 2w) = zm(2,y, 2,w) )
ply, z) = —%g@py, ©z) )

T:_mH+%?:_ﬁwmy (10)
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Proof: Taking into account the equalities i) and ii) from Lemma 2.2, the equal-
ity (6) gets the form

Ua(p) +a(p) = 1 + 57 +6(@) — 2T Hmo. (1)

After the substitution y = w = £ in (11) and because of p(£, z) = 0 we obtain (9).
Then Proposition 1.1 and (9) imply (8). Finally, using (9) and (11) we compute the
scalar curvature 7 of R.

The equality iii) of Lemma 2.2 and Remark 2.1 imply the following form of the
tensor H on a 3-dimensional 77-manifold

1 .
H(y,z) = —§{Tr Hg(py,pz) + Tr H*g(y, p2)}.

3. Curvature Properties on a 3-dimensional F;,-manifold

Let (M?"*+!1 4 £,1,g) be an Fii-manifold. Then the curvature tensor R on
(M?7+1 £ n, g) satisfies the properties:

R(l’,y,f) = ¢4(Sll)(xaya‘£) (12)
R(z,y, pz,ow) = —R(z,y, z,w) + ¥4(S11)(z,y, z,w) (13)
where
S11(y, 2) = (Vyw)pz — w(py)w(pz) + n(y)n(z)w(Q) = (Vy@)z — o(y)o(z)
W=wop

and € is the corresponding vector field of w with respect to g, i.e. w = g(£, -).

From (12) it follows p(y, &) = p(€,y) = n(y) Tr(V®) and for the tensor field S11
we have

S11(€,y) = (Vew)py + n(y)w(Q), Su1(y,€) = n(y)w(Q), Su(,€) = w(Q)
TrS1; = Tr (Vo) + w(), TrS7; = —Tr(Vw)
where ST, (y, z) = S11(y, p2).

Remark 3.1 ([3]). If (M3, ¢,£,m,9) € F}}, then the 1-form w o ¢ is closed and
consequently the tensor field S11 is symmetric.

Let (M3, ¢,£,7,g) be an Fi1-manifold. Then from Proposition 1.1 and (13) we
obtain

{1 + Y2} (p) = %{7?1 + 72} + ¥a(S11) (14)
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After two contractions of (14) we find the following two equalities:

.
2p(y, z) = pley, pz) — 7" 9(y, pz) — 79(py, 92)

+ 2Te(Va)n(y)n(z) + Suly, z) — n(y)S11(§,2) (15)

Py, 92) + pley, 2) = 7"g(y, 2) — Tr STin(y)n(2) + Tr(Vo)g(y, pz).  (16)

From (16) we compute 7"/ = Tr S7;. Substituting 7" and y = @y in (16) we have
. T

ey, p2) = ply, 2) + Tr S119(y, 92) — 59(y, 2) a7

Lemma 3.1. Let (M3, ¢,£,1,g) be an Fi1-manifold. The tensors 1 (S11) and
14(S11) are related as follows

¢1(511)($a Y, 2, w) = ¢4(Sll)(xa Y, 2, w) + wl(sll(n ® 57 ))(xa Y, Zaw)

18
+ Tr(Va)m(z, y, z, w). (18)
The proof is a straightforward calculation using formula (3).

Theorem 3.1. The curvature tensor, the Ricci tensor and the scalar curvature on
a 3-dimensional F11-manifold are,

R(z,y, z,w) = $4(S11)(z, y, z,w) 19)
Py, z) = hSu(y, z) + %n(y)n(Z) (20)

respectively, where
hS11(y, z) = Su(hy, hz), 7=2Tr(Va). 1)

Proof: From (15) and (17) we find 7 = 2 Tr(V®) and

p(y.2) = Su(y,2) = nW)Su (€. 2) + Zn(u)n(2). @2)

For arbitrary z € T, M we have x = hz+n(x){ and it is easy to check S11(y, z) —
n(y)S11(§, z) = hS11(y, z). From the last equality and (22) we obtain (20). Fi-
nally, Proposition 1.1, Lemma 3.1 and (20) imply (19).

Because of p(y, z) = p(z,y) and (20) it is valid the following

Proposition 3.1. For every 3-dimensional F11-manifold we have
hS11(y, z) = hS11(2, v).

The statement of the last proposition implies immediately

Corollary 3.1. The I-form w of a 3-dimensional F1,-manifold satisfies the follow-
ing equality
(Vzyw)pz = (Vy2,w)py.
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4. Geometric Characteristics of the 3-dimensional F;-manifolds
(z=1,11)

According to the decomposition of R [6], from Theorem 2.1 and Theorem 3.1 we
have

Proposition 4.1. The class of the 3-dimensional F;-manifolds fori = 1 andi = 11
is w5 and wWR, respectively.

Let us recall from [4] that an almost contact manifold with B-metric is said to be
a o-Einstein manifold, or a v-Einstein manifold if p = —ag(y-, ), p = M7
(a, v # const), respectively.

Having in mind the form of the Ricci tensor from Theorem 2.1 and Theorem 3.1,
the following propositions are valid

Proposition 4.2. A 3-dimensional F1-manifold is p-Einstein iff Tr(V0*) = const.

Proposition 4.3. A 3-dimensional F11-manifold is v-Einstein iff hS11 = 0 and
Tr(V&) = const.

R(z,y,y,x)
m(z,y,y, )
nondegenerate section « with a basis {x, y} in T, M is known. The following spe-
cial sections in T, M, dim M = 2n + 1: a {-section (i.e. {{, z}), a p-holomorphic
section (i.e. @ = pa) and a totally real section (i.e. « L @a) are introduced in [5].
Note that totally real sections do not exist in the 3-dimensional case.

The sectional curvature K (z,y) = with respect to g and R for every

Using Theorem 2.1 and Theorem 3.1 we compute the sectional curvatures of a &-
section and a p-holomorphic section on a 3-dimensional F;-manifold (z = 1, 11):

e ;=1
K(e2) =0, K(gng'r) =T =100 @3
e ;=11
K¢ x) = —M, K(gox,goQ:B) = 0. 24)
glwz, 0y)

Formulas (23) and (24) imply

Proposition 4.4. Let (M3, p,£,1,g) be an F;-manifold (i = 1,11). Then we
have:
e ;=1
1) The sectional curvatures of the &-sections are zero

it) M has constant p-holomorphic sectional curvatures iff M is a o-Einstein
manifold
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e =11
iii) The p-holomorphic sectional curvatures are zero
iv) The sectional curvatures of the &-sections are zero iff M is a v-Einstein
manifold.
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