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Abstract. The application of symmetry analysis in hydrodynamics is illus-
trated by two examples. First is a description of all irrotational barochronous
motions of ideal gas. The second is an exact solution of magnetohydrody-
namics equations for infinitely conducting media, which describes the flow
of so called “special vortex” type.

1. Introduction

The group-theoretical method is proved to be one of the most powerful tool for the
construction of exact solutions for various nonlinear differential equations [4, 5].
The method is based on the continuous symmetries of the investigated equations.
The complete set of the continuous transformations, which preserve the equations,
generates its Lie group of symmetries. Each subgroup of the symmetry group gives
the source of an exact solution or a symmetry reduction for the equations. The
systematic use of group analysis method to study concrete models of mathematical
physics consists of the following three steps. These are: calculation of symmetry
group, construction of its optimal system of subgroups and obtaining of classes
of both invariant and partially invariant solutions. Realization of all these steps
is algorithmic and approved for the wide set of mathematical models by many
authors.

In the present work we observe two particular examples of exact solutions for
Euler equations of ideal compressible fluid and for ideal magnetohydrodynamics
equations (MHD). First we describe all irrotational ideal gas motions, which are
simultaneously barochronous, i.e., rotu = 0 and p = p(t) (pressure depends
only on time). This class of solutions is a partially invariant from group-theoretical
point of view. The Chupakhin’s results on investigation of barochronous gas mo-
tions allow to reduce the stated problem to the following: how to describe all
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real-valued functions of three arguments, which have a Hesse matrix with con-
stant algebraic invariants. The latter problem is completely solved with the help
of equivalence transformations of investigated system. It is shown that under ir-
rotational barochronous gas motions the dependence of velocity vector on spatial
coordinates is linear and of special kind. The explicit formulas for general solution
are given.

The second example is a solution of ideal MHD, which is partially invariant with
respect to the group of rotations O(3). The classical rotationally invariant solu-
tion of the system of differential equations is the solution where all sought func-
tions depend on radial coordinate only. From group-theoretical point of view, ro-
tationally invariant solution is a singular O(3)-invariant solution. The nonsingular
O(3)-invariant solution do not exist since the set of its invariants does not cover
all sought functions (only two of three components of fluid’s velocity vector field
can be derived from the invariants). However, one can sought for O(3)-partially
invariant solution. First, this type of solutions was successfully investigated for
Euler equations by Ovsiannikov [7]. He have obtained an overdetermined reduced
system of equations, found all its compatibility conditions and describes the main
properties of fluid flows, governed by the solution. In compliance with the title of
Ovsiannikov’s article the solutions of this type are referred as “singular vortex™ or
“Ovsiannikov’s vortex™.

2. Irrotational Barochronous Fluid Flows

The Euler equations for ideal compressible fluid are the following
Du+p~'Vp=0, Dp + pdivu = 0, DS =0 W
D = & + ud; + v0, + wo,.

Here u is the velocity vector, p is the pressure, p is the density, and S is the entropy.
System (1) is closed by the state equation p = F'(p, S). We sought for solutions of
system (1), which are barochronous

p=p(t), p=p) 2)
and irrotational
u = Vg forsome potential (¢, z,y, 2). 3)

According to the state equation p = F'(p, S) entropy S is a constant S = const.

The group nature of barochronous solutions is the following. Equations (1) admit
the Galilean group, which in particular includes transformations of the translations
and galilean translations along the spatial axis. Invariants of these transformations
are p, p and the time ¢. According to the algorithms of symmetry analysis of
differential equations, the functional relations (2) between the invariants single out
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a partially invariant solution with respect to the group. The complete theoretical
investigations of barochronous motions of ideal gas can be found in Chupakhin’s
works [1, 2]. Our purpose is to add a demand (3) of potentiality of the flow.

2.1. Barochronous Gas Motions

We adduce here some of Chupakhin’s results, which will be used further. Ac-
cording to (1) and (2) the barochronous motions of ideal gas are described by the
following system of equations
/
U
pu=0  divu=-"2  p_s.u.v. ()
p
The right hand side of the last equation (4) is a function of ¢ only. Thus the sys-
tem (4) is an overdetermined system for velocity vector u. Description of its com-
patibility conditions is given in terms of algebraic invariants ji, j2, j3 of Jacobi
matrix J = 0u/0x. Further j; = trJ, ..., j3 = det J.

Theorem 1. The initial velocity field of barochronous motion has a Jacobi matrix
Jo = Oug/0xq with constant algebraic invariants. On the contrary, any stationary
vector field with constant algebraic invariants of its Jacobi matrix serves as initial
velocity field for some barochronous gas motion.

It is possible to observe a Cauchy problem for the system (1), (2) with initial data
att =0

11(0, X) = uO(X)$ P(O, X) = Po; S(O,X) = SO' (5)

Theorem 2. Solution of the Cauchy problem (5) for the system (1), (2) is given by
the implicit formulas

u:u()(s)a p:p()/Qa S = So, £=x—tu

. . . 6)
Q = 1+ jiot + jaot® + jsot>.

Here j;o are the initial values of the invariants j;. From the above it follows that
any barochronous solution of gas dynamics equations is completely characterized
by its initial velocity field.

Barochronous motions of ideal gas have many interesting properties. The trajecto-
ries of particles in such motions are straight lines. However, the whole motion is
non-trivial. The typical feature of barochronous motions is the collapse of density
at a finite moment of time. At that time all gas particles simultaneously come to
some manifold of lower dimension in comparison with the dimension of motion.
The behaviour of sonic and contact characteristics of gas dynamics equations in
the neighbourhood of collapse is already known [2].
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2.2. Irrotational Gas Motions

The irrotational (potential) motions of gas are much more classical object of inves-
tigation. Irrotational gas motions are distinguished by a special kind of the velocity
field (3). The state equation in the isentropic case S = const reads p = f(p). In-
tegration of the momentum equations in (1) gives the Cauchy-Lagrange integral

1 :
1+ 5IVel® +i(p) = 0. ™
Here i(p) = [ p~!dpis the specific enthalpy. The continuity equation provides
i + V- Vi+a?Ap = 0. (8)

Here a? = f’(p) is a square of sound speed. Equations (7) and (8) serve for de-
scription of irrotational gas motions. One can obtain a single second order equation
for ¢ by substitution of the specific enthalpy ¢ from (7) into (8).

2.3. Irrotational Barochronous Gas Motions

In present paper we combine two properties described above. We look for solu-
tions which are simultaneously irrotational and barochronous. There are two ways
of solving the stated problem. First is to start from equations (7) and (8) and to
demand the solution to be barochronous. Equations (2) implies that all thermody-
namical functions depend only on time: ¢ = i(t), a = a(t). Hence we obtain an
overdetermined system of two equations (7) and (8) for one function ¢(t, z, y, z).
This system must be completed to involution.

The second way is to start from barochronous solution taking into consideration
property (3). As noted above the description of barochronous gas motions is re-
duced to the investigation of the equations for the initial velocity field (hereafter
we omit zeroes at ug and replace £ by x)

um+vy+wz:jl

Uy U Vy Vs W, Wy .
Y Y = J2

The constants j1, j2, j3 can take arbitrary real values. Since the equation (3) is valid
during the whole time of motion it is also valid for the initial time ¢ = 0. Thus, to
describe the potential barochronous gas motions it is necessary to study system (9)
with the substitution of the velocity field (3). In other words, the investigation of
the potential barochronous gas motions is reduced to the description of all functions
¢(z,y, z), which have a Hesse matrix with constant algebraic invariants. Below
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we use this second approach. The complete investigation of this problem can be
found in [3]. Below we demonstrate only the basic steps of investigation.

2.4. Equivalence Transformations

To simplify the analysis of system (9) it is convenient to transform the vector
j = (J1,J2,73) to some canonical form. This is performed with the aid of equiv-
alence transformations, which preserve the structure of the system (9) acting only
on the constants j;. The group of equivalence transformations for the system (9) is
known [6]. It is generated by the operators

Ty = "0, + 30), + 2519, + j20,
Ty = u*8,0 — "0,k + 2510, + 4j20j, + 6330;, (10)
T3 = u’“@mk + (2j2 — j%)ajl + (3]3 - j1j2)aj2 - j1j3aj3'

It is known [6] that due to transformations /; any system (9) is equivalent to one
of the four canonical systems with vector j of the form

1°(0,0,0);  2°(1,0,0);  3°(0,1,0);  4°(0,-1,0). (1)

The principal moment is that in all the four cases j3 = 0. It means that there exists
a perfect relationship between functions u, v and w for system (9) in a canonical
form. Thus, the initial velocity field of barochronous motion is equivalent to some
double u = u(v, w) or “sesquialteral” u = u(v), w = w(z,y, z) wave.

2.5. Double Wave

Let the derivatives of the function ¢ be related by the expression

P = u(Py, Pz). (12)

After the finding of absolute integral of equation (12) its general solution is repre-
sented in a parametric form

p = u(p1,p2)2 + pry + paz + ¢ (p1, p2). (13)
Here 9/°(p1, p2) is the arbitrary function, p; and p are parameters, which are re-

lated to initial variables by the equalities

0 0
0= —2z+y+—, 0= —2x+2+ —. 14
op1 Y op1 Op2 Op2 (14)
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Next, it is convenient to move from independent variables (x, y, z) to independent
variables (x, p1, p2) according to formulas (14). The Jacobian of such transforma-
tion

A(z,y,2)
d(z, p1,p2)

B (82u$+ 62’!,00)(62’&1._{_ aQwO) _( 6211, .. a?,w(] )2
opi~  opi /\op;  Op Op10p2”~  Op19ps

differs from zero due to the arbitrariness in the choice of the function °(p1, p2).

A =
(15)

The substitution into the first two equations (9) gives

ou 2 ou Ou ou 2
(e () Va2 2 (1 (22) ) 2um et
( Op2 ! Op1 Opz op1 3TN

5 5 (16)
Lo ( ou ) n ( ou ) _ AR
apl ap2 — ]2 0
The notation above means
62?_1, aQwO 62?_1, 62,¢O 62?1, aQwO
AM=2r—+—, Ao==x + , A3 =or—5 + —. (17
" Top  opt T T Topidpr  Opidpe’ T 0p3  0n3 17

From the last equation in (16) it follows that j, # 0, i.e., the cases 1° and 29 from
classification (11) are not realized here.

Let us consider the remaining cases 3° and 4°. Here j; = 0, j» = 1. After
the splitting of equations (16) on independent variable x we obtain five equations.
Among them the following ones are interesting. Linear with respect to x term in
the first equation in (16) gives the equation of minimal surfaces

ou\ %\ 02u Ou Ou 0%*u ou\ 2\ 62u
1+ (=) )57 -2 (14 (52) ) oz =0 as
( Op2/ ) dpt " Op1 Op2 Ipip2 Op1/ ) Op} e
The coefficient of 22 in the second equation in (16) gives the Monge—Ampere
equation

2. 82 2 2
aufiu:(@u). (19)

op? 0p ~ \Opipa
Thus, surfaces z = u(x,y) with function u satisfying equations (18), (19) are

enveloping and minimal. The set of such surfaces turns out to be exhausted by the
planes.

Returning to the initial notation we obtain linear relation between the derivatives
of function ¢

Yz = apy + by, + c, a,b,c = const . (20)
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The equation (20) is integrated in the form ¢ = cx + ©°(ax + vy, bz + z). Accurate
to the transformations of rotation and Galilean translation we can assume that a =
b = ¢ = 0. Thus, the function ¢ turns out to be of the following type: ¢ = ¢(y, z).

The similar analysis of two-dimensional case gives that all nonequivalent functions
o(z,y), which satisfy the equations (9), are

1 1
@ = const, o= 5:132, Q= 5(1'2 — ). 2D

All “sesquialteral” waves are also reduced to the two-dimensional case.

2.6. Final Result

Summing up all the calculations we can formulate the following statements.

Theorem 3. The initial velocity field of irrotational barochronous gas motions is
equivalent to one of the following:

a) constant;

bu=xz,v=w=0

u=xv=—y, w=>0.

Knowledge of initial velocity field of barochronous motion of gas allows one to
reconstruct a solution at arbitrary moment of time according to formulas (6). The
value of density is regenerated then by the integration of the equation of continuity.
Gas pressure is determined from the equation of state. Application of such proce-
dure to the obtained initial field allows us to formulate the following statement.

Theorem 4. The irrotational barochronous gas motions accurate to unessential
constants are described by the following formulas

ax by .
u = 1 t, v = m’ w = 1 + Ct
+ apo )
- b = t.
P U ra)I+b)1+et)y 07O PO

3. Singular Vortex In Magnetohydrodynamics

In this part we observe the ideal magnetohydrodynamics equations
Dp+ pdiva=0
Du+p 'Vp+p 'HxrotH=0
Dp+ A(p,p)diva =0 (23)
DH+ Hdivu—(H-V)u=0
divH = 0, D=06;+u-V.
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Here u = (u, v, w) is the velocity vector, p and p are the pressure and the density,
and H = (H', H2, H?) is the magnetic field (electric conductivity is infinite). All
these functions depend on the time ¢ and the coordinates (x,y, z). The function
A(p, p) depends the state equation of the fluid.

The equations (23) admit as invariance group the group O(3) of simultaneous ro-
tations in the spaces R3(x), R3(u) and R3*(H). The usual construction of the
solution, invariant with respect to O(3), is a solution, where all sought functions
depend only on radial coordinate r and time ¢ and both velocity vector and mag-
netic field have radial direction. The symmetry analysis of differential equations
allows another type of solution, namely, partially invariant one.

It is convenient to observe a spherical coordinate system
x = rsin f cos p, y = rsinfsin g, z =rcosf. 24)
Invariants of O(3) in the space of independent variables and functions are the fol-
lowing
ta r, Ua Ma Ha Na Q- Za y2 p- (25)

Here U = u, and H = H, are radial components of vector u and H. Tangential
to spheres » = const components of these vectors are represented as

ug = M cos €2, u, = Msin (), Hyp = N cos X, H, = Nsin}.

From (25) is follows that not all sought functions can be determined as the func-
tions of of invariants of O(3). This fact does not allows to construct an invariant
solution with respect to the group O(3). However, there exist a partially invariant
solution with the following representation

U=Ul(tr), M = M(t,r), H = H{t,r), N = N(t,r)
Q=w(t,rb,p), Y=o(t,r)+w(t,r0,p) (26)
p=p(tr), p=p(t,r).

The presence of one non-invariant function w(t, r,#, ) makes the solution to be
partially invariant with defect 6 = 1. The non-invariant function w is called a
“superfluous” function. The classical solution with radial flow and radial magnetic
force can be obtained from (26) by taking M = N = (. Further we omit this case
as the known one.

Substitution of representation (26) into MHD (23) provides a system II of nine
equations for invariant the functions U, H, N, M, p, p and the superfluous func-
tion w. This system should be observed as an overdetermined system of first-order
PDEs for the function w(t, 7, 8, ) under assumption that all invariant functions are
known. The compatibility conditions of this system produce the equations for the
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invariant functions. This procedure is illustrated by the following diagram

C'S — compatible system for w

MHD Z - equations for w <

1S — equations for invariant functions

In order to omit trivial situations, we observe only the case, when function w is
determined with functional arbitrariness. Function w is determined with only con-
stant arbitrariness if it is possible to express all first-order derivatives of w from the
system II. To impose a ban on this situation we calculate a matrix of coefficient of
w’s derivatives and demand it to be of rank three or less. The demand is satisfied
only in the following three cases:

e M = 0 —radial velocity field
e N = 0 —radial magnetic field

e 0 = 0 —coincidence of derivation angles of the tangential component of the
velocity and magnetic vector fields.

All these three cases signify that velocity vector u and magnetic field vector H in
each point must be coplanar to the radius-vector of the point. Further we observe
the most general case 0 = 0, i.e. ¥ = Q = w(t,r60,p). Itis convenient to
introduce

M, =r~ M, H, = r*H, N1 =rN, Hy=cos™'T. 27)

The invariant subsystem .5 is reduced to the following

1

4—N17.:O, D0:8t+ann
ripcosT

2
DoM; + ZUM,; —
T

DogNy + N1U, — My, — MiNitant =0
COS T
2
Dop + A(p, p) (Ur + ;U — My tan7'> =0 (28)
1 N1 N
DOU—I——pr—F%—TMf:O, 7 = NycosT
p rep
2
D0p+p<Ur+ ;U—Mltan'r) =0, Dor = M.

This overdetermined system of seven equations for six functions is in involution
(compatible and locally solvable) since the compatibility condition of last two
equations of (28) (equations for 7) coincide with the second equation in (28).
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Equations for the superfluous function w are
Niw; + (NlU = HlMl)wr =0
Hicosww, + Niwyg —tan 7Nisinw =0 29)
sin 6 sin wwy — cos ww, — tan 7s8in 6 — cos cosw = 0.

The latter system is also in involution on the solutions of equations (28). The
arbitrariness in the general solution of (29) is one function of one argument. The
general solution of (29) can be implicitly represented as

F(n,{) =0 (30)
where F' is an arbitrary function of the invariants 7 and ¢, which are

1 = sinf coswcosT — cosfsinT

Sin w cos T

¢ = ¢ + arctan - —.
cosf coswcosT +sinfsinTt

The following question arises: Is it possible to choose a function F' (determined by
the equation (30)) which is continuous as a function of w(¢, r, 8, ¢) on each sphere
r = const? The answer of this question is not known to the author yet.

One can prove that a trajectories of particles and magnetic force lines on this flow
are flat curves. However the position and orientation of the plane depends of initial
particle’s position. Function 7(¢, r) determines a polar angle of particle in the plane
of it’s motion. In the stationary case (0/9; = 0) velocity and magnetic field vectors
are collinear, therefore the streamlines coincide with magnetic lines. The deeper
investigation of the flow requires more specific information on the solution.

3.1. Symmetry of Invariant Subsystem

The determining of the solution of the form (26) is reduced to the investigation of
the system (28). The latter serves as an individual object of symmetry analysis.
Calculation of admitted group of system (28) (for simplicity A(p, p) = vp, where
7y is polytropic exponent) gives, that admissible Lie group of point transformations
is 3-dimensional and its Lie algebra L3 is generated by the operators

X1 =0
Xo =10, — U0y — M10wm, + 2p0, (31)
X3 =10, + U0y — N10ON, — 4p0, — 6p0,,.
Besides, two involutions are admitted
g1:t——-t, U—--U M — —-M
gg:r——r, U—-U N — —Nj.
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The optimal system of subalgebras of the Lie algebra L3 was constructed. The
optimal system of subalgebras is a maximal set of nonconjugated (with respect to
the action of inner automorphism) subalgebras of L3. In the case of the algebra
L3, the optimal system is the following:

dim = 1: {Xl}, {Xl -+ Xg}, {X2 -+ Oth}
dim = 2: {Xl,Xg}, {XQ,X?,}, {Xl,Xz I OeXg}
dim = 3: {XI,XQ,X:.;}.

Each subalgebra generates some symmetry reduction of the system (28).

3.2. Stationary Solution

We observe an invariant with respect to the group of time translation solution
of (28) generated by the Lie algebra {X;}. Invariants of the group are r and
all functions U, M, N1, 7, p, p. The functional relations between the invari-
ants ensure that all functions depend only on r. Equations (28) are reduced to the
following system of ODE

, 2 N
UM, + UM, — ——— =0 (32)
r ripcosT
7 / M{
UN| + NU' — — MyN;tan7 =0 33)
cos T
2
Up' +~vp(U'+ =, U — MytanT) =0 (34)
r
1 N1 N|
UU' + —p' + ——L —rMZ =0 (35)
p r2p
2
Up’—i—p(U’—I—;U—MltanT):O (36)
7' = NicosT, Ut = M. (37

This system can be reduced to the set of first integrals and one first-order ODE.

3.3. Logarithmic and Self-Similar Solution

Another two one-dimensional subalgebras from the optimal system gives another
two reductions of (28) to ODEs. Calculating the invariants of each subalgebras and
proposing the functional relations between invariants we obtain the representation
of the invariant solution.

The subalgebra { X1 + X3} gives the following representation of the solution
U=r\)+1), M =m), Ni=r"nd), 7=71(\)

38
pP= ’I°_4P()\)a P = T_ﬁR()\)a S = S(A)r67_4a A=t— log . %)
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Substitution of (38) gives a system of ODEs, which involves only the functions v,
m, n, P, R and independent variable A\. Curves A\ = const are called the level
lines of the solution. In this solution the level lines are a logarithmic spirals in the
(t,r) plane. Therefore the corresponding solution is called “logarithmic” one.

The last one-dimensional subalgebra from the optimal system is a {Xs + a X3}
with arbitrary real a. The corresponding transformation is a dilatation, therefore
the invariant solution is a self-similar one. Calculation of invariants allows one to
write the representation of the solution

U=t""w\)+a)), M =mNt", Ny=nMNt"% 7=1()

p=PO)t™,  p=ROFO  §=s\)b2le N =
Reduced system of ODEs can be obtained by substitution of (39) into (28). Both
systems have a number of first integrals for special values of parameters.

(39)

The two-dimensional subalgebras from the optimal system generate so-called “sim-
ple” solutions. The number of functionally independent invariants of the corre-
sponding two-dimensional Lie groups in the space R%(U, My, Ny, 7, p, p) is 6.
Besides, there are no invariants, which depends only of ¢ and . Therefore the
representation of solution is constructed by equating all invariants to the constants.
Substitution to the initial system gives a finite relation between this constants. Cal-
culation of these relations for all subalgebras shows that all such solutions are
reduced to the trivial one. The whole algebra L3 generates a partially invariant
solution of (28), which was not observed yet.
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