Seventh International Conference on Geometry, Integrability and Quantization June 2–10, 2005, Varna, Bulgaria Ivaïlo M. Mladenov and Manuel de León, Editors SOFTEX, Sofia 2006, pp 307–319

COMPATIBLE POISSON TENSORS RELATED TO BUNDLES OF LIE ALGEBRAS

ALEXANDER B. YANOVSKI

Department of Mathematics & Applied Mathematics, University of Cape Town 7700 Cape Town, South Africa

Abstract. We consider some recent results about the Poisson structures, arising on the co-algebra of a given Lie algebra when we have on it a structure of a bundle of Lie algebras. These tensors have applications in the study of the Hamiltonian structures of various integrable nonlinear models, among them the O(3)-chiral fields system and Landau–Lifshitz equation.

1. Introduction

Suppose that $Mat(n, \mathbb{K}) \equiv End(\mathbb{K}^n)$ is the linear space of all $n \times n$ matrices over the field \mathbb{K} , which will be either \mathbb{R} or \mathbb{C} and will be specified explicitly only if it is necessary. Mat(n) possesses a natural structure of associative algebra and as a consequence – a structure of a Lie algebra defined by the commutator [X, Y] = XY - YX, denoted by $\mathfrak{gl}(n)$. However, the structure of the associative algebra over Mat(n) is not unique, indeed, if we fix $J \in Mat(n)$, then we can define the product $(X \circ Y)_J = XJY$ and with respect to it Mat(n) is again an associative algebra. This induces a new Lie algebra structure, defined by the bracket

$$[X,Y]_J = XJY - YJX.$$
(1)

Thus we obtain a family of Lie brackets, labelled by the element J. It is readily seen that we actually have a linear space of Lie brackets, since the sum of two such brackets is also a Lie bracket of the same type. The above construction can be applied even if X, Y, J are not $n \times n$ matrices, since (1) makes sense when $X, Y \in Mat(n, m)$ – the linear space of $n \times m$ matrices and $J \in Mat(m, n)$ – the linear space of $n \times m$ matrices. According to the accepted terminology, (1) defines a linear bundle of Lie algebras. Another example is obtained if we take X,