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Abstract. Here we give some necessary and sufficient conditions for the
validity of the Saxon-Hutner conjecture concerning the preservation of the
energy gaps into an infinite one-dimensional lattice.

Let us consider the Schrödinger equation

d2Ψ
dx2

+ (E − U(x))Ψ = 0 (1)

where Ψ is the wave function, the spectral parameter E is the particle energy and
U(x) is a known function – the potential. Quantum mechanics deals with the
above equation and its generalizations. When U(x) = 0 we have a free particle
and when E = k2, two solutions are eikx and e−ikx representing respectively a
particle moving to the right (k > 0) and a particle moving to the left (k < 0).
We will use the standard group theory notation for the invertible matrices listed
below. The Lie group of pseudo-unitary matrices of signature (1, 1) (i.e., those
2× 2 matrices having one positive and one negative square in their canonical form
〈z, z〉 = |z1|2−|z2|2), or what is the same – the group of all linear transformations
of the complex plane preserving the above hermitian form 〈 , 〉 will be denoted as
U(1,1) while SL(2,C) will denote the corresponding unimodular group keeping
the symplectic structure [ , ] invariant (here [ζ, η] is the oriented area of the par-
allelogram spanned on the vectors ζ, η and GL(2,R) will denote the group of all
real linear transformations. We have 〈a, b〉 = i

2 [a, b̄].

Proposition 1. The intersection of any two groups coincides with the intersection
of the three of them – it is the special (1, 1) unitary group SU(1, 1).

A monodromy operator for (1) with a finite potential is a linear operator acting on
the space of states of the free particle in a special way.
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Proposition 2. The matrix of the monodromy operator in the basis (eikx, e−ikx) is
an element of the group SU(1, 1), where

SU(1, 1) =
{
MA =

(
wA + iζA υA + iηA

υA − iηA wA − iζA

)
∈M2(C) ; det(MA) = 1

}
.

Actually, we speak about groups of operators but the matrices of these operations
are elements of SU(1, 1) in the considered basis (eikx, e−ikx). The matrix groups
SL(2,R) and SU(1, 1) are isomorphic. We get from them one and the same group
of operators. For the real basis (e1, e2) these matrices are in SL(2,R) and for the
complex conjugate basis (eikx, e−ikx) they are elements of SU(1, 1). Geometri-
cally, going from SL(2,R) to SU(1, 1) means transforming Lobachevski’s plane
model in the upper half plane to a model in the unit circle.
In 1949 Saxon and Hutner [8] have announced a conjecture concerning the cou-
pling of impurities introduced into an infinite one-dimensional crystal lattice.

Conjecture 1. Forbidden energies that are common to the pure A crystal and the
pure B crystal (with the same lattice constant) will always be forbidden in any
arrangement of A and B atoms in a substitutional solid solution.

This can be easily reformulated using the transfer-matrix formalism [4]. As the
concept of the transfer matrix has been used extensively in transport theory, op-
tics and engineering [2, 3, 7] let us remind that by its very definition the transfer
matrix M relates the wave functions (states, amplitudes) on either side of the po-
tential (force). The crucial point in using this formalism is the observation that real
localized potentials and transfer matrices are in a one-to-one correspondence. The
group nature permits defining a total transfer matrix for an arbitrary sequence of
potentials as a product of their individual matrices. The forbidden energies for
an electron propagating in a periodic lattice are given by the condition trM > 2,
where M is a transfer (monodromy) matrix of a unit cell. Thus we can ask:

Question 1. Under what conditions for any arrangement Ar1Bs1 . . . ArkBsk of A
and B atoms (ri, sj ∈ Z+) we have tr(M r1

A M s1
B . . .M rk

A M sk
B ) > 2 provided that

tr(MA) > 2 and tr(MB) > 2?

Various conditions for the validity of the above statement are discussed in [4–6]
and [9] in the context of one-dimensional quantum mechanics which will have in
mind in this paper as well.
For convenience from now on we denote the transfer matrices by A, B. We give
the following necessary and sufficient condition:

Theorem 1. LetA andB be two elements of the group SU(1, 1) such that trA > 2
and trB > 2. Then tr(AB) > 2 if and only if

(wA − wB)2 + (ζA + ζB)2 < (ηA + ηB)2 + (υA + υB)2.
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Proof: The condition tr(AB) > 2 gives

2wAwB − 2ζAζB + 2υAυB + 2ηAηB > 2.

Taking into account that w2
A + ζ2

A − υ2
A − η2

A = w2
B + ζ2

B − υ2
B − η2

B = 1 we get
the desired inequality. �

For trA = trB we get (ζA + ζB)2 < (υA + υB)2 + (ηA + ηB)2.

Remark 1. The necessary and sufficient condition of Theorem 1 could be ex-
pressed as det(A+B) < trA trB.

Really det(A+B) = (wA +wB)2 + (ζA + ζB)2− (ηA + ηB)2− (υA + υB)2 and
thus we get det(A+B) < trA trB.
We could formulate the following sufficient condition:

SC 1. Let det(A + B) < trA trB provided that trA > 2 and trB > 2. Then
tr(AB) > 2.

Exchanging SU(1, 1) for SL(2,R) using the group homomorphism

M =
(
w + iζ υ + iη
υ − iη w − iζ

)
−→ r(M) =

(
w − υ η + ζ
η − ζ w + υ

)
one could associate with any transfer matrix a complex three-dimensional vector

cM =
1
w

(−iη,−ζ, iυ). (2)

In [6] one could find the following

SC 2 ([6, p. 995]). The conditions cA.cB < 0 and (cA × cB)2 < 0 are sufficient
for the validity of the Saxon-Hutner theorem.

In this setting, symmetric potentials are represented by vectors, whose third com-
ponent is identically zero and this implies that they can be considered as ele-
ments of a pseudo-Euclidean plane of index one. In such a plane the condition
(cA×cB)2 < 0 is satisfied automatically and SC2 is transformed into the inequal-
ity 1

ωAωB
(−ηAηB + ξAξB) < 0, which is equivalent to the Tong and Tong [6]

criterion, namely

SC 3. Let sign(wAwB) = sign(ηAηB − ζAζB) when both trA > 2 and trB > 2.
Then tr(AB) > 2.

Proposition 3. In the symmetric case SC2 is equivalent to SC3.

Proposition 4. In the symmetric case SC3 is a stronger condition than SC1, i.e.,
SC1 follows from SC3.
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Proof: The inequality in Theorem 1 could be rewritten as

wAwB − ζAζB + ηAηB > 1.

Clearly, the Tong and Tong criterion, namely wAwB > 1 and ηAηB − ζAζB > 0
gives wAwB − ζAζB + ηAηB > 1. �

We look for other sufficient conditions as well.
Our next step is to consider the characteristic polynomial of the matrix A + xB
for arbitrary x. Classifying pairs of n× n matrices (A,B) under the simultaneous
similarity (TAT−1, TBT−1) Friedland has shown in [1] that if n = 2 and U is
the set of pairs (A,B) such that |λE − (A+ xB)| = 0 splits into a product of two
linear factors, then U could be defined as

U = {(A,B) ; (2 tr(A2)− tr2A)(2 tr(B2)− tr2B) = (2 tr(AB)− trA trB)2}.
We work really in U∗ = U ∩ SU(1, 1) and can prove the following:

SC 4. Let A,B ∈ SU(1, 1) such that trA > 2, trB > 2, trA 6= trB and
the characteristic polynomial |λE − (A + xB)| is reducible over C[λ, x]. Then
tr(AB) > 2.

Proof: Starting with (trA− trB)2 > 0, we rewrite it as

trA trB − 4 >
√

(tr2A− 4)(tr2B − 4). (3)

The Cayley-Hamilton theorem gives A2 − trA.A + E = 0 and taking traces we
get

tr(A2) = tr2A− 2, i.e., 2 tr(A2)− tr2A = tr2A− 4. (4)

I) Let |λE − (A + xB)| splits into two linear factors. Thus the Friedland’s repre-
sentation gives

±
√

(tr2A− 4)(tr2B − 4) = 2 tr(AB)− trA trB.

Considering the sign possibilities we get:

• For the positive case 2 tr(AB) = trA trB+
√

(tr2A− 4)(tr2B − 4), i.e.,
tr(AB) > 2.
• In the negative one, we get respectively

−
√

(tr2A− 4)(tr2B − 4) = tr(AB)− trA trB

which combined with the inequality

−
√

(tr2A− 4)(tr2B − 4) > 4− trA trB

from (3) gives exactly tr(AB) > 2.
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II) Let |λE − (A+ xB)| be a square of a linear factor. Friedland describes the set
V of such matrices A, B as

V = {(A,B) ; 2 tr(A2) = tr2A, 2 tr(B2) = tr2B, 2 tr(AB) = trA trB}.
This is not the case for trA > 2 and trB > 2 (because of (4) the equality tr(A2) =
tr2A gives trA = 2, analogously trB = 2, a contradiction with the assumption).

�

Remark 2. For trA = trB > 2, the reducibility of the considered characteristic
polynomial guarantees only that tr(AB) ≥ 2.

Proof: The definition of U∗ gives in this case

(2 tr(A2)− tr2A)2 = (2 tr(AB)− tr2A)2.

It could be written as

(2 tr(A2)− tr2A− 2 tr(AB) + tr2A)(2 tr(A2)− tr2A+ 2 tr(AB)− tr2A) = 0

i.e., either

a) tr(AB) = tr(A2) > 2 or
b) tr(AB) = tr2A− tr(A2) = 2 as (4) is valid.

�

Remark 3. Using the computer algebra system Mathematica, we get the fol-
lowing expression for U∗

(η2
A + υ2

A − ζ2
A)(η2

B + υ2
B − ζ2

B) = (ηAηB + υAυB − ζAζB)2

i.e.,
c2

A.c
2
B = (cA.cB)2.

As (cA × cB)2 = c2
A.c

2
B − (cA.cB)2, i.e., (cA × cB)2 = 0 we see that SC4 does

not include the symmetric case as Proposition 3 is valid.

As an example of concrete matrices A and B, let us take wA =
√

2, ζA = ηA =
υA = 1, wB =

√
3, ζB = 0, ηB = υB = 1, so that tr(AB) > 2 although the

characteristic polynomial is not reducible. This proves again that the condition

wAwB − ζAζB + ηAηB > 1

is only a sufficient one. Nevertheless it is inequality for the three parameters only.

Another proof of SC4: We apply the canonization theory to the quadratic

f(x, λ) = |A+ xB − λE|
= x2 − 2λxwB + 2x(wAwB + ζAζB − υAυB − ηAηB) + λ2 − 2λwA + 1.
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The characteristic equation
∣∣∣∣1− λ −wB

−wB 1− λ

∣∣∣∣ = 0 gives two eigenvalues λ1 = 1+wB

and λ2 = 1 − wB . The corresponding eigenvectors are e1 =
(
−
√

2
2 ,

√
2

2

)
and

e2 =
(
−
√

2
2 , −

√
2

2

)
. The transformation

λ =
−
√

2
2

(
λ̃+ x̃

)
, x =

√
2

2

(
λ̃− x̃

)
gives f

(
x̃, λ̃

)
= λ1λ̃

2 + λ2x̃
2 + 2b1λ̃ + 2b2x̃ + b3, where ∆ = λ1λ2 < 0

and the quadratic form represents two crossing lines when c = 0, where c =
b3 − b21/λ̃− b22/x̃.
In our case,

b1 =
√

2
2
wA +

√
2

2
(wAwB + ζAζB − υAυB − ηAηB)

b2 =
√

2
2
wA −

√
2

2
(wAwB + ζAζB − υAυB − ηAηB)

b3 = 1.

Then

c = 1− 1
(1− wB)2

[w2
A + (wAwB + ζAζB − υAυB − ηAηB)2

− 2wawB(wAwB + ζAζB − υAυB − ηAηB)].

The condition c = 0 gives

w2
A + (wAwB + ζAζB − υAυB − ηAηB)2

− 2wawB(wAwB + ζAζB − υAυB − ηAηB) = 1− w2
B.

This could be easily transformed to

(ζAζB−υAυB−ηAηB)2 = (1−w2
A)(1−w2

B) = (η2
A +υ2

A− ζ2
A)(η2

B +υ2
B− ζ2

B)

which is the simplified expression for U∗ as pointed out in Remark 3.
There are no other possibilities for the singularity of the considered quadratic form.
The next step is to consider the arrangements Ar1Bs1 . . . ArkBsk provided that
trA = trB > 2 and tr(AB) > 2. Direct computations in this case show that
tr(Ar1Br2Ar3Br4) > 2 for 2 < r1 + r2 + r3 + r4 ≤ 5.
The main tools for proving it are:

a) equality (4) and
b) the equality tr(AB) = trA trB−tr(BA−1) proved directly for unimodular

matrices in [5, equation (23)]. For trA = trB it gives

tr(AB) = tr2A− tr(BA−1). (5)
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For the general case we could prove

Lemma 1. Let k ∈ N. Then tr(Ak) > trA.

Proof: For k = 2, (4) gives tr(A2) = tr2A − 2 > trA for trA > 2. Item b)
above gives tr(A3) = trA tr(A2)−trA = trA(tr(A2)−1) > trA and tr(A4) =
tr(A2)2 = tr2A2 − 2 > 2, using (4) again.

Then we proceed by induction. Let tr(As) > trA for every s < 2k + 1. Then

tr(A2k+1) = tr(Ak) tr(Ak+1)− trA > tr2A− trA = trA(trA− 1) > trA.

�

Lemma 2. Let trA = trB > 2 and trAB > 2. Then tr(A2k+1B) > tr(AB)
and tr(A2kB) > trA for every integer k.

Proof: For k = 1, tr(A2B) = trA tr(AB)− trA = trA(tr(AB)− 1) > trA.

Conditions (5), tr(AB) > 2 and (4) give consequently

− tr(BA−1) = tr(AB)− tr2A > 2− tr2A = − trA2.

Thus

tr(A3B) = tr(A2) tr(AB)− tr(BA−1) > tr(A2) tr(AB)− tr(A2)

= tr(A2)(tr(AB)− 1)

> 2(tr(AB)− 1) > tr(AB) as tr(AB) > 2.

Then we can proceed by induction. Let tr(AsB) > tr(AB) for any odd s < 2k+1
(k is fixed) and tr(AsB) > trA for any even s < 2k. Applying tr(A2B) > trA
for A = Ak we get

tr(A2kB) = tr
(
(Ak)2B

)
> tr(Ak) > trA

as Lemma 1 is valid.

Let k be even. Then

tr(A2k+1B) = tr(Ak) tr(Ak+1B)− tr(AB)

> (tr2(Ak/2)− 2) tr(AB)− tr(AB)

> 2 tr(AB)− tr(AB) = tr(AB).
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Let k be odd. Then using (5) we get

tr(A2k+1B) = tr
(
Ak+1

)
tr
(
AkB

)
− tr

(
BA−1

)
>
(
tr2
(
A

k+1
2

)
− 2

)
tr(AB) + 2− tr2A

>
(
tr2A− 2

)
tr(AB) + 2− tr2A

=
(
tr2A− 2

)
(tr(AB)− 1) > 2(tr(AB)− 1) > tr(AB).

�

Lemma 2 shows that tr
(
AsBAk

)
> 2 for all s, k provided that trA > 2, trB > 2

and tr(AB) > 2.

Remark 4. In the general case (i.e., when trA 6= trB and relying on vector
parametrization (2)) one can see that (5) can be rewritten in the form

t(AB) = t(A)t(B)(1− cA.cB), t(X) =
1
2

tr(MX), X = A,B,AB

which means that the second condition in SC2 is actually superfluous. In the same
time it is easy to prove that

cAk = αk(cA)cA, αk(cA) ∈ R+, k = 1, 2, 3, . . .

so that the validity of the Saxon-Hutner conjecture for AmB, ABm, and AmBn

for m,n ∈ N is obvious.
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