Copyright © 2011 S. Yarmahmoodi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Suppose that is a separable normed space and the operators
and are bounded on . In this paper, it is shown that if , is an isometry, and is a nilpotent then the operator is neither supercyclic nor weakly hypercyclic. Moreover, if the underlying space is a Hilbert space and is a co-isometric operator, then we give sufficient conditions under which the operator satisfies the supercyclicity criterion.