Copyright © 2012 Kanit Mukdasai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper investigates the problem of robust exponential stability for linear parameter-dependent (LPD) systems with discrete and distributed time-varying delays and nonlinear perturbations. Parameter dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, and linear matrix inequality are proposed to analyze the stability. On the basis of the estimation and by utilizing free-weighting matrices, new delay-dependent exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.