Copyright © 2013 Muhammad Ozair et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A mathematical model of a vector-borne disease involving variable human population is analyzed. The varying population size includes a term for disease-related deaths. Equilibria and stability are determined for the system of ordinary differential equations. If , the disease-“free” equilibrium is globally asymptotically stable and the disease always dies out. If , a unique “endemic” equilibrium is globally asymptotically stable in the interior of feasible region and the disease persists at the “endemic” level. Our theoretical results are sustained by numerical simulations.